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Introduction

Perturbative ←→ Non-perturbative

Point of view: Feynman rules describe best our understanding.

Feynman rules = perturbation theory.

Considered as included in perturbation theory those effects
that can be obtained by some partial summation of the per-
turbation series (diagrams). Examples:

- bound states such as the H-atom
- unstable particles.

Feynman rules are usually formulated in momentum space.
This is our Universe.

All this, through experiments at LEP, agrees very well with the data. But
what about the Higgs ? Various cases:

• Light Higgs. Will be discovered. Very boring possibility.
• Very heavy Higgs. Non-perturbative new physics that can to some

extend be guessed.
• Non-existent Higgs. New physics.



In discussing the physics of the Higgs system we must distinguish between
physical effects that depend on the symmetry properties of the Higgs system
and those that are due to the dynamics of the system.

Some effects will not depend on m (the Higgs mass), others will.

By dynamical effects we will somewhat arbitrarily mean those that do not
depend on the precise value of the Higgs mass.

Sofar there is no real evidence on the value of the Higgs mass.

What makes the Higgs particle different from the other particles ? What
is so special about the Higgs particle ?

• It is the only spin 0 particle of the Standard Model, and some of us, for
vague reasons (releated to gravity), think that there is something wrong
with scalar particles.

• The Higgs couples with a strength depending on the mass of the particle
to which it couples. Thus it couples with different strength to the particles
of different families (such as up and charm quark). Its (non-) discovery may
shed light on why there are three families. Weak, e.m. and strong forces are
identical for the three families. Actually also gravity couples proportional
the the mass of the particle that it is coupled to. What is going on ?



• Another remarkable fact is this. A particle may have mass of its own
(example: the electron in the old days, when we did not know about the
Higgs), or it may derive its mass from its interaction with the Higgs system.
Also a mixture of the two is possible.

It happens that in the Standard Model all particles (the Higgs itself ex-
cepted) get all of their mass from the Higgs system. If there were no Higgs
all particles would be massless.

• There is the much older question why parity is violated. This question
may find its answer in the Higgs system.

If one insists (as nature seems to do) that all particles get their mass from
the Higgs system, then it follows that parity must be violated.

• Higgs and the vacuum: things go wrong. No monopoles, axions, strong
CP violation.

• Higgs conflicts with the weak spot of gravity, the cosmological constant.

One thing appears to be clear: there is some link between the
Higgs and gravitation. Note that gravitation is deeply in trouble,
both theoretically and experimentally.



History

History is often rewritten. Here some facts.

The use of a field in the vacuum to generate masses was first published by
Schwinger, in 1957. In his article he generated the mass of the muon in
that way.

In that same article Schwinger introduced the σ-model, which is actually
the Higgs sector of the Standard Model.

Gell-Mann and Levy (1960) linked PCAC to symmetry breaking and the
σ-model.

Renormalizability for gauge theories with the vector boson masses gener-
ated through a vacuum field was proven in 1971 (V+’t Hooft). We did not
know about the work of Higgs-Brout-Englert.



In a separate development, Anderson (1958) discussed massive quantum
electrodynamics as perceived in superconductivity. This led Higgs-Brout-
Englert (1967) to their work, which is the use of a field in the vacuum to
give mass to vector bosons. In 1968 Kibble worked this out in a non-abelian
model of vector bosons with a mass due to the Higgs system. He used the
wrong group (not SU2 x U1) from the point of view of phenomenology.
Weinberg (1968), knowing the work of Kibble, used the correct group as
proposed by Glashow (1961) in a theory of weak interactions of leptons.

The proof of renormalizability led, in 1971, to credibility of the Weinberg
model of leptons. Including the Glashow-Illiopoulos-Maiani (1970) model
for quarks (involving charm as introduced by Hara in 1964 but without
Higgs system) this was build out to a complete anomaly free model of weak
interactions between quarks and leptons.

The development of the theory of strong interactions (quantum chromody-
namics) was gradual and complicated.



The Vacuum

To exhibit the relevant features consider the simplest possible field theory,
the ϕ3 theory with tadpole.

L = −1
2 ∂µϕ∂µ − 1

2 m2ϕ2 + gϕ3 + tϕ

The Feynman rules are:

Propagator:
1

p2 + m2 − i²

Vertex: 6g

Tadpole:
t

t

This last diagram, the tadpole diagram, shows that a ϕ particle (of mo-
mentum zero) can disappear.



At the tree level a tadpole generates further vacuum diagrams:

T
= t +

t

t

+
t

t

t

+   . . . . 

This series can be rewritten as an equation:

T
= t + T

T

This is a quadratic equation:

T = t +
6

2

g

m4
T 2

There are two solutions:

T± =
m2 ±

p
m4 − 12gt

6g/m2

The solution with a + sign makes no sense for g = 0.



The solution that can be expanded in a power series is the one with a minus
sign, T−. Does the other solution make sense ?

What are the physical consequences of such a tadpole ? First of all, it
influences the particle mass. Consider the propagator of the ϕ including
diagrams with a tadpole:

+ + + +   . . . . 

P = P0 + P0
6gT

m2
P0 + P0

6gT

m2
P0

6gT

m2
P0 + P0

6gT

m2
P0

6gT

m2
P0

6gT

m2
P0 + ...

P0 =
1

k2 + m2 − i²
This is a geometric series:

P0

h
1 + r + r2 + r3 + ...

i
=

1

k2 + m2 − i²

1

1− r
; r =

6gT

m2

1

k2 + m2 − i²
Thus:

P =
1

k2 + m2 − 6gT/m2 − i²



P =
1

k2 + m2 − 6gT/m2 − i²

Again, partial summation of a perturbation series, where the answer makes
sense even if the series diverges, which happens if |r| ≥ 1, that is¯̄̄̄

6gT

m2

1

k2 + m2 − i²

¯̄̄̄
≥ 1

If k2 + m2 ≈ 0 (particle on mass-shell) the series diverges. Even so, the
equation for P makes perfect sense also in that case.

The result for P shows that the mass changes due to the tadpole T :

m2 → m2 − 6gT

m2
Recall : T = T± =

m2 ±
p

m4 − 12gt

6g/m2

Inserting the solutions for T there are then two possible masses:

m2 → ∓
q

m4 − 12gt

The lower sign makes sense. The upper changes the sign of m2, which
would mean that the particle becomes a tachyon, which is unacceptable.



Now the conventional approach. Usually the Lagrangain is split in a kinetic
and potential part:

L = T − V , V = 1
2m2ϕ2 − gϕ3 − tϕ

The equations of motion follow by considering the extrema of L. Consider
V as a function of ϕ. It is a curve of third order which has two extrema.

normal mass

tachyon

V

ϕ 

To find the extrema differentiate V with respect to ϕ:

m2ϕ− 3gϕ2 − t = 0

Substituting ϕ = T/m2 we find an equation for T that is identical to the one
found before. Thus Feynman rules bring us automatically to the extrema of
the Lagrangian. They correspond to the equations of motion of the theory.



How to make life simpler ? By shifting the field ϕ formulate the theory in
such a way that there is no tadpole. Then we are directly in the extremum.

The extrema were given by ϕ = 1
m2 T±. Let us call them C±. Now shift ϕ

such that the extremum is at ϕ = 0. Thus substitute

ϕ→ ϕ+ C±
That changes the potential energy V :

1
2m2ϕ2 − gϕ3 − ϕ −→ ±1

2

q
m4 − 12gt ϕ2 − gϕ3 − Λ

with Λ some constant. Taking now the new Lagrangian with the + sign we
obtain directly the theory obtained by summing the perturbation series.

Are tachyons physically acceptable particles ? Very likely not, because the
vacuum becomes unstable. This is because tachyons can have negative en-
ergy, and one could have a tachyon with negative energy and momentum
together with a tachyon with the opposite energy and momentum and then
have a state with zero energy and momentum. Out of nothing one could
create two tachyons. The vacuum would contain an undetermined num-
ber of tachyons. Perhaps the theory can be summed, depending on the
tachyon interactions, thus resulting in some non-perturbative theory. Not
appetizing.



p

E

To illustrate the foregoing here some kinematics of tachyons. The energy-
momentum relation for a tachyon with mass squared −M2 is

E2 = p2 −M2

In the figure above the red lines are according to that relation. A Lorentz
transformation transforms a point on a red line into a point on that same
line. Thus, a Lorentz transformation may transform a tachyon of positive
energy (little circle) into a tachyon of negative energy. If Lorentz invariance
holds there is no way that tachyons of negative energy can be excluded. The
cross represents a tachyon of negative energy. Together with the tachyon
represented by the little circle there can be a state of zero energy and
momentum with two tachyons.



Cosmological Constant

Theory of gravitation of Einstein as a quantum field theory: massless par-
ticles of spin 2.

Massless particles of spin 1 or 2 always have spin states that are physically
unacceptable (negative norm states).

Therefore:

For spin 1 or spin 2 particles of mass 0 a symmetry is needed that guarantees
that the unphysical degrees of freedom do not couple to matter.

This is achieved bij gauge invariance, abelian for e.m, non-abelian for quan-
tum chromodynamics, invariance under general coordinate transformations
for gravitation. The physical basis for the latter is the principle of equiva-
lence.

In general a non-abelian gauge symmetry leads to the same coupling of the
gauge particles to the other particles. Thus gluons couple with identical
strenght to all quarks. This in contrast to electromagnetic interactions,
where the coupling of the photon to some particle depends on its charge
that may differ from particle to particle. For gravitation this leads to one
well-defined unique way in which gravitons couple to matter. No choice, or
very little.



Coupling of the graviton in the ϕ3 theory:

L =
√

Det
n
−1

2DµϕDµϕ− 1
2m2ϕ2 + gϕ3 + Λ

o
Λ =

t2

m2
+O(g) for the ok solution

Det = determinant of gµν .

gµν = δµν + κhµν hµν = gravitational field κ = coupling const.

To first order in the coupling constant κ:
√

Det ≈ 1 +
κ

2
hµµ

Due to Λ there is a gravitational tadpole term:
κ

2
Λhµµ

which gives a vertex of a graviton disappearing in the vacuum:
This is the cosmological term. Observed value is very close (or equal) to
zero.



Solving the classical gravitational equations of motion with a cosmological
term and interpreting gµν as the metric tensor leads to a curved universe
with a curvature determined by Λ.

The Higgs field normally produces a value for Λ far, far from the observed
magnitude. Typically the cosmological constant produced by the Higgs
system produces a Universe with a size of about the order of the size of the
head of a theorist (≈ 15 cm radius). The observed cosmological constant is

about a factor 10−55 or less times the value produced by the Higgs system.

In Einstein’s theory of gravitation the cosmological constant is a free pa-
rameter. It may be chosen such that the addition of such a constant (i.e.
Λ) produced by the Higgs system is compensated. So, while it is hard
to understand how something like that could happen, it is nonetheless a
formal possibility. We have no hard conflict.



The Original Higgs Model

The model is essentially q.e.d. with a massive photon. It is still useful to
understand:

• Magnitude cosmological constant

• Unitarity limit

• Equivalence theorem

Unitarity limit. This is the range of validity of the theory as function of
the Higgs mass m.

If m exceeds some limit (∼ 0.5 TeV) then perturbation theory breaks down.

Equivalence theorem. If the Higgs heavy and thus perturbation theory
breaks down then there might still be some way out. The theory might be
shown to be analogous to pion physics at low energy. Then experimental
results about pion physics may be used to make guesses about vector-boson
and Higgs physics.

Note: taking the limit m → ∞ (large Higgs mass) is in a vague sense
understood as trying to remove the Higgs from the theory.



Lagrangian and Feynman rules of the simple Higgs model.

L = −1
4FµνFµν − (DµK)∗DµK − µK∗K − 1

2λ(K∗K)2

Fµν = ∂µAν − ∂νAµ Dµ = ∂µ − igAµ

K is a complex field, thus two degrees of freedom, with mass squared µ.
This Lagrangan is invariant under gauge transformations involving an ar-
bitrary function Λ:

Aµ → Aµ − ∂µΛ K → e−igΛK

This Lagrangian can be rewritten:

L = −1
4FµνFµν − (DµK)∗DµK − 1

2λ(K∗K − f2
0 )2 + 1

2λf4
0

with f2
0 = −µ/λ. The doubly underlined piece is the potential (note the -

sign in front). If f2
0 > 0 this potential has two minima.



V = 1
2λ(K∗K − f2

0 )2

Assume f2
0 > 0

V

K

There is a minimum for |K| = f0. Actually, since K is complex one should
draw the imaginary part along an axis perpendicular to the paper. The
figure can then be obtained from the figure here by rotation around the V -
axis. The two minima become a valley. The valley is directly a consequence
of gauge invariance. If there is a minimum for K = f0 (imaginary part of
K zero) then there should alse be a minumum for any gauge transformed

of the K. Thus the same minimum should also occur at K = eiΛf0.

Rather then two minima as in the ϕ3 theory whe have now this continuum.

Instead of having to choose between 1
m2 T± nature must now make a choice

for some point somewhere in the valley.

The choice is not in the Feynman rules. Because nature must chose a
point from a curve that resulted from gauge invariance, that choice implies
a breaking of the gauge invariance. This is called spontaneous symmetry
breaking. Actually it is not truly breaking of the symmetry, the invariance
remains in a somewhat different form.



Thus the actual physical vacuum is a choice among many. This choice then
seemingly breaks the symmetry.

Note however that there is no symmetry breaking in the Lagrangian.

It is quite possible to have mass generation by a field in the vacuum without
spontaneous symmetry breakdown. The ϕ3 theory is an example. Thus
mass generation and spontaneous symmetry brakdown are two different
things. Here it happens that they go together.

The Higgs model is a lot more complicated than the ϕ3 model, and we
will restrict ourselves to the essentials. First, the extremum is reached
if K∗K = f2

0 . That solves to K = eiαf0 with arbitrary α. A gauge
transformation may be performed to eliminate α. Shift to the extremum:

K → K + f0

Next, split the field K in a real and imaginary part:

K = 1√
2
(H + iϕ)

The crucial part comes from the term −DµK∗DµK. Remember that Dµ =

∂µ − igAµ. Thus there is a term −g2AµAµK∗K and after the shift a term

−g2f2
0 AµAµ will arise. That is a mass term for the photon.



Here the Lagrangian after the shift in terms of H and ϕ:

L =− 1
2(∂µAν)

2 − 1
2M2A2

µ

− 1
2(∂µϕ)2 − 1

2M2ϕ2 − 1
2(∂µH)2 − 1

2m2H2

− gAµ(ϕ∂µH −H∂µϕ)− 1
2g2A2

µ(H2 + ϕ2)− gMA2
µH

− m2g2

8M2
(ϕ2 + H2)− m2g

2M
H(ϕ2 + H2)

+
m2M2

8g2

+ Faddeev − Popov part.

with M = gf0
√

2 and m2 = 2λf2
0 (remember f2

0 = −µ/λ).

The last line of the Lagrangian contains field-theoretical things that we do

not need to know in detail. The gauge fixing term 1
2(∂µAµ)2 is included,

cancelling against a part of the term −1
4FµνFµν . The constant on the last

but one line will become the cosmological constant when gravity is included.



Gauge invariance

Even if the K field was shifted that does not ruin gauge invariance. It just
takes a different form.

Before the shift we had invariance under the transformation

Aµ → Aµ + ∂µΛ K → e−igΛK

with an arbitrary function Λ. For infinitesimal Λ and in terms of the fields
H and ϕ (remember, K = 1√

2
(H + iϕ)):

K → (1− igΛ)K or H → H + gΛϕ and ϕ→ ϕ− gΛH

After the shift K → K + f0, that is H → H + f0
√

2 and ϕ unchanged, the
gauge transformation that leaves the Lagrangian invariant is:

H → H + gΛϕ ϕ→ ϕ− gΛH − gΛf0

√
2

Thus the fields H and ϕ transform among themselves but in addition a
constant is added to ϕ. That marks ϕ as a ghost, because by a suitable
choice of Λ it can effectively be transformed away. Detailed study of the
Feynman rules and the Ward identities following from this gauge invariance
confirm this.



Feynman rules.

Propagators:

µ ν δµν

k2 + M2 − i²
Vector particle (massive photon)

1

k2 + M2 − i²
Higgs ghost ϕ

1

k2 + m2 − i²
Higgs particle H

1

k2 + M2 − i²
Faddeev − Popov ghost

Even for this simple theory there are quite a number of vertices.



µ 

ν 

k
µ 

p

q
ig(p− q)µ

− 2g2δµν

− 3
m2g2

M2

− m2g2

M2

− 3
m2g

M

m2M2

8g2
Cosmological Constant

µ 

ν 

µ 

ν 

− 2gMδµν

− 2g2δµν

− 3
m2g2

M2

− m2g

M

− gM



There is an interesting point that may be mentioned. We have noted that
the ϕ field is a ghost field. That was concluded on the basis of the gauge
invariance of the theory:

H → H + gΛϕ ϕ→ ϕ− gΛH − gΛf0

√
2

showing that the field ϕ can be shifted by an arbitrary amount determined
by the function Λ(x). The degree of freedom that is thus lost here comes
back as a degree of freedom of the photon field, because a massless vector
field has two degrees of freedom, a massive one three. One may ask: how is
this if there had been no vector boson ? Where would that degree of freedom
have gone ? The answer is that the symmetry is lost. The invariance under
a space-time dependent gauge transformation (space-time dependent Λ)
needs the vector boson. If there is no vector boson one has no Dµ and
the theory is only invariant under gauge transformations with space-time
independent Λ. Then ϕ is no more a ghost.

Conclusions Higgs Model
1. Cosmological Constant
2. Unitarity Limit, Heavy Higgs
3. Equivalence Theorem



Cosmological Constant

The Feynman rules show a cosmological constant:

C ≡ m2M2

8g2
(≈ 100 GeV)4 + rad. corr. + initial value

From astronomy:

C < (1.23× 10−9MeV)4

This is outrageously different. However, since we do not know the initial
value there is no hard confrontation.



Unitarity Limit, Heavy Higgs

Consider longitudinally polarized photon - photon scattering in this model
(massive photons) in lowest order.

p

k

p

kH

g2

−s + m2

µ
s2

M2
− 4s + 4M2

¶

g2

−t + m2

Ã
t02

M2
− 4t0 + 4M2

!

g2

−u + m2

Ã
u02

M2
− 4u0 + 4M2

!

In here s is the center of mass energy squared, and t0 and u0 are related to
the momentum transfer. They are related to the Mandelstam variables.



kp

k

θ 

p

The Mandelstam variables are:

s = −(p + k)2 t = −(p− p0)2 u = −(k − p0)2

These variables are not independent, s+ t+u = 4M2.
Instead of t we used the variables t0 and u0, with

t0 = 1
2(1− cos θ)s = −t +O(M2)

u0= 1
2(1 + cos θ)s = −u +O(M2)

The first diagram behaves for large s proportional to s. Why is this ? That
is because of the polarization vectors. The polarization vector associated
with a longitudinal photon of momentum k is:

e(k) =
1

M

³
0, 0, k0, i|

−→
k |

´
and similarly for the others. The components behave like k0 ≈

√
s, and four

polarization vectors and a propagator behaving like 1/s give then together
a behaviour proportional to s.

Special case: m À M , s → ∞, forward direction (t = 0, u = −s + 4M2).

If M2 ¿ m2 << s then the sum of the three diagrams is A = 2g2m2/M2.

Clearly, if g2m2/M2 of order 1 or larger then perturbation theory breaks
down. The lowest order contribution becomes of the same order as the
no-scattering case.



This is usually presented in a somewhat different form, and one says that
the Unitarity limit is exceeded. It should be emphasized that Unitarity
(conservation of probability) is not violated, but what happens is that
higher order contributions (also of order 1 or more) must cancel out the
excess. In conclusion:

Unless g2m2/M2 < 1 or m2 < M2/g2 no perturbation theory. Using the
values of g and M of the Standard Model gives as limit for the validity of
perturbation theory:

m2 < (80 GeV)2 × 30 ≈ (500 GeV)2



Equivalence Theorem

At high energy longitudinally polarized vector bosons behave like the Higgs
ghost.

Here high energy means E À M . The ”theorem” is in general of question-
able value because ”high energy” is a relative statement. In any case, it
applies to the case of WW scattering at high energy. The theorem follows
from a Ward identity. The original gauge invariance of the Higgs model
translates into Ward identities, i.e. equations between diagrams. In our
case, with our choice for the gauge breaking terms the Feynman rules as
given before lead to a simple Ward identity, namely −∂µAµ + Mϕ = 0. In
terms of diagrams:

kµ 

M

+ =  0

where the two blobs have, apart from the photon and ϕ lines, the same
external lines. Similar identities hold for any number of photon lines with
a momentum factor.



Now the polarization vector for a photon of momentum k is:

e(k) =
1

M

³
0, 0, k0, i|

−→
k |

´
k0 =

q
|−→k |2 + M2

It follows that in the limit of large energy k0 the quantities k0 and |−→k | are
approximately equal and then eµ ≈ kµ/M . The Ward identities may be
used with respect to the external longitudinal high energy photon lines.

For longitudinal W−W scattering at high energy the theorem may be used.
The amplitude for this process becomes equal to that of ϕ− ϕ scattering.
In lowest order the diagrams are:

p

k

p

kH

m4g2

M2

1

−s + m2

m4g2

M2

1

−t + m2

m4g2

M2

1

−u + m2
− 3

m2g2

M2

Compared to the vector scattering diagrams the behaviour as function of
the energy is simpler. A cancellation between the three vector boson dia-
grams is now build-in.



The advantage of the equivalence theorem is that the calculation with ϕ
lines is usually much simpler. Furthermore, only vertices of the Higgs
sector are involved. In addition, in the Standard Model, the Higgs ghost
amplitudes may be related, by suitable assumptions, to π − π scattering
at low energy (with a scaling from the vector boson mass M to the pion
mass). Then much depends on our understanding of low energy π − π
scattering, which is far from perfect. That is a quite complicated subject,
with much uncertainty. Things like the ρ resonance must be considered,
which translates into a resonance in the W − W channel. The relation
between the mass of the ρ-resonance and the W −W resonance depends
on the Higgs mass. We will consider that issue later.

Now the Standard Model. The Higgs sector of the Standard Model is
Schwingers σ-model. At the same time the σ-model is thought to be a
good model to describe pion - pion scattering. Therefore it is very useful to
study the σ-model without yet including the weak and e.m. interactions.



The σ-model

Deceptively simple. Take four scalar (spinless) fields ϕi, i = 1, .., 4. The
Lagrangian is:

L = −1
2∂µϕi∂µϕi − 1

2µϕ2
i − 1

8λ(ϕ2
i )

2

The index i is to be summed over, thus ϕ2 = ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4. If one
decides on four scalar fields this is about the simplest model one can think
of. There are also models with with two, three, five fields or whatever. We
consider only the case of four scalar fields and speak of the sigma-model.

There are very interesting symmetries, visible to the naked eye.

The 4-field model has an O(4) symmetry (orthogonal transformations in
four dimensions). That is like Lorentz transformations without the i for
the fourth component.

The O(4) symmetry is a 6 parameter symmetry (just like the Lorentz trans-
formations).

That is indeed the complete symmetry content of the theory.



The model can be rewritten in a number of interesting ways, advantegeous
in different situations.

As with Lorentz transformations, separate the first three and the fourth
component: ϕi → ϕi i = 1, 2, 3

ϕ4 → σ
The Lagrangian becomes:

L = −1
2(∂µσ)2 − 1

2∂µϕi∂µϕi − 1
2µ(σ2 + ϕ2

i )− 1
8λ(σ2 + ϕ2

i )
2

This is what one usually does. The three ϕ correspond to the three pions
and the σ corresponds to the σ resonance (?)

The (infinitesimal) invariances are separated correspondingly:
ϕi → ϕ+ ²ijkΛjϕk (Orthogonal rotat. in 3 dim. ϕ− space

σ → σ (Isospin!)

and

ϕi → ϕ− σΛi (”True” Lorentz transf.)

σ → σ + ϕΛi

The Λ and Λ are infinitesimal. The first transformation, with the Λi, are
three dimensional rotations, just like isospin. In this form the model is used
for describing pions and the σ resonance.



Another way of writing the model is advantageous for the Standard Model.
A two component complex field K is used:

L = −∂µK†∂µK − µK†K − 1
4λ(K†K)2

K =
1√
2

Ã
σ + iϕ3

−ϕ2 + iϕ1

!
This Lagrangian is manifest invariant for complex rotations in two dimen-
sions, i.e. SU2:

K → UK, thus K† → K†U† with U†U = 1

The two by two matrices U can be written in exponential form. Any two
by two matrix can be written as a linear combination of the Pauli matrices:

τ1 =

Ã
0 1

1 0

!
τ2 =

Ã
0 −i

i 0

!
τ3 =

Ã
1 0

0 1

!
The matrices U can then be written as:

U = e−
i
2
(ΛL

i τi)

This involves three real parameters ΛL
i . But we know that the model has

a six-parameter symmetry. Where are the other three parameters ?



There is also a manifest U1 symmetry:

K → e−iΛ0K
This is just a phase factor. There is still a hidden two parameter symme-
try. Thus we have explicitly a SU2×U1 symmetry, the symmetry of the
Standard Model. Using the model in this notation for the Higgs sector of
the Standard Model there is thus a hidden symmetry.

This hidden symmetry gives rise to a relation between the W and Z0 masses:

ρ ≡ M2

M2
0 cos2(θ)

= 1 + rad. corr.

This ρ-parameter has played an important role, because the radiative cor-
rections turn out to be dependent on the quark masses, in practice mainly
on the top quark mass. By a careful measurement of ρ at LEP the top quark
mass could then be predicted. It was subsequently found at Fermilab with
a mass value agreeing with this prediction.

We how have written the σ model in terms of

• four fields ϕ displaying a manifest O4 symmetry
• three fields ϕ and a field σ showing a manifest isospin symmetry
• a complex two-component field K showing a manifest SU2×U1 symmetry.

Another rewrite of the σ model shows explicitly an SU2× SU2 symmetry.



L = −1
4Tr(∂µΦ†∂µΦ)− 1

2µ
h

1
2Tr(Φ†Φ)

i
− 1

8λ
h

1
2Tr(Φ†Φ)

i2

The complex two by two matrix Φ is given by (τ0 is the 2 × 2 unit matrix):

Φ = στ0 + iϕjτ
j =

Ã
σ + iϕ3 iϕ1 + ϕ2

iϕ1 − ϕ2 σ − iϕ3

!
with real fields σ and ϕi. The basic quantity is the trace Tr(Φ†Φ). This
trace has two invariances:

SU2 left : Φ→ e
i
2
(ΛL

j τ
j) Φ and Φ† → Φ†e−

i
2
(ΛL

j τ
j)

SU2 right : Φ→ Φ e
i
2
(ΛR

j τ
j) and Φ† → e−

i
2
(ΛR

j τ
j)Φ†

There are now 6 parameters (three ΛL and three ΛR) and we have mani-
festly the full symmetry content of the model. Mathematicians say: O4 =
SU2× SU2 : Z2. In here : means division. The discrete group Z2 (elements
1 and -1) is of no interest to us here.

This way of writing of the σ model is probably the best one in connection
with the Standard Model. The full symmetry is explicit, and it is also useful
in connection with invariances of quantum chromodynamics. Remarkably,
left and right symmetry become symmetries of right and left handed quarks.



The Standard Model
Vector boson part:

Lvb = −1
2Tr(bµνbµν)− 1

2Tr(cµνcµν)

bµν = ∂µbν − ∂νbµ + g[bµ, bν ] ([, ] indicates commutator)

cµν = ∂µcν − ∂νcµ

bµ = − i

2

Ã
B3

µ B1
µ − iB2

µ

B1
µ + iB2

µ −B3
µ

!

cµ = − i

2

Ã
αB0

µ 0

0 βB0

!
α2 + β2 = 1

The B-fields are related to the W , Z0 and A fields. In fact B3 and B0 are

certain mixtures of Z0 and A and W± = 1√
2
(B1 ∓ iB2).

From the point of view of the Higgs sector (the σ-model) Nature could have

used two vector boson triplets, one with SUL
2 , the other triplet with SUR

2 .
In that case there would have been 6 vector bosons of which 3 massless.

However, Nature uses SUL
2 and only a U1 part of SUR

2 (only ΛR
3 6= 0).

There are 4 vector bosons of which one massless.



Technical detail: the replacement to make in the σ-model to make the global
SU2×U1 invariance (space-time independent Λ) to a local one (space-time
dependent Λ) is:

DµΦ = ∂µΦ + gbµΦ− g0Φ cµ with in c β = −α
Now c is a multiple of τ3. Note that g0 is an arbitrary new constant. For
a U1 type symmetry such as in q.e.d. the coupling constant (e in the case
of q.e.d) may have different values for different fields.

Mass term

Everything depends on Φ†Φ. The shift

Φ→ Φ + f0

Ã
1 0

0 1

!
generates the vector boson masses. Let now g0 ≡ g s

c , with s = sin θw
and c = cos θw. Then the mass part of the Lagrangian is obtained from

DµΦ†DµΦ, keeping only the f0-part of Φ:

LM =− 1
8f2

0 g2(cBa
µ − sRa

µ)2, a = 1, 2, 3

R3
µ = B0

µ, R1
µ and R2

µ = 0



Three field combinations get a mass, namely B1 and B2 and cB3 − sB0.
The combination sB3 + cB0 remains massless.

LM =− 1
2M2(B1

µ)2 − 1
2M2(B2

µ)2 − 1
2M2

0 (cB3
µ − sB0

µ)2

=− 1
2M2(W+

µ )2 − 1
2M2(W−µ )2 − 1

2M2
0 (Z0

µ)2

M2 = 1
4g2f2

o , M2
0 =

M2

c2

Remember, W±
µ = 1√

2
(B1

µ ∓ iB2
µ)

Even if there had been 6 fields (two more R fields) there would still have
been only three mass terms. The σ-model cannot generate more than 3
masses.

The general rule is this. If the Higgs system has N fields (N degrees
of freedom) than it can generate no more than N − 1 masses. This is
because at least one degree of freedom of the Higgs system must remain
physical. Else one could have a renormalizable model with massive vector
particles without any Higgs particles; such models have been proven to be
non-renormalizable.



Isospin invariance

Ignore electromagnetisme. Then we have SUL
2 with its vector bosons, but

no photon. The Z0 mass would be the same as the W mass. Even after
spontaneous symmetry breakdown, i.e. after making the shift:

Φ→ Φ + f0

Ã
1 0

0 1

!
something remains. Consider the Higgs sector (the σ-model). Under SUL

2

and SUR
2 this Φ transforms as

Φ→ e
i
2
(ΛL

j τ
j) Φ e

i
2
(ΛR

j τ
j)

If we take simultaneously SUL and SUR and choose ΛR = −ΛL then also
the shift remains invariant.

The theory is invariant, including the vacuum.

This symmetry is denoted as SUL
2 + SUR

2 .

It is a global symmetry, because due to the absence of vector bosons for

the SUR
2 part there is only invariance for space-time independent ΛR. It is

in fact ordinary isospin.



The isospin symmetry is broken if we re-introduce the U1 part, which is

the ΛR
3 part. There will be corrections proportional to g0, or rather sin θw.

If there were no e.m. interactions then isospin would be strictly valid, and
therefore the Z0 mass would be equal to the W mass. After re-introduction
of e.m related terms it follows

M2 = M2
0 +O(sin θw)

Actual calculation shows the earlier mentioned result for the ρ-parameter:

ρ ≡ M2

M2
0 cos2(θ)

= 1 + rad. corr.

While it is easy to understand why ρ equals 1 if sin θw = 0, the precise
form for ρ as shown here can be obtained only by actual calculation, not by
any simple symmetry argument. See above, where we considered the vector
boson mass term in the Lagrangian, with the result M0 = M/ cos θ. For
more complicated systems the relation is no more true, although sometimes
limits can be established.



Further breaking of isospin will affect the ρ-parameter. For example, mass
differences between the quarks must be considered as isospin breaking.
Through radiative corrections involving those quarks as internal particles
the ρ-parameter will be affected. Thus, the mass difference between top and
bottom quark produces a measurable addition to the ρ-parameter. This ra-
diative correction is a most peculiar one: it grows with the square of the
top mass. No other correction is known that increases as the mass of some
virtual particle increases. It produces a window on the mass spectrum be-
yond the directly accessible region. Thus LEP could produce a value for
the top-mass from a precise measurement of the ρ-parameter.

Also the Higgs system contains isopsin breaking, and produces a change in
the ρ-parameter, although not as spectacular as the top quark. Here is the
relevant equation:

ρ = 1 +
3GF

8π2
√

2

µ
m2

t −
M2s2

c2
ln

m2

M2

¶
where m is the Higgs mass. The bottom mass has been taken to be small
with respect to the top mass mt. Note the proportionality to sin2 θw in the
second term. This second term is the basis of all estimates of the Higgs
mass from LEP data plus the value of the top-mass (178±4.3 GeV).

If the m = 2M ∼ 160 GeV then the logarithmic term gives the same as
subtracting 7.3 GeV from the top mass. 1.5 M = 120 GeV gives 4.3 GeV.



Fermion masses
Consider fermion doublet such as the u-d quark combination. Define left
and right handed fields:

ψL
a = 1

2(1 + γ5)ψa a = u or d

ψR
a = 1

2(1− γ5)ψa

In the Lagrangian a mass term is of the form

mfψψ = mf (ψ
L
ψR + ψ

R
ψL)

Such a term may also be generated by the Higgs field Ψ:

Lfm = −gf ψ
L
a Φabψ

R
b + h.c.

with gf to be chosen such that the right mass results. The above expression

respects both SUL
2 and SUR

2 . After the shift the f0 zero part becomes a
mass term with mass gf f0, and the above term gives equal mass to the
two quarks. This is of course not true experimentally, isospin is broken and
the two quark masses are different. If however we require only SU2×U1

symmetry the following term involving an arbitrary constant η is allowed
as well:

−gfη ψ
L
a Φab τ

3ψR
b + h.c.



Now SUR
2 is no longer respected, only the U1 part corresponding to a non-

zero ΛR
3 , which is precisely the part used in the Standard Model. The above

term gives the opposite contribution to up and down quark mass, and by
suitably chosing gf and η any mass value can be generated.

Thus a general fermion mass generating term is of the form:

−gf ψ
L
a Φab (1 + ητ3)ψR

b + h.c.

A non-zero η gives isospin breaking. The quantities gf and η differ from
fermion multiplet to fermion multiplet.



Parity

The Higgs field Φab transforms as an isospin spinor (transformation of the

index a under SUL
2 and a U1 singlet (transformation of the index b. To

construct a fermion mass term we must make an SU2×U1 invariant. Thus

out of ψ
L

and ψR together with Φ we must make an invariant. Think of a
situation where a spin 1

2 particle (the Ψ field) decays in two other partiles.

The possibilities are (i) ine spin 1
2 particle and one scalar or (ii) one spin

1
2 particle and one spin 1 particle. Here, we have that either (i) ψ

L
is a

doublet and ψR a singlet or (ii) ψ
L

is a doublet and ψR an isovector. In any

case, unavaidable, ψ
L

and ψR transform differently under SUL
2 . Therefore

they couple differently to the vectorbosons and parity is violated. The
standard solution is the one sketched before:

ψ
L
a Φab (1 + ητ3)ψR

b
where the index a transforms as a doublet under SUL

2 . ψR is invariant

under SUL
2 , but it transform under the U1 transformation, as does the Ψ

through the index b. Altogether this mass term is an SUL
2×U1 invariant.



Parity violation is a consequence of the generation of fermion
masses by means of the Higgs field.

Given then that ψL and ψR behave differently under SUL
2×U1 it follows

that an ordinary type mass term, of the form:

mf ψ
L
aψ

R
b a

must be excluded. The reverse statement holds true as well.

If parity is violated then the fermion masses must be generated
using the Higgs field.

In conclusion: all masses, those of the vector bosons as well as those of the
fermions are generated by the Higgs field.



Other Higgs systems

General remarks: by using sufficiently many different Higgs systems any
amount and type of symmetry breaking may be achieved. In particular,
any value of the Z0 mass can be generated. Therefore, a priory, any amount
of neutral currents can be accomodated.

Specific consequences of the use of the σ-model as Higgs system.

• There are three massive and one massless vector boson.
The zero mass of the photon is a consequence of this σ-model.

• There is a relation between the vector boson masses:

ρ =
M2

M2
0 cos2θW

= 1 + rad. corr.

• Parity is violated (not specific to the σ-model) whenever fermion
masses are generated by the Higgs field.

• (not discussed) Parity is conserved in e.m. interactions.

Experiment agrees very well with the model. The Higgs system appears
very much to be according to the σ-model.



If we want to keep the ρ-parameter prediction then the use of other than σ-
model type Higgs systems is excluded. One could however have two Higgs
systems, two σ-models. For example, with two Higgs systems one of them
could generate the up-down masses, the other the charm-strange masses
and the top-bottom masses.

This in fact was done by Peccei and Quinn in order to cure a problem of the
Standard Model (the strongly interacting piece, QCD) namely strong CP
violation. However, the use of two Higgs systems introduces some problems.

• Vacuum alignment problem.
The photon will not automatically have zero mass. A prediction is lost.

• Not all Higgs particles become ghosts. In the case of two σ-models
there are originally 8 Higgs fields of which 3 will become ghosts,
the remaining 5 will be ordinary spin 0 particles.

In addition, with such multiple Higgs systems often one of the physical
scalar particles will be massless. This is also the case for the Peccei-Quinn
model: the axion. Has not been seen.

Also supersymmetric models use more than one Higgs system. So they have
to explain why the photon has zero mass. In the minimal supersymmetric
model the two vacua align and the photon is massless.



Searching for the Higgs

Screening

The theory without the Higgs is non-renormalizable. That implies infinities
that cannot be absorbed in the free parameters of the theory, and are
therefore observable. By making the Higgs heavy, thus removing the Higgs
from the system, these infinities should come up. It follows that the non-
renormalizable infinities correspond to effects that become large if the Higgs
mass becomes large. From the absence of such (observable) terms it should
then be possible to deduce an upper limit to the Higgs mass.

The case of the top-mass is an example of this type of reasoning. Without
the top quark (but with a bottom quark) the theory is non-renormalizable.
The correction to the ρ-parameter, depending quadratically on the top
mass, is an example of things that may happen. We now must look for
analogous things involving the Higgs.

The first one has already been mentioned: the Higgs mass dependent cor-
rection to the ρ-parameter. That becomes large with large Higgs mass, but
only logarithmically.

It could have been quadratic as well, like for the top mass, but through
some cancellation the quadratic term drops out and the logarithmic one
remains.



There is a statement proven long ago that without a Higgs the theory is
one-loop renormalizable. This means that contributions that blow up with
the Higgs mass are at most quadratic in that mass for one loop self-energy
diagrams, linear for three-point diagrams and logarithmic for four-point di-
agrams. Linear becomes in practice logarithmic, because the theory never
produces anything depending linearly on the Higgs mass, always quadrat-
ically. In fact, the Lagrangian contains only m2. The possibly quadratic
divergence for self-energy diagrams is in principle unobservable as it can be
absorbed in the W and Z0 mass. Only if there is a relation between those
masses could such a term be observable, That is precisely the situation
with the ρ-parameter, but there it does not appear. The sum total of this
reasoning is that the only observable dependencies on the Higgs mass in the
limit of large Higgs mass will be logarithmic in that mass. This statement,
far from trivial, is called the “screening theorem”. It means that nature
has constructed the theory such that it is difficult to see if the Higgs is
there, to find an upper limit to the Higgs mass.

Let us put this somewhat more precisely. At the one-loop level there will
be quadratic radiative correcions to the W and Z0 mass:

M2 →M2 + a m2 +O(ln m2)

M2
0 →M2

0 + b m2 +O(ln m2)



The coefficients a and b must be found by explicit calculation. However,
the masses M and M0 are free parameters of the theory and therefore these
radiative corrections are invisible. Only if there is a relation between M
and M0 the coefficients a, b might be observable. In the case of the simplest
Higgs system, the σ-model, we have that in lowest order the ρ-parameter
equals one, thus M2 = M2

0 cos2 θw.

Unfortunately, explicit calculation shows that also a = b cos2 θw and the
ρ-parameter contains no m2 terms.

At the two-loop level there will be observable quadratic corrections, but
those are diminshed by the associated factors of the coupling constant. For
example, there is a two-loop contribution proportional to the Higgs mass
squared to the ρ-parameter that has been worked out. A Higgs mass of
140 times the vector boson mass is needed before this contribution is of the
same order as the one-loop (logarithmic) one. And to make things worse,
it has the opposite sign and cancels the lowest order term. However, other
effects than radiative corrections become important for much lower Higgs
mass (m > 500 GeV).



In general one has that two loop radiative corrections are proportional to
m2, three loop to m4 etc. If the Higgs mass becomes large these corrections
become as large as the one loop correction, and one can no more see if the
observed correction is the lowest order one or the sum of a large number
of terms with unknown coefficients. There is however one way in which
this could be established: comparing radiative corrections for different pro-
cesses. Consider again the ρ-parameter.

From the known one-loop radiative correction to the ρ-parameter one de-
duces a limit on the Higgs mass without knowing if the higher order
corrections are relevant. That is something one should keep in mind
when considering the limit on the Higgs mass from present day eperiments.
It might be a fake, the lowest order equation may be wrong. One
could say: the limit on the Higgs mass is 120 GeV unless the Higgs is
strongly interacting.

There is however one way to check this. If there is another process with
logarithmic corrections than one can check if, using the Higgs mass obtained
from the ρ-parameter, that other radiative correction gives the correct,
observed, result. So, seeing that the lowest order expressions work well in
two different places we may infer that very likely they suffer no higher order
effects (which would be different for the two cases).



As an example, a potential candidate for such a second process is W pair
production at an electron-positron machine. Here is the relevant lowest
order diagram.

e+

e

W+

W

Z0

It involves a Z0W
+W− vertex which will suffer radiative corrections pro-

portional to ln m2. Knowing ln m2 from a measurement of the ρ-parameter
this value can be inserted in the one-loop calculation of the radiative cor-
rections to the three vertex.

If that agrees with experiment than there is reason to have some confidence
in the value of the Higgs mass so obtained.

If the Higgs mass is larger than 500 GeV then there are other effects which
will be discussed now. Note that for a heavy Higgs there might be low lying
resonances produced by the strongly interacting Higgs that might be con-
fused with the Higgs itself. In fact, we have no idea what the experimentally
observed Higgs mass would be since it suffers strong corrections.



Higgs at high energy

Consider again the simple Higgs model. The Feynman rules for that model
have been given before. There are many vertices with a factor m/M . It
follows that perturbation theory breaks down if this gives rise to amplitudes
of the order 1 or larger. The relevant quantity is g2m2/4πM2 .We can

conclude that perturbation theory breaks down if m2 ≈ 4πM2/g2. This
happens if m > 500 GeV. That is also true in the Standard Model.

Perturbation theory breaks down if the Higgs mass is larger than
500 GeV.

A process where the breakdown of perturbation theory can be seen directly
is WW scattering at high energy. We are interested in the behaviour with
respect to the c.m. energy for large energy. Lowest order diagrams:

W+

Z0

W+

Z0
W+ W+ H

Energy: E4 E4 E4 E2

First three diagrams together: E2. Including fourth: constant.



The cancellation of the E4 behaviour is due to gauge invariance. The
addition of the Higgs completes the job: a renormalizable theory requires
behaviour as a constant.

However, the last diagram contributes significantly only if the energy is
larger than the Higgs mass. Therefore the cancellation becomes effective
only if the energy is above the Higgs mass.

It is necessary to state here clearly that the above is for longitudinally
polarized vector bosons. This point is important, because it is not easy to
produce experimentally longitudinally polarized vector bosons.

If the Higgs mass is large then the first three diagrams may give a contri-
bution of order one, and then perturbation theory breaks down here. No
one knows what will happen. For low energy there is no problem, even for
large Higgs mass, and perturbation theory holds. The important question
is this: is there any non-perturbative way that we can extrapolate to high
energy starting from a low energy calculation ?

At this point we re-introduce the equivalence theorem. Scattering of lon-
gitudinally polarized vector bosons is equivalent to scattering of the Higgs
ghost. The relevant vertices are then all contained in the σ-model. The
problem becomes identical to the description of pion scattering using the
σ-model. Instead of longitudinally polarized vector bosons we have pions.
The Higgs is then the σ-particle.



Pion scattering

The σ-model conserves isospin, and it is advantageous to use the appro-
priate notation. Rather then π± and π0 we will use π1,π2 and π3 with
π± = 1√

2
(π1 ∓ iπ2) and π0 = π3. Exhibiting isospin the amplitude for

pion-pion scattering can be written as:

A(πaπb → πcπd) = δabδcdF (s, t, u) + δacδbdF (u, t, s) + δadδbcF (t, s, u)

There is one function F depending on the Mandelstam variables s, t, u.
This function can be worked out easily up to one loop. The result is:

F (s, t,u) =
s

v2

− 1

96π2v4

³
2s2(ln s− β1) + t(t− u)(ln t− β2) + u(u− t)(ln u− β2)

´
The first line gives the tree contribution, the second the one-loop result.
The quantities β1 and β2 depend on the σ-mass, they contain ln m2. From
comparison with experiments on π − π scattering the vacuum expectation
value v, usually denoted by Fπ, is found to be 98 MeV; in the Standard
Model we have f0 = 250 GeV, from the vector boson masses.

That is the scale factor (2551) going from pions to vector-boson
scattering.



With that scale factor the ρ-meson would be a resonance in WW scattering
of 1977 GeV ≈ 2 TeV.

However, whether there is a resonance depends on the values of β! and β2.
Some theoretical understanding is necessary in order to determine what
may happen in the Standard Model.

For pion-pion scattering there exist an extrapolation method (Lehmann) to
go from low energy (where the equation written above is supposedly valid)
to higher energies.



Lehmann analysis

• Assume that the amplitude, also for high energy, is well described
using a partial wave expansion (in terms of angular momentum),
and keeping only low angular momentum states
(spin 0, 1, 2 but no more).

• Fit this amplitude for low s to the one-loop equation given above.

The result is as follows.

Concentrate on the isospin 1 channel as there the ρ occurs. Also, the result
will then depend only on β ≡ β2 − β1 which happens to be independent
of ln m2. In fact, T (1) = F (t, s, u) − F (u.t.s) whwre T(1) is the isospin 1
amplitude.

The partial wave expansion is:

T (I) = 32πΣ
∞
l = 0

(2l + 1)Pl(cos θ)tIl (s)

tIl =
1

cot δIl (s)− i

The use of the form shown for tIl guarantees unitarity.



At low energy one has in the I-spin 1, angular momentum 1 channel:

t11(s) = sA1
1(s)(1 + sB1

1(s))

From this follows:

cot δ(s) =
1

A
− B

A

If cot δ = 0 for some value of s then we have a resonance at thet s.

Comparing the low energy expression for t11(s) with F (s, t, u) gives:

A =
1

96πF 2
π

(I− spin 1)

B may be determined from the one-loop calculation. The result will depend
on β = β2 − β1. The Higgs secor of the Standard Model as well as the σ-

model for pions give β = 1
3 . But in reality that may be different.

What does this mean for the amplitude t11 ? Consider t11 as function of β.
The result is shown in the figures.



Low energy behaviour of the π−π
scattering amplitude. This can be
calculated using perturbation the-
ory.

The scattering amplitude is shown
as a function of the c.m. energy.



Calculation using the Lehmann
technique for extrapolating from
low to high energy.

The scattering amplitude is shown
as a function of the c.m. energy.
A sharp resonance (the ρ) arises
only if β > 2.

H. Veltman and M.V.
Acta Phys. Pol. B22 (1991) 669.



The figures show that there is no resonance for β = 1
3 . Yet for pion-pion

scattering there is a resonance, the ρ-resonance at 775 MeV. How can this
be understood ? Lehmann invokes a further interaction, namely the pion-
nucleon interaction. Here is a possible diagram.

π π 

π π 

N

This works. Will there be something analogous in the Standard Model ?
Continuing the parallel π - W one has introduced technicolor, a scaled-up
version of QCD.

But that theory is in trouble, mainly through the ρ-parameter.

Experiment must give the answer.


