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In perceptual decision-making tasks the activity of neurons in frontal
and posterior parietal cortices covaries more with perceptual reports
than with the physical properties of stimuli. This relationship is
revealed when subjects have to make behavioral choices about
weak or uncertain stimuli. If knowledge about stimulus onset time is
available, decision making can be based on accumulation of sensory
evidence. However, the time of stimulus onset or even its very
presence is often ambiguous. By analyzing firing rates and corre-
lated variability of frontal lobe neurons while monkeys perform
a vibrotactile detection task, we show that behavioral outcomes are
crucially affected by the state of cortical networks before stimulus
onset times. The results suggest that sensory detection is partly due
to a purely internal signal whereas the stimulus, if finally applied,
adds a contribution to this initial processing later on. The probability
to detect or miss the stimulus can thus be explained as the combined
effect of this variable internal signal and the sensory evidence.
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Animals often make perceptual decisions under uncertain con-
ditions (1–14). The arrival of a behaviorally relevant sensory

stimulus is usually unknown and its presence is often ambiguous
because it can be weak and appear in a noisy background. What
are the neural mechanisms underlying the decision-making process
in this situation? Neurophysiological experiments often use clear
cues indicating when to start gathering the sensory evidence on
which decisions are based (2, 13). In these paradigms, experimental
data can be explained by feed-forward accumulation models (1, 2,
5, 14). However, when the time of stimulus onset is variable, neural
integration of sensory signals is problematic because it would start
either too soon, in which case noise will dominate the process, or
too late, losing part of the signal. There is evidence that the brain
uses internal signals to guide detection of sensory stimuli (15).
These signals are related to task contingencies that prefrontal
cortical networks acquire during training (16) and combine with
the stimulus to produce the behavioral response following a pro-
cess different from simple integration of the sensory evidence (13).
To further investigate the neuronal mechanisms coping with

uncertainty about stimulus onset and the role of internal signals
in sensory perception, we recorded the simultaneous activity of pairs
of premotor cortex neurons, while trained monkeys performed
a vibrotactile detection task (11, 12). In this task, the stimulus
was often absent or weak, and the time of its application varied
uniformly within a 2-s time interval (Fig. 1A and Materials and
Methods). Previously, it was found that the activity of single neu-
rons covaries with the subject’s decision report. Here, by analyzing
pairwise spike-count correlations, we take a population-level
approach. This allows us to uncover a purely internal signal that
affects the population of neurons and increases the correlation
between them.

Results
Premotor Cortex Activity Is Modulated During the Task. The tem-
poral profiles of neuronal firing rates covary with the decision
report (11, 12) (Fig. 1B). Interestingly, the firing rate activity

during false-alarm trials is higher than during miss and correct-
reject trials. This could be an indication that premotor cortex
neurons are receiving a stimulus-independent signal. If an in-
ternal signal were collectively affecting the neural population,
the firing rate of pairs of neurons would cofluctuate, perhaps in a
time-dependent manner. We have then analyzed the time course
of the spike-count correlations of pairs of simultaneously recorded
premotor cortex neurons (11, 12). We start by noting that these
noise correlations are modulated during the course of a trial.
The temporal profile of the spike-count correlation coefficient
(CC), defined in a time window of 250 ms and computed using
stimulus-present trials (hits and misses) aligned at the stimulus
onset, is shown in Fig. 1C. Before stimulus presentation, CCs are
relatively weak. Following stimulus onset, and with latency sim-
ilar to firing rate responses (12), CCs grow until they are more
than twice their initial value.
When trials are segregated according to the animal’s decision

reports, the time course of the CCs appears modulated in a
condition-dependent manner (Fig. 1D). One notes that (i) the
CCs in miss and correct-reject trials have similar temporal pro-
files, except during the stimulus period and the subsequent re-
laxation in miss trials; (ii) in hit trials they reach higher values
during the stimulation period; (iii) the CCs in false-alarm trials
are higher than in correct-reject trials during the first half of the
shown interval; and (iv) noise correlations can be weak; their
smallest values, in the four conditions, are attained during the
last portion of the delay period, reaching mean values of about
0.06, in agreement with measurements in the supplementary
motor area during simple reaching tasks (17). This is seen in Fig.
1D, Inset, showing the distribution of CCs in correct-reject trials
at the end of the delay period. Previous recordings in prefrontal
cortex of monkeys performing a working memory task studied
the time course of CCs, but correlations were not modulated at
any task stage (18).

Spike-Count Correlations and Firing Rate Activity Reveal a Purely
Internal Processing. A closer view of Fig. 1D shows that before
stimulus onset the CCs in hit trials are higher than those obtained
for correct rejection trials at any time. This could be another
manifestation of an internal signal that, starting before stimulus
onset, modulates the activity of premotor cortex neurons and
might influence the outcome of the decision-making process. To
further explore the properties of this signal, we computed the
CCs by aligning the trials when monkeys place their non-
stimulated hand on the immovable key [key down (KD)] (Fig.
1A). This event is important because it initiates the 1.5- to 3.5-s
variable period that precedes stimulus onset. We hypothesized
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that if premotor cortex neurons reflect the animal’s use of the
knowledge of stimulus onset times, modulation of their CCs
should start roughly at 1.5 s. Again, the time course of the CCs
depends on the behavioral condition (Fig. 2A). In stimulus-
present trials, we computed the time course of these coefficients,
keeping trials only until the application of the stimulus. In all
decision reports, we observed a modulation that seems to be
driven by the internal signal. The temporal profiles of CCs during
miss and correct-reject trials are similar (Fig. 2A). In accordance
with the hypothesis that the internal signal influences the de-
cision reports, we observed that during hit and false-alarm trials
the CCs undergo a large positive fluctuation beginning about 1.5 s
after KD. Similar temporal dynamics can be observed in the
firing rates: Whereas in correct-reject and miss trials they be-
come stationary soon after KD, in false-alarm and hit trials they
begin to increase at about 1.5 s (Fig. 2B).
The modulated activity occurring before stimulus onset is

consistent with the hypothesis that premotor cortex neurons make
use of task contingencies to prepare the network for the stimulus
arrival. The higher average firing rate in false-alarm trials be-
ginning from KD suggests the presence of an internal signal
controlling the excitability of the neurons that fluctuates from
trial to trial. Its effect in the other behavioral conditions is less
evident presumably because it is weak and therefore the proba-
bility that neurons reach their firing-rate threshold is low (Fig.
2B). However, the fluctuating nature of the signal can be made
more visible in the hit condition by restricting the computation of
firing rates to trials with weak stimulus amplitudes (less than
6 μm) and mean firing rates higher than 6 Hz (Fig. 2C). The

internal signal has an appreciable strength as can be seen by
comparing the change in firing rate that occurs in false-alarm
trials at 1.5 s after KD (about 5 Hz) with the changes produced
by the stimulus in hit trials (about 20 Hz) and in miss trials
(about 3 Hz).

Activity of Premotor Cortex Neurons Covaries at Slow Temporal
Scales. The presence of temporally modulated noise correlations
before stimulus onset suggests that the fluctuating signal is com-
mon to a substantial number of neurons. To quantify this effect
we studied the covariation of pairs of neurons at scales longer
than T = 500 ms. Slow excitability cofluctuations of specific pairs
can be detected by comparing the covariance of the spike counts
of the neurons, defined in a time window of size T, with the
product of the two spike counts. Because the spike-count variable
does not have information about fluctuations at scales shorter
than T, the remaining covariations are guaranteed to originate
from slower scales. On the other hand, the product of the spike
counts supports the hypothesis of firing independence at scales
longer than T. If two neurons did not cofluctuate at long time-
scales, these two quantities should be equal; a nonzero value of
their difference E reveals the presence of slow covariations
(Materials and Methods). This analysis confirms that premotor
cortex neurons do covary at timescales longer than 500 ms. To
trace the effect of the internal signal on the population of pairs,
we computed the distribution of E at two different 500-ms bins of
the task during hit trials (before stimulus onset and at the end of
the delay period). The result in Fig. 3A, Left indicates that before
stimulus onset many pairs share the internal signal, but by the

Fig. 1. Detection task and temporal profile of firing rates and spike-count correlation coefficients. (A) The mechanical probe was lowered, indenting the skin
of one fingertip of the restrained hand (PD) and the monkey reacted, placing its free hand on an immovable key (KD). After a variable prestimulus period
from 1.5 to 3.5 s, on half of the trials a vibratory stimulus of 0.5 s duration was presented (SO). After a fixed delay period of 3 s the stimulator probe moved up
(PU), indicating to the monkey that it could make the response movement (MT) to one of the two buttons. The button pressed indicated whether or not the
monkey felt the stimulus. (B) Temporal profile of the firing rates according to the behavioral conditions (n, number of neurons). Stimulus-present trials were
aligned at SO and stimulus-absent trials were aligned at PU. The gray box marks the time of stimulus presentation. (C) Temporal profile of correlation
coefficients (CCs) of spike counts using stimulus-present trials (hits and misses) aligned at the SO (p, number of pairs). The gray box marks the time of stimulus
presentation. (D) Temporal profile of CCs according to behavioral conditions. Stimulus-present trials (hits and misses) were aligned at SO and stimulus-absent
trials (false alarms and correct rejections) were aligned at PU. The time courses of the CCs are modulated in a condition-dependent manner. Bars indicate
confidence intervals, 90% significance level, two sided (Materials and Methods). Inset shows the CCs population histogram of neuron pairs from t = 2 to t = 3 s
from SO for correct-reject trials.
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end of the delay period the fraction of pairs with a low level of
covariation increases substantially (Fig. 3A, Right). The long tail
exhibited by the distribution in the prestimulus period disappears
during the delay period, being replaced by a larger peak at the
origin (Fig. 3B).

Statistical Model Predicts Performance and Correlation Coefficients.
The results presented in Figs. 2 and 3 demonstrated that the
processing taking place before stimulus onset significantly af-
fected the behavioral response. To further analyze the role of the
internal signal in the decision-making process, we implemented
a statistical model of the cortical network activity during stimulus
presentation. In the model, the membrane potential Vi of each
neuron i results from the contribution of three components: Vi =
V0i + Vs + Vint. The first term represents the membrane potential

of neuron i in the absence of any input besides noise. These are
random variables that, for the sake of simplicity, we have drawn
from a multivariate Gaussian distribution with homogeneous var-
iance (σv) and membrane correlation coefficient (ρ). The second
component, Vs, represents the membrane depolarization evoked
by the stimulus and is obtained from the mean firing rates of
primary somatosensory cortex (S1) neurons (11). The last com-
ponent, Vint, denotes a trial-to-trial fluctuating common signal
that we generated from an exponential distribution with mean
μint. The firing rate is obtained from the membrane potential Vi

with a sigmoidal activation function. The animal’s decision is
modeled using a decision rule based on the comparison of the
population firing rate with a threshold (see SI Text 1–3 for
further details).

Fig. 2. Temporal profile of the spike-count correlation coefficients and mean firing rates in trials aligned at key down (KD). Trials were segregated according
to behavioral condition and stimulus-present trials were kept only until stimulus onset. (A) Time course of CCs for each behavioral condition (p, number of
pairs). During hit and false-alarm trials the CCs increase starting ∼1.5 s after KD. Bars indicate confidence intervals, 90% significance level, two sided (Materials
and Methods). (B) Mean firing rate in each behavioral condition (n, number of neurons). As with the CCs, in hit and false-alarm trials, the firing rate increases
after 1.5 s immediately after KD. (C) Mean firing rate of a subset of hit trials equivalent to the mean firing rate of false alarms. This subset was obtained by
selecting those hit trials with weak amplitudes (less than 6 μm) that had mean firing rate higher than 6 Hz.

Fig. 3. Analysis of slow covariations. (A) Distribution of E (Materials and Methods) for 181 pairs of neurons before SO (Left) and at the end of the delay
period (Right). Mean value of E = 0.10 during the prestimulus period, but reduces to 0.01 at the end of the delay period. (B) Difference in the fraction of pairs
between the prestimulus period and the end of the delay period. Many pairs share the internal signal before the application of the stimulus, but little before
the animal reports; the fraction of pairs with a low level of covariation increases substantially.
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In the absence of stimulation, low values of the internal signal
produce correct rejections whereas high values lead to false
alarms (Fig. 4A, Upper). In stimulus-present trials low values of
Vint produce misses whereas high values lead to hits (Fig. 4A,
Lower). Because of the depolarizing effect of the stimulus, the
boundary value of Vint that separates yes from no responses in
stimulus-present trials is smaller than in stimulus-absent trials
(Fig. 4A). Errors can be explained in terms of the common signal.
The predicted frequencies of miss and false-alarm reports are in
full agreement with the observed values (Fig. 4B). More gener-
ally, the predicted psychometric curve matches well the psycho-
physical reports (Fig. 4C) (11, 12).
Our experimental findings and our simulations suggest that the

behavioral response results from the combination of the internal
signal and the stimulus amplitude. The mean depolarization in-
duced by the internal signal in each condition can be computed
using the model (Fig. 4D). In stimulus-absent trials, large enough
values of this signal produce false-alarm responses. In stimulus-
present trials these large values give rise to hits; however, correct
responses can be also obtained with weaker internal signals be-
cause of the extra depolarization produced by the stimulus.
Correct rejections require low signal values and misses are
produced with even weaker signals. The model can also be used
to analyze the origin of the observed noise correlations for each
behavioral condition. Possible sources of correlations are (i)
membrane potential correlations, ρ, representing the effect of
common recurrent inputs and spike correlations in the network;
(ii) slowly varying excitability covariations, generated by the
common internal signal; and (iii) effects from the sensory input.
Interestingly, the model reproduces the observed CCs without
correlating explicitly the potentials of the neurons, that is, taking
ρ = 0 (Fig. 4E). This would mean that noise correlations have to
come from other sources (19, 20). In stimulus-absent trials the
only possible source is the internal signal; its larger value in false
alarms compared with correct rejections (Fig. 4D) produces larger
CCs in the first of these conditions. A similar argument explains
that the CCs are higher in hit than in miss trials. Stimulation
contributes positively to noise correlations; this explains why the

CCs in misses are larger than in correct rejections even when the
internal signal is larger for the second condition.

Discussion
The neuronal fluctuations described above occurring before
stimulus onset could be reflecting the initiation of the decision-
making process. If so, some features of the strategy developed by
animals to solve the detection task can be inferred from the
neuronal activity preceding stimulus onset. If this is the case, the
problem posed by the uncertainty in the task could be solved by
applying an internal reference signal at that time. If the strength
of this pulse were such that in the absence of stimulation the
population activity remained below the decision criterion and if
the weakest stimulus were large enough to put it just above it, in
principle the task could be performed well. However, noise spoils
this strategy. A possible way to deal with this situation is to take
into account the history of the decision reports during previous
trials to modify in a flexible way the behavioral response in the
current trial, something that could be implemented by modu-
lating the neuronal depolarization at long timescales. In this
context, the activity during the prestimulus period would be re-
lated to the inference about the presence of the stimulus in the
current trial on the basis of the recent history. In fact, in this task,
the number of yes responses before false-alarm trials is larger
than in the set of all trials (8), which is an indication that the
decision-making process uses memory in a timescale longer than
one trial.
The internal fluctuating signal could be produced by neuro-

modulatory systems, which are known to be involved in decision-
making tasks (21–25). In the task studied here, the activity of
midbrain dopamine neurons is correlated with the monkey’s
decision report (22, 23). However, it does not present important
modulations during the prestimulus period. The noradrenergic
system has been suggested to be related to uncertainty aspects in
detection tasks (24, 25), but experimental studies concluded that
this signal is produced after the decision has been made in cor-
tical areas (24). Thus, it is unlikely that this system could play a
role in the activity changes observed during the prestimulus period.

Fig. 4. Statistical model predicts the psychometric curve and the CCs. (A) Exponential distribution over trials of the fluctuating internal signal. In the absence
of stimulation (Upper), low values of the internal signal produce correct rejections whereas high values lead to false alarms. In stimulus-present trials (Lower),
low values of the internal signal produce misses whereas high values lead to hits. Because of the depolarizing effect of the stimulus, the value of the internal
signal that separates “yes” from “no” responses in stimulus-present trials is smaller than that in stimulus-absent trials (dashed vertical lines). (B) Predicted
mean fraction of trials for each behavioral condition (colored bars) compared with the experimental values (gray bars). (C) Model prediction of the psy-
chometric curve (black crosses) compared with the experimental psychometric curve (gray circles). (D) Mean value of the internal signal averaged over the
population and over trials of each behavioral condition. (E) Predicted mean CCs averaged over all pairs and over trials for each behavioral condition (colored
bars). Gray bars represent experimental values. Results in A–E have been obtained assuming negligible voltage correlations (ρ = 0).
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Although the current evidence seems to be against noradrenaline
being responsible for the generation of the fluctuating signal, this
conclusion has to be taken with some caution because a task with
the same type of uncertainty present in our work has not been
studied experimentally.
The activity observed during the prestimulus period may result

from reverberating activity occurring in a distributed set of pre-
frontal and premotor areas that have been shown to be involved
in working memory (3, 8, 10, 13, 26), decision making (8, 10, 13,
27), stimulus selection, and movement preparation (28–30).
Accumulator models (1, 2, 5, 14) have been successful in

explaining some decision-making experiments (5, 14). However,
as noted previously in sensory areas (15), feed-forward bottom-
up processing cannot fully explain the experimental results. In
our detection task, the time when accumulation of sensory evi-
dence should start is ambiguous, but the moment after which the
stimulus could be applied is well defined and the neural pop-
ulation does initiate integration at that time (Fig. 2 B and C).
However, this integration is effective only if cells are sufficiently
depolarized. Thus, the behavioral response could be the result of
a combination of the internal signals and the sensory input; hit
responses may result from stimulus-present trials where neurons
are highly depolarized (in which case the stimulus is not relevant
for the yes response) or from trials where the depolarization is
not enough to reach the decision criterion, but the added effect
of the stimulus suffices to obtain the correct response.
Decisions are choices made under uncertain conditions (9, 11,

14, 29, 31, 32). Tasks in which sources of uncertainty can be
controlled provide excellent conditions to unveil the internal
signals involved in decision-making processes. Noise correlations
in cortical networks can be quite small (19, 20) and the obser-
vation of appreciable modulations in the covariation of pairs of
neurons can be a signature of the presence of common internal
signals. Our results could be pointing to a role of Bayesian in-
ference in the cortical network where the internal signal reflects
the animal’s belief about the state of the world (33, 34) caused by
the uncertainty about the amplitude and application time of the
stimulus. Future experimental and theoretical work could clarify
the connection between purely internal cortical processing and
types of uncertainty in the task.

Materials and Methods
Data for this analysis were obtained from two earlier studies (11, 12).
Monkeys were handled in accordance with institutional standards of the
National Institutes of Health and the Society for Neuroscience. Protocols
approved by the Institutional Animal Care and Use Committee of the Insti-
tuto de Fisiología Celular.

Neuronal recordings were obtained with an array of seven independent,
movable microelectrodes (2–3 MΩ) inserted in areas VPc, DPc, and MPc,

bilaterally. A total of 355 neurons were included in the analysis, on the basis of
their response to any of the different components of the task and the stability
of the recordings. Trials were classified according to monkey’s choice and
stimulus amplitude in hits, false alarms, misses, and correct rejections. Neural
recordings were used for computing the firing rate and correlation coeffcients
if there were at least five trials of the corresponding condition.

Firing rate as a function of time was calculated using a 250-ms sliding
window displaced every 50 ms. To combine sets of trials with different
stimulus amplitudes, we subtracted from each trial themeanfiring rate of the
set of trials with equal amplitude and divided by its SD. Correlation coef-
ficients as a function of timewere calculated from the firing rates of each pair
of simultaneously recorded neurons following

CCðtiÞ = Æυ1ðtiÞυ2ðtiÞæ− Æυ1ðtiÞæ Æυ2ðtiÞæffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðυ1ðtiÞÞ varðυ2ðtiÞÞ

p ;

where υkðtiÞ is the firing rate of a neuron k at window i. Confidence intervals
were estimated using a bootstrap technique. In each window we generated
500 resamples of the firing rates of the pair of neurons with the same
number of trials as the original one. Resamples were drawn from the same
collection of trials from which the CC was calculated. From these resamples
we obtained a distribution of correlation coefficients and the confidence
interval was considered proportional to the variance of this distribution
(significance level: 90%, two sided). The mean temporal profile of the cor-
relation coefficient over all pairs was computed using a weighted average.
For each window and for each pair, the weight of the correlation coefficient
value was considered proportional to the inverse of its confidence interval.

The analysis of slow covariations was done, computing the distribution of
E over the population of pairs of neurons. We defined E as

E =
1
N

X
nk
i n

k
j 

1
N

XN
k=1

nk
i

! 
1
N

XN
k=1

nk
j

!− 1;

where nk
i and nk

j are the spike counts of neurons i and j in trial k, computed
in a time window of length T = 500 ms and N is the number of trials. Fol-
lowing this definition, any deviation from E = 0 indicates a covariation of the
spike counts larger than that expected for independent neurons. Because E
is computed from spike counts in time windows of length T, values of E
different from zero indicate covariations at timescales longer than T. The
distribution of E over the population of pairs was calculated in two 500-ms-
long periods of the task: “before stimulus onset” from t = 2 s to t = 2.5 s
following KD and “end of delay period” from t = 3 s to t = 3.5 s from SO. For
the first period trials were considered only if stimulus was presented after
t = 2.5 s following KD. The histograms were computed using a bin size of 0.1
and normalized with the total number of pairs.
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SI Text 1. Statistical Model
1.1. Description of the Model. We have implemented a statistical
model to explore the effect of the internal signal during the
stimulation period. The model consists of two populations ofN=2
neurons, referred to as populations S and B (1). The activity of
each neuron is described by its membrane potential, which is
computed as a sum of three components,

Vi ¼
�
VS
0i þ VS

s þ Vint; if neuron i ∈ S

VB
0i þ VB

s −Vint; if neuron i ∈ B:
[S1]

The first component, Vk
0iðk ¼ S;BÞ, is a random number for each

neuron drawn from a multivariate Gaussian distribution with
mean μkV , SD σV , and correlation coefficient ρ,

pðV01; :::;V0NÞ ¼ ∏
N

i;j¼1
p2
�
Vk
0i;V

k
0j

�
; [S2]

where k ¼ S;B and

This component corresponds to the membrane potential of
the neuron in the absence of any input besides noise. Its mean
value μkV is equal for all neurons in population k. Population B
has a higher mean potential in the absence of inputs (μBV > μSV ).
The SD σV was taken equal to 6.4 mV for all neurons. The
mean correlation coefficient ρ represents the effect of com-
mon recurrent inputs to pairs of neurons and induces spiking
covariations.
The second term of Eq. S1, Vk

s , represents the membrane
depolarization evoked by the stimulus. It is obtained as

Vk
s ¼ gkðRS1ðsÞ−RS1ð0ÞÞ; [S4]

where gk is the synaptic efficiency of the connection from sensory
areas to the population k ¼ S;B and RS1ðsÞ is a Poisson-distrib-
uted random variable that represents the firing response of pri-
mary somatosensory neurons to a stimulus of amplitude s. The
mean firing rates of S1 neurons were obtained from ref. 2 for the
10 stimulus amplitudes used in the experiment.
The third term in Eq. S1 represents a common internal signal.

The model assumes an internal signal that takes positive contin-
uous fluctuating values, drawn from an exponential distribution of
mean μint,

p
�
Vint
� ¼ 1

μint
e−

Vint
μint : [S5]

This signal depolarizes equally every neuron from population S
and hyperpolarizes in the same amount every neuron from pop-
ulation B ðVS

int ¼ −VB
int ¼ VintÞ.

The firing rate of neuron i is obtained from its membrane
potential according to a sigmoidal activation function with pa-
rameters rmin, rmax, c, and Vth,

ri ¼ rmax − rmin

1þ e−cðVi−VthÞ þ rmin: [S6]

The decision variable is taken as the difference of the mean
activities of the two populations. A positive difference corre-
sponds to a “yes” decision and a negative one to a “no” decision.
Therefore, an affirmative decision is made when

hriS > hriB; [S7]

where h:::ik represents the average over the neural population
k ¼ S;B.
The model is simulated for a large number of trials and these

are classified as yes or no responses according to Eq. S7. Within
yes trials, those with zero amplitude are labeled as false alarms
and those with amplitudes different from zero are hits. Similarly

within no trials, correct rejections are those with null amplitude
and misses are those with finite stimulus amplitudes. Once the
trials are classified, it is possible to compute the psychometric
curve predicted by the decision model and the statistical prop-
erties of the neural activity in each condition.

SI Text 2. Analysis of the Model
2.1. Internal Signal and Frequency of Each Condition. We start the
analysis of the model, considering the frequency of false-alarm
trials. When there is no stimulus, Eq. S1 reduces to

Vi ¼
�
VS
0i þ Vint; if neuron i ∈ S

VB
0i −Vint; if neuron i ∈ B:

[S8]

Fig. S1 shows schematically the effect of the internal signal. In
the absence of sensory inputs, population B is more depolarized
than population S (μBV > μSV , black lines). The internal signal
depolarizes neurons from population S and hyperpolarizes in the
same amount neurons from population B (blue lines). Therefore,
low values of the internal signal produce correct rejections (Fig.
S1A) whereas high values of internal signal can make μSVþ
Vint > μBV −Vint and lead to false-alarm trials (Fig. S1B).
The frequency of false-alarm trials pfa is determined by the

ratio between μint and ðμBV − μSV Þ=2. Specifically, the probability
of a false alarm is approximately equal to the probability that
Vint > ðμBV − μSV Þ=2 (Fig. S1C). Using the distribution of μint, Eq.
S5, we have

pfa ¼ exp
�
−
μBV − μSV
2μint

�
[S9]

p2
�
Vk
0i;V

k
0j

�
¼ 1

2πσ2V
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p exp

 
−
�
V0i − μkV

�2þ�V0j − μkV
�2 − 2ρ

�
V0i − μkV

��
V0j − μkV

�
2σ2V ð1− ρ2Þ

!
: [S3]
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from where the mean of the internal signal, μint, can be evaluated
once μBV − μSV is known:

μint ¼ −
μBV − μSV
2ln
�
pfa
�: [S10]

The difference μBV − μSV affects the mean correlation coefficient
in correct-reject trials because it affects the distribution of Vint in
this type of trials (Fig. S1C and also SI Text 2, section 2.2).
Therefore, μBV − μSV is chosen to reproduce the mean correlation
coefficient in correct-reject trials.
In stimulus-present trials, the effect of the internal signal is

combined with the depolarization produced by the stimulus in
each population, Vk

st ¼ gkðRS1ðsÞ−RS1ð0ÞÞ, with k ¼ S;B (Fig.
S2 A and B). From the experimental data (1) it is known that the
stimulus depolarizes both populations and that this de-
polarization is higher in population S; that is, gs > gB > 0. As
a result, the stimulus lowers the boundary value of the internal
signal that separates the two conditions by 1

2 ðVS
s −VB

s Þ ¼
1
2 ðgS − gBÞRS1, where RS1 ¼ RS1ðsÞ−RS1ð0Þ (Fig. S2C). There-
fore, in stimulus-present trials, the simulated behavioral re-
sponse is a consequence of the combination of stimulus and
internal signal. An affirmative response can be caused by a high-
amplitude stimulus in the presence of a low internal signal or by
a low-amplitude stimulus and a high internal signal.
Following an analysis similar to the one that led us to Eq. S9,

the frequency of hit events in stimulus-present trials is

phit
�
s
� ¼ exp

 
−
�
μBV þ VB

st

�
−
�
μSV þ VS

st

�
2μint

!

¼ exp

 
−
μBV − μSV −

�
gS − gB

�
RS1

2μint

!
; [S11]

which is valid for each stimulus amplitude s. Summing over theNs
nonzero stimulus amplitudes, ðgS − gBÞ can be estimated as

gS − gB ¼ 2μintP
sRS1

 X
s

lnðphitðsÞÞ þ μBV − μSV
2μint

Ns

!
; [S12]

where the value of phitðsÞ for each amplitude is obtained from the
experimental psychometric curve (2). The value of gB affects the
mean correlation coefficient in the miss condition (SI Text 2,
section 2.2) so it is calibrated to reproduce the observed exper-
imental value. Finally, the parameters of the activation function
(rmin, rmax, c, and Vth) are adjusted to reproduce the values of
mean firing rates in the experimental data.

2.2. Spike-Count Correlations. The model contains three sources of
spike-count correlations: the correlation coefficient of V0i (ρ), the

common internal signal (Vint), and the common input from
S1 (Vs).
In this study we considered the case in which the voltage

correlations are very small; that is, ρ ¼ 0. Therefore, during
stimulus-absent trials, the only source of correlations in firing
rates is the common internal signal. In general, the mean cor-
relation coefficient in each condition will depend on the distri-
bution of the internal signal in the same condition. When the
internal signal follows an exponential distribution, it can be seen
that the correlation coefficients in each condition grow with both
the mean and the variance of distribution of internal signal
conditioned to that type of trials. Because large values of internal
signal lead to yes responses, the distribution of the internal signal
conditioned to false-alarm trials will have high mean and vari-
ance. In consequence, noise correlations in false-alarm trials will
be higher than in correct-reject trials. Moreover, the largest
value of the internal signal that results in a correct rejection is
approximately equal to half of the difference between μBV and μSV .
Therefore, this difference is chosen to reproduce the observed
mean correlation coefficient in correct-reject trials.
For the stimulus-present trials there is another contribution to

noise correlations coming from the sensory stimulation. Because
of this contribution, the mean correlation coefficient in miss
trials is higher than in correct rejections even when the internal
signal distribution conditioned to miss trials has smaller mean
and variance. Noise correlations in stimulus-present trials are
affected by the values of the synaptic efficiencies. In particular,
an increase in the value of gB produces an increase in the
correlation coefficient of miss trials. Therefore, gB is adjusted
to reproduce the observed mean correlation coefficient of the
miss condition.
Finally, we have assumed that the internal signal affects both

populations. This assumption is not necessary and the model
would also work if the signal affected only population S.

SI Text 3. Parameter Values

1. de Lafuente V, Romo R (2006) Neural correlate of subjective sensory experience
gradually builds up across cortical areas. Proc Natl Acad Sci USA 103(39):14266–14271.

2. de Lafuente V, Romo R (2005) Neuronal correlates of subjective sensory experience.
Nat Neurosci 8(12):1698–1703.

N=2 No. neurons per population 100
μSV , μ

B
V Mean value of the membrane

potential in absence of inputs
−67.4 mV, −55 mV

σV SDs of the membrane potential 6.4 mV
ρ Correlation coefficient of the

membrane potential
0.0

gS;gB Synaptic efficiencies 1.7 mV/Hz, 0.2 mV/Hz
Vth Threshold voltage of the activation

function
−55 mV

c Gain of the activation function 0.5
rmax Maximum rate of the activation

function
55 Hz

rmin Minimum rate of the activation
function

16 Hz
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Fig. S1. Effect of the internal signal in stimulus-absent trials. The internal signal depolarizes neurons from population S and hyperpolarizes neurons from
population B (blue lines). (A) Low values of internal signal produce correct rejection trials. (B) High values of internal signal can make μBV > μSV and lead to false-
alarm trials. (C) Because the internal signal is exponentially distributed, false alarms are less frequent than correct rejections.

Fig. S2. Effect of the internal signal in stimulus-present trials. (A and B) In stimulus-present trials, the effect of internal signal is analogous to the stimulus-
absent case (Fig. S1). (C) The depolarization due to the stimulus lowers the boundary value of the internal signal that separates the two conditions by a factor
of 1

2 ðVS
s −VB

s Þ ¼ 1
2 ðgS −gBÞRS1.
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