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SUMMARY

Decisions emerge from the concerted activity of
neuronal populations distributed across brain cir-
cuits. However, the analytical tools best suited to
decode decision signals from neuronal populations
remain unknown. Here we show that knowledge of
correlated variability between pairs of cortical neu-
rons allows perfect decoding of decisions from
population firing rates. We recorded pairs of neu-
rons from secondary somatosensory (S2) and pre-
motor (PM) cortices while monkeys reported the
presence or absence of a tactile stimulus. We found
that while populations of S2 and sensory-like PM
neurons are only partially correlated with behavior,
those PM neurons active during a delay period pre-
ceding the motor report predict unequivocally the
animal’s decision report. Thus, a population rate
code that optimally reveals a subject’s perceptual
decisions can be implemented just by knowing the
correlations of PM neurons representing decision
variables.

INTRODUCTION

When decisions are based on sensory evidence, decision-

related signals evolve across sensory and frontoparietal cortices

(for reviews, see Gold and Shadlen, 2001; Romo and de

Lafuente, 2013; Romo and Salinas, 2003). The involvement of

single neurons in decision-making processes is usually studied

in terms of the choice probability (CP) index, ameasure of covari-

ation between a neuron’s firing rate activity and the subject’s

choice (Britten et al., 1996; Green and Swets, 1966). In the brain,

however, decisions engagemultiple pools of neurons distributed

across brain areas (de Lafuente and Romo, 2006; Hernández

et al., 2010; Romo and de Lafuente, 2013). Hence, if one is to

decode behavioral choices, the relevant measurements must

come from population variables constructed from the spiking

activity of multiple neuronal pools.
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To understand how decisions emerge, one must first define

proper measures to quantify how population activity covaries

with behavior. It is known that firing rates vary stochastically

from trial to trial (Shadlen and Newsome, 1998; Tolhurst et al.,

1983) and that pairs of neurons exhibit correlated variability

(Gawne and Richmond, 1993; Zohary et al., 1994), often named

noise correlation. Such correlations between neurons strongly

impact the association between neuronal activity and behavior

(Shadlen et al., 1996); in particular, it is known that the CP index

depends on the correlation structure of the neuronal network

(Cohen and Newsome, 2009; Haefner et al., 2013; Nienborg

and Cumming, 2010; Nienborg et al., 2012). In addition, we

recently demonstrated that the temporal profile of the noise cor-

relation coefficient changes as the task progresses, reflecting

dynamic effects of stimuli and internally generated signals on

frontal lobe neurons that might participate in the decision pro-

cess (Carnevale et al., 2012). Given that a decision evolves

over time, we think it is important to detect and describe

transient interpool interactions. Some knowledge about the

dynamics of a large-scale cortical network during decision mak-

ing has been obtained by studying macroscopic signals from

magnetoencephalographic recordings (Siegel et al., 2011), but

the dynamical profile of correlations has rarely been studied at

the circuit level (Pesaran et al., 2008).

Motivated by these observations, we developed analytical

tools to study the dynamics of neuronal pools and their relation

to behavior. We tested these tools with data from simultaneous

recordings of neuron pairs obtained while monkeys performed a

decision-making task (de Lafuente and Romo, 2005, 2006). Spe-

cifically, we have first extended the concept of CP index, which

traditionally refers to single neurons, to define measures of

covariation between behavior and the firing rates of two or

more neurons. We have then derived analytical expressions

that explicitly relate these measures to statistical properties of

the pools’ spiking activity, obtaining a precise description of

how noise correlations affect the standard CP index and the

generalized indices introduced here. We find that the CP

becomes significant when the correlation coefficients depend

strongly on the choice outcomes of the trials used to compute

them and that the association between population activity and

behavior increases notably when the choice-conditioned corre-

lations are small.
.
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To address the issue of how neuronal pools cooperate to form

the decision, we reasoned that the concerned pools combine

their firing outputs and send the resulting signal downstream

for further processing. Since the observed behavior is a conse-

quence of these neural computations, we assumed that an

important combination of pool activities would be one that cova-

ries closely with behavior.

To test these ideas, we analyzed simultaneous recordings of

pairs of premotor cortex (PM) neurons of distinct functional

types and also of neuron pairs in the secondary somatosensory

area (S2) (de Lafuente and Romo, 2005, 2006). In the decision-

making task, monkeys had to detect a stimulus that often was

very weak and was absent in half of the trials. Both the PM

and S2 areas contained two types of neurons that exhibited

oppositely tuned responses to stimulation (de Lafuente and

Romo, 2006). Presumably, these two neuronal pools contribute

to the decision-making process. For the detection task analyzed

here, we found that sensory-like neurons in PM areas covary

strongly with the decision report during the stimulation period,

although this covariation does not reach its largest possible

value. In contrast, pools of PM neurons exhibiting delay activity

during the period between the application of the stimulus and a

cue signal that triggers the decision’s motor report become fully

correlated with the subject’s choice. Interestingly, this occurs

when the population firing rates of the relevant pools are com-

bined optimally, maximizing the generalized measures of covari-

ance with behavior.
RESULTS

Measures of Covariance between Behavior and the
Activity of Neural Pools
Consider a perceptual decision-making task in which the subject

has to decide between two possible choices, A or B. Covariation

between the activity of single neurons and the subject’s choice is

often quantified by the CP index. This quantity represents the

average probability with which an external observer could pre-

dict the subject’s decision from the activity of a single neuron,

using the accrued knowledge of the firing rate distributions

computed over trials in which option A or option B was selected.

If the neuron responds identically in trials in which the subject

chooses A (A trials) and in trials in which it chooses B (B trials),

the prediction performance of the external observer is at chance

level (CP = 0.5). Conversely, if the firing rate distributions of the

neuron in trials A and B are fully distinct, the external observer

could perfectly predict the subject’s decision (CP = 1).

The CP index can be computed as the area under the receiver-

operating characteristic curve (ROC) of the neuron’s firing rate,

segregating trials according to the subject’s choice (Britten

et al., 1996; Green and Swets, 1966). If the neuron’s firing rate

distributions in trials A and B can be described as Gaussian,

one finds the following analytical expression (see Supplemental

Information available online for the derivation)

CP=
1

2
erfc

�
�d

2

�
; d=

mA � mBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðs2

A + s2
BÞ

r ; (Equation 1)
Ne
where mc and s2c are the mean and variance of the firing rate over

trials in which the subject’s choice was c=A; B. The quantity d is

the difference between the firing rate means in trials A and B,

measured in units of the arithmetic mean of the two variances.

The CP index is a useful measure to study how the activity of a

single neuron covaries with behavior. However, the decision-

making process is determined by neuronal populations (de

Lafuente and Romo, 2006; Heekeren et al., 2004; Hernández

et al., 2010; Pesaran et al., 2008; Siegel et al., 2011). Under-

standing how the decision is formed in the brain requires the

use of proper measures to quantify the covariance of population

activity variables with the subject’s choices. This can be done

by extending the concept of CP index to the combined activity

of several neurons. Here we start by considering the case in

which cells can be sorted into homogeneous pools of similar re-

sponses, and in section ‘‘Finding the Optimal Decision Code,’’

we study the general case. For the simplest example, two neu-

rons from the same pool, we consider the ROC index of the

sum of their firing rates r1 and r2, rw = r1 + r2, which can be esti-

mated by

CP2;w =
1

2
erfc

�
�Dw

2

�
; Dw =

mA
w � mB

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
s2
w;A + s2

w;B

�r ; (Equation 2)

where mc
w and s2w;c are the mean and variance of rw over trials of

choice c. This can be expressed in terms of the firing properties

of the pair of neurons

Dw =

ffiffiffi
2

p
d1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ rw12
p : (Equation 3)

Here d1; 2 is the arithmetic mean of d1 and d2, defined in

Equation 1, and rw12 = 0:5ðrw;A
12 + r

w;B
12 Þ is the arithmetic mean of

the correlation coefficients between r1 and r2, computed over

trials of decision A and B, rw; A
12 and r

w; B
12 (see Equation 11 in

Experimental Procedures). The superscript w indicates that

the two neurons belong to the same pool. For simplicity, in

Equation 3 we assumed that the variance of the single neuron’s

firing rate distributions is equal for both neurons, in both trial

types (A and B). Equation 2 relates the subject’s choices to

the activity of the pool of neurons, but it does so in terms of

the properties of the two neurons in the pool and their interac-

tion, as captured by the correlation coefficient. The general

expression is given in the Supplemental Information (Equa-

tion S16). Notice that CP2,w will always be higher than CP,

except when rw12 = 1. This is a reasonable result: the averaged

activity of two neurons in the same pool covaries with behavior

more than that of single neurons, provided that their responses

are significantly different, i.e., that their correlation is not too

large.

For two neurons in different pools, we consider an arbitrary

linear combination of their firing rates, rb =C1r1 +C2r2, and quan-

tify its covariation with the subject’s choices by another ROC

index, CP2,b. This index can be estimated as (see Supplemental

Information for details)

CP2;b =
1

2
erfc

�
�1

2
Db

�
; Db =

d1 +Dd2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+D2 + 2Drb12

p (Equation 4)
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where D=C2=C1. Here rb12 = 0:5ðrb;A12 + r
b;B
12 Þ with r

b; c
12 being the

correlation coefficient between the firing rates of neurons 1

and 2 in different pools, computed over trials of choice c. Again,

we assumed that the variance of the firing rates is equal for both

neurons and both types of trials (see general expression in Equa-

tion S23). Note that if rb12<0 and D<0, the CP2,b index increases

as
��rb12�� decreases.
To test the amount of covariation with behavior of the

combined activity of different neural populations, we consider

a further extension of this procedure. Given a set of P

pools each having N neurons and a population firing rate ra
(a = 1,..., P), we can quantify the amount of covariation of an arbi-

trary combination of the pools’ firing rates, rN =
P

Cara, defining

the CPN index,

CPN =
1

2
erfc

�
�DN

2

�
; DN =

mA
N � mB

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
s2
N;A + s2

N;B

�r : (Equation 5)

In applying these calculations to experimental data, we will be

interested in linear combinations of rates from two pools,

rN =C1r+ +C2r�, with the pools defined as + and �. DN can be

expressed in terms of population-averaged firing rates, vari-

ances, and correlation coefficients,

DN =

ffiffiffiffi
N

p �
d+ +Dd�

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+D2Þ½1+ ðN� 1Þrw�+ 2DNrb

p ; (Equation 6)

where again D=C2=C1. The bar indicates population average.

For simplicity, we took equal population-averaged variances

for the two pools and the two choices (see the general expres-

sion in Equation S31). Correlation coefficients rw and rb affect

the CPN index in a manner similar to that for CP2,w and CP2,b,

respectively. The factor that amplifies the population-averaged

d s increases as rw decreases. For D < 0 and rb<0, DN also in-

creases when
��rb�� decreases. For the particular case in which

ðN� 1Þrw>>1, DN becomes independent of the number of neu-

rons. If in addition, rb � 0, rw still modulates the amplification

of this index, DNfðrwÞ�1 =

2.

Finding the Optimal Decision Code
The measures defined above can be used to study the interac-

tion of neural pools during the decision-making process. If two

pools cooperate in forming the decision, then combinations of

their firing rates must covary with the behavioral response. But

the reverse should also be true: maximizing this covariation

should lead to the combination of rates that optimally predicts

the animal’s decision. This can be done by optimizing the CPN

index with respect to the relative contribution of the two pools

to the population variable (D), which is equivalent to maximizing

the mean difference between choices divided by the choice-

conditioned variances (Equation 5).

To study how population activity covaries with behavior, we

considered the case in which cells can be assigned to one of

two discrete pools. If neurons could be sorted into discrete

and homogeneous pools, one would assign equal weights to

all neurons within the same pool. However, the assumption of

neurons distributed in discrete pools can be relaxed. In a more

general case, neurons contribute to the population variable in a
1534 Neuron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc
graded manner, with their firing rates weighted with different

coefficients. A CPN index associated with this variable can still

be defined and expressed in terms of its means, variances,

and covariance matrix in the two conditions (see Supplemental

Information). The proposed optimality criterion is again equiva-

lent to maximizing the mean difference between choices divided

by the choice-conditioned variances. Equivalently, finding the

weights amounts to obtaining the Linear Fisher’s Discriminant

between the two decisions (Equations S37 and S38).

In this more general situation, the CPN index depends on the

covariance between every pair in the population. Thus, search-

ing for optimal population variables in experimental data requires

the simultaneous recording ofmultiple neurons in the population.

However, in situations in which neurons can be classified into

discrete pools, the CPN can be computed from Equations 5

and 6. The degrees of freedom involved in the optimization pro-

cedure are reduced to one: the coefficient D that combines the

pools’ activities. Besides this parameter, in this case, the CPN in-

dex only depends on two population-averaged correlation coef-

ficients, one for neural pairs within each pool and another for

pairs between pools.

Notice that the optimization procedure does not assume the

existence of a decision rule based on the neurons’ firing activity.

In our formalism, the population variable could be any combina-

tion of the firing rates and is not necessarily related to a decision

rule. The proposed procedure can be seen as a way to search for

population variables that are optimally correlated with behavior.

It can be applied to neurons in any area participating in the deci-

sion-making process. The covariance between global activity

and behavior is determined by the network correlation structure.

The Covariance between Global Activity and Behavior Is
Determined by the Network Correlation Structure
We now turn to a more detailed analysis of how the correlation

structure affects the covariance between firing activity and

behavior. The CP index in Equation 1 is computed from proper-

ties of single neurons (means and variances of the firing rate dis-

tributions in trials A and B). Although pairwise correlations do not

appear explicitly in this equation, the CP index does depend on

the correlation structure of the neural population involved in the

decision-making process. This is because the firing rate distribu-

tions are conditioned to the subject’s choice, which is deter-

mined by the network state during the trial.

To make this dependence explicit, we must relate the usual

correlation coefficient Rij for the neuron pair (i, j) (that is, the cor-

relation coefficient computed using all trial types, regardless of

the subject’s choice) with the difference in mean firing rates

between trials ending in each of the two choices. The latter are

essentially the quantities d, defined for neurons i and j, as in

Equation 1. Given an arbitrary partition of the set trials into two

different groups (A and B), the correlation coefficient Rij can be

expressed as

Rij =

1

2

�
rAij + rBij

�
+
1

4
didjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"

1+

�
di

2

�2
#vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1+

�
dj

2

�2
#vuut

(Equation 7)
.
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where, for simplicity, we assumed that the variance of the firing

rates of the two neurons is equal in both types of trials (see Equa-

tion S48 for the general expression). Equation 7 shows that,

apart from a common factor, the correlation coefficient Rij is

the sum of two effects: a contribution from the difference in rates

between the two choice conditions (di and dj, see Equation 1) and

a contribution from the choice-conditioned correlation coeffi-

cients, rAij and rBij .

If the network contains several neural pools, the correlation

structure consists of correlation coefficients of pairs of neurons

in the same pool and correlations between neurons in different

pools. Given a triplet of cells (1, 2, 3), with neurons (1, 2) in the

same pool and neuron 3 in a different pool, we can use the equa-

tion above for the pairs (1, 2), (1, 3), and (2, 3). This leads to equa-

tions for R12, R13, and R23 that can be solved for d1, d2, and d3,

obtaining the CP indices as a function of correlations between

neurons in the same or different pools. However, implementing

this procedure to analyze electrophysiological data requires

the simultaneous recording of triplets of neurons. Moreover,

the mathematical solution in terms of correlation coefficients

between the three pairs of neurons becomes rather cumber-

some. It is desirable to have away to estimate the CP index using

only data from simultaneous recordings of pairs of neurons.

Now we show that it is possible to obtain a simple approximate

expression for the population-averaged CP index based only

on correlations between pairs of neurons. It is enough to

assume that, given two neurons (1, 2) in the same population,

d1 � d2 � d0. Using R12 we obtain

CP � 1

2
erfc

�
�d0

2

�
;

�
d0

2

�2

� Rw
12 � rw12
1� Rw

12

; (Equation 8)

where d0 = ðd1 + d2Þ=2 (see Equations S50–S53 in the Supple-

mental Information for a discussion of the accuracy of this

approximation). Averaging Equation 8 over the population of in-

dependent pairs gives the estimate for the population-averaged

CP index. This is our main result. It shows that the CP index is

different from 0.5when correlations evaluated using all trial types

differ from the correlations conditioned on the subject’s choice.

Neurons could covary significantly with behavior even if the latter

correlations are very small. It has been pointed out that corre-

lated activity is necessary for observing robust covariations

between single neuron responses and behavior (Shadlen et al.,

1996). On the other hand, pairwise correlations in recurrent net-

works can be quite small (Ecker et al., 2010; Renart et al., 2010).

The equations above show that there is no contradiction

between these two statements: decorrelation in the recurrent

network makes rw12 small, but there is still a contribution to CP

coming from Rw
12, which is produced by the difference in firing

rates between trials A and B (Equation 7; see also Brody,

1999). In fact, Equation 8 shows that the CP index is maximized

when the overall correlations Rw
12 are large but the choice-condi-

tioned correlations are small. Notice that Equation 8 does not

assume any model that mechanistically relates the activity of

the neurons to the subject’s decision.

We can use Equation 8 to draw several conclusions. First,

notice that Rw
12 � rw12R0 : correlations for neurons in the same

pool, computed with fixed-choice trials, are smaller than those
Ne
obtained with the whole set of trials. Instead, if neurons (1, 3) in

twodifferent pools have oppositemean responses in the two con-

ditions: mA
1 � mB

1 � �ðmA
3 � mB

3 Þ (that is, d1d3<0), from Equation 7,

we observe that Rb
13 � rb13%0 (see Supplemental Information). In

both cases, the sign is determined by the difference in the mean

activities in the two trial types. Finally, neurons in a given pool

show CP = 0.5 if pairwise correlations in that pool obey Rw
12 = rw12.

Similar considerations apply to the other generalized choice

probability indices (Equations 3, 4, and 5). In particular for the

CPN index (Equations 5 and 6), apart from the population-aver-

aged d+ and d�, for which the discussion above still holds, there

is a factor depending only on the choice-conditioned correlation

coefficients. A potential effect of this factor is to amplify DN,

thereby pushing CPN to saturation, that is, closer to full covari-

ance between firing activity and behavior.

Equation 8 was obtained for a pair (1, 2) of neurons in the same

pool. As a more complex example, we now consider a two-pool

network satisfying the condition that for a pair (1, 3) of neurons in

different pools, d3 � �d1 � �d0. This can be seen as a constraint

on the correlation structure of the network. Using this constraint,

and replacing pairwise correlations by their population-averaged

values (R
w
, R

b
, rw, rb), it is interesting to observe that the

average CP index can be estimated as

CP � 1

2
erfc

0
B@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R

w � R
b
�
� �

rw � rb
	

2�
�
R

w � R
b
�

vuuut
1
CA: (Equation 9)

This equation shows an explicit dependence on the difference

R
w � R

b
but not on R

w
+R

b
. In a computational model con-

strained as in this example, where R
w
and R

b
were considered

to be free parameters, it was found that the CP index depends

only on R
w � R

b
(Nienborg and Cumming, 2010; Nienborg

et al., 2012). However, that model used an explicit decision

rule. In contrast, Equation 9 does not make any hypotheses

about how the decision is made. To compare our prediction

with themodeling results, we have determined the choice-condi-

tioned noise correlations by simulating the same model. We

found that rw � rb depends only on R
w � R

b
, while rw + rb

depends only on R
w
+R

b
(data not shown), confirming the

conclusion reached by Nienborg and Cumming (2010).

Analysis of Electrophysiological Data from a Vibrotactile
Detection Task
In the remaining sections of the paper, we analyze electrophys-

iological data recorded in a vibrotactile detection task (Figure 1A,

see Experimental Procedures), using the analytical results

derived above. We analyze data from S2 and PM. Previous

studies of these data showed that in both areas neuronal activity

covaries with the animal’s behavior (de Lafuente and Romo,

2005, 2006). Importantly, it was found that this covariation is

related to the animal’s perception of the sensory stimulus rather

than to the selection of the motor plan. Trials were classified as

hits (H), misses (M), correct rejections (CR) or false alarms (FA),

depending on whether the stimulus was present or absent and

on the behavioral response (Figure 1B). We analyzed stimulus-

present trials, so types A and B (as denoted in all the equations

above) correspond to H and M, respectively.
uron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc. 1535



Figure 1. Detection Task and Neural Populations

(A) Themechanical probe indented the skin of one fingertip of the restrained hand (Probe down) and themonkey reacted by placing its free hand on an immovable

key (Hold key). After a variable prestimulus period (1.5–3.5 s), a vibratory 0.5 s stimulus was presented on half of the trials. At the end of a fixed delay period, the

stimulator probe moved up (Probe up), instructing the monkey to make a response movement to one of two push buttons. The pressed button indicated whether

or not the monkey felt the stimulus.

(B) A trial is classified according to stimulus presence or absence and to the subject’s response as a hit (H), miss (M), correct rejection (CR), or false alarm (FA).

Stimulus amplitude was pseudorandomly chosen. A run was composed of 90 trials (amplitude 0) and 90 stimulus-present trials, with varying amplitudes (nine

amplitudes with ten repetitions each; 2.3–34.6 mm).

(C) Temporal profile of mean firing rates during hit (blue traces) and miss (red traces) trials for PM neurons (first two columns) and S2 neurons

(third column). Top row shows pools of positively tuned neurons and bottom row negatively tuned neurons (n is the number of neurons). Colored area

represents SEM.
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Decoding Decisions from Population Rate Codes
PM neurons were classified according to their responses to

a strong stimulus in H trials (de Lafuente and Romo, 2006) (Fig-

ure 1C). Those that responded only during the stimulation period

were labeled as sensory-like neurons and those showing sus-

tained activity during the delay period were classified as delay-

activity neurons. In addition, both S2 and PM neurons were

labeled as positive if their firing rate transiently increased with

the stimulus and as negative if their firing rate decreased in

response to the stimulus. These criteria define two oppositely

tuned neuronal pools (denoted as positive and negative) for

each of the three populations of neurons (S2, sensory-like PM,

and delay-activity PM).
1536 Neuron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc
We start by showing that employing two neurons to predict the

animal’s choice increases the level of covariation with behavior.

We considered two neurons from the same neural population

and compared the CP2,w index with the pairwise averaged CP.

Figure 2 shows the temporal evolution of these two quantities

for the population of positive sensory-like PM neurons (Fig-

ure 2A), positive delay-activity PM neurons (Figure 2B), and pos-

itive S2 neurons (Figure 2C). As expected, the sum of activities of

two simultaneously recorded neurons from the same population

is more predictive of the animal’s choice than the activity of

single neurons. For S2 (Figure 2C) and PM sensory-like neurons

(Figure 2A), this is true during the period of stimulus presentation,
.



Figure 2. Choice Probability Obtained by Summing Pairs of Neurons

Temporal profile of population-averaged CP2,w index for pairs of positively tuned neurons (red traces) compared with population-averaged CP index for the same

neural pool (blue and green traces). As expected, the combined activity of two neurons better predicts the animal’s choice than the activity of a single neuron.

(A) Pool of positive PM sensory-like neurons. Inset shows CP2,w versus the pairwise averaged CP for each pair (t = 0.250 s).

(B) Pool of positive PM delay-activity neurons.

(C) Pool of positive S2 neurons. CP2,w was from Equation S16 (see Supplemental Information). A good agreement can be observed between the analytical CP

(Equation 1) and its direct numerical evaluation (green traces, see Experimental Procedures). Gray boxes indicate the period of stimulation; error bars and colored

areas represent SEM and p the number of neuron pairs (see also Figure S1).
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while for the PM delay-activity neurons, the effect is maintained

until the end of the delay period (Figure 2B). In addition, the CP

indices obtained from Equation 1, which assumes Gaussian

distributions of responses and involves only their means and var-

iances, are in good agreement with those obtained by direct

evaluation, for which no assumption about the response distri-

butions is made (Figure 2, blue versus green traces). The CP2,w

calculated based on the means and variances of individual neu-

rons and their pairwise correlations (Equation S16) also com-

pares well with its direct numerical evaluation (Figure S1 in the

Supplemental Information).

This analysis shows that these measures of covariance with

behavior can be evaluated accurately using only first- and

second-order statistics of the neuronal firing rate activity. The

analytical expressions can then be used reliably for studying

the more general effects of neuronal correlations in the

detection task.

How Correlated Variability Determines Choice
Probability
The observation that single neurons covary with the subject’s

response is usually explained by the existence of correlated vari-

ability among the cells in the neuronal population (Shadlen et al.,

1996). This argument refers to noise correlations evaluated over

the whole set of trials, a quantity that may receive a substantial

contribution from the difference in the firing rates in trials of

different choices. However, one may wonder whether noise cor-

relations estimated using subsets of similar trials—presumably

with similar firing rates—might affect choice probability (or,

more generally, any of the indices defined above). Indeed, the

results obtained in Equations 7 and 8 indicate that noise correla-

tion decreases when conditioned on the choice and that these

choice-conditioned noise correlations could reduce the CP

index.

To investigate this issue further, we start by analyzing the rela-

tionship between the correlation coefficients and the difference

between the mean firing rates in H and M trials (Equation 7).

We present this analysis for positive and negative delay-activity

neurons. We consider correlation coefficients from pairs within
Ne
the same neural pool, denoted by the superscript w (that is, Rw

and rw), and between neurons from different neural pools,

denoted by b (Rb and rb) (see Figure 3A). First, we show in

Figure 3B the temporal profile of the population-averaged corre-

lation coefficients Rw and Rb, obtained by direct numerical eval-

uation from all trial types (green traces). As we have seen, two

separate factors contribute to these correlations: (1) the differ-

ences in firing rates in H and M trials and (2) the correlations

conditioned on the choice (Equation 7). We then compared the

same correlations with those obtained analytically by combining

these two factors (blue traces, Equation S48). This comparison

shows quite similar values, both for pairs of neurons within the

same pool (Figure 3B, top) and for pairs of neurons belonging

to different pools (Figure 3B, bottom, and Figures S2A and

S2B for pools of S2 and sensory-like PM neurons).

Second, we compared the population-averaged correlation

coefficients computed with all stimulus-present trials (R
w

and

R
b
) with those obtained using trials with a fixed choice (rw and

rb, red traces). Again, the comparison appears in Figure 3B

(top) for pairs of neurons within the same pool (R
w
and rw) and

in Figure 3B (bottom) for pairs of neurons from different pools

(R
b
and rb). Noise correlations decrease when they are condi-

tioned on the animal’s choice: R
w
exceeds rw after the stimulus

onset and during the entire delay period. This is explained by our

analytic expression, Equation 8: for each pair of neurons, the dif-

ference Rw � rw is positive and comes from the difference in

mean firing rate in trials of different choice (d0). In contrast,

when the cells belong to different pools, Rb is lower than rb (Fig-

ure 3B, bottom). This is because the firing rate of positively tuned

neurons in H trials is larger than in M trials, while the opposite

occurs for negatively tuned neurons (Figure 1C).

Notice the rather different temporal profiles of correlations

conditioned on the choice and correlations defined over the

whole set of trials. Whereas the latter are strongly modulated

by the stimulus, the choice-conditioned correlations rw and rb

are not. Only toward the end of the delay period does rw

decrease significantly below the value that it had before stimulus

onset (Figure 3B, top), although during this period the firing rate

of PM delay-activity neurons is higher than before stimulus
uron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc. 1537



Figure 3. Noise Correlations and Choice-

Conditioned Noise Correlations Determine

the CP Index

(A) Correlation structure in a two-pool network. Rw,

Rb, rw, and rb denote spike-count noise correlation

coefficients between neurons in the same (w) or in

different (b) pools. Rw and Rb are computed using all

stimulus-present trials, while rw and rb are obtained

from trials with a fixed subject’s choice. Together,

they define the correlation structure of this example

network.

(B) Temporal evolution of mean correlation co-

efficients of delay-activity PM neurons computed

with all trials (R, blue and green traces) compared

with average correlations obtained from hit and miss

trials separately (r, red traces). Top: pairs within the

pool of positive delay-activity PM neurons. Bottom:

pairs of positive and negative delay-activity PM

neurons. Mean correlation coefficients were obtained

by averaging over all pairs from the same functional

type. Gray boxes indicate the period of stimulus

presentation; error bars and colored areas represent

SEM and p the number of pairs. Green traces depict

the correlation coefficients computed numerically.

Blue traces show predictions from Equation S48 (see

Supplemental Information). Insets show the distri-

bution of r over the population of pairs for a 250 ms

time window centered at t = 3.40 s.

(C) The CP index of delay-activity neurons computed from correlation coefficients (Equation 8) is compared with its evaluation from the mean and variance of

the firing rate, in H andM trials (Equation 1). Inset shows the pairwise averaged CP computed with Equation 1, compared with the CP obtained using Equation 8,

for each neuronal pair at t = 1.0 s (see also Figure S2).
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presentation. This behavior is consistent with the existence of a

common, slowly fluctuating signal that correlates neurons in the

positive pool and is present before stimulus onset (Carnevale

et al., 2012). After stimulus offset, this signal tends to disappear

and choice-conditioned correlations thus fall to their smallest

value at the end of the delay period. In contrast, correlations

evaluated using H and M trials remain high because firing rates

in these two trial types are different throughout the delay period

(top middle panel in Figure 1C). Correlations between neurons in

different pools, rb, are much smaller than those between neu-

rons in the same pool.

The difference in the temporal profiles of the correlation coef-

ficients R
w
and rw fully explains the temporal evolution of the

population-averaged CP index. In fact, we have seen that this

index can be approximated in terms of that difference (Equa-

tion 8). We studied this prediction using data from the population

of PM delay-activity neurons. The average error introduced by

this approximation in our data is 11%. The population-averaged

CP index, evaluated using only correlation coefficients, is shown

in Figure 3C, together with the prediction from Equation 1. This

result confirms that the increase of the population-averaged CP

index occurring after stimulus presentation and its subsequent

slight decrease during the delay period (Figure 2B) are controlled

by the transientmodulations of the differenceR
w � rw (Figure 3B,

top). Although mean choice-conditioned correlations can be

rather small (rw and rb in Figure 3B, insets), the population-aver-

aged CP index can be large (about 0.7 for this example) because

of the contribution fromR
w
(Shadlen et al., 1996). In fact, correla-

tions conditioned on the choice tend to decrease the covariation

of single neurons and of neuronal populations with behavior
1538 Neuron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc
(Equation 8). The diminishing value of these correlations during

the delay period helps to maintain a large CP until the subject

makes a movement. Further tests of the validity of our analytical

results are shown in Figures S2C and S2D.

Choice Is Unambiguously Decoded from the Activity of
Premotor Cortex Neurons
How well can the population activity of PM neurons predict the

subject’s choice? How are choices affected by noise correla-

tions? To answer these questions, we considered readout neu-

rons implemented as linear combinations of the outputs of two

neural pools (Figure 4A). As mentioned before, we reasoned

that when two neural pools cooperate to form the decision, the

output signal resulting from their interaction must be the one

that optimally predicts the subject’s decision report. We now

use this idea to investigate the involvement in decision making

of two neural populations present in PM: sensory-like neurons

and delay-activity neurons. Given that these two neuron types

presumably play different roles in the process, we have consid-

ered them separately. Each of these two populations includes

two different pools (+ and �), according to their response to

strong stimuli (de Lafuente and Romo, 2006) (Figure 1C). Hence,

for each population (sensory-like or delay-activity neurons), we

have optimally combined the firing outputs of neurons taken

from oppositely tuned pools and have analyzed how well this

linear combination predicts the decision response.

As a first example, we considered only two neurons from the

same population but different pools and we linearly combined

their firing outputs. Since the neurons are in different pools,

the relevant measure of covariation with behavior is the CP2,b
.



Figure 4. Linear Combinations of Positive

and Negative Neurons and Its Covariation

with Behavior

(A) The activity of a positive pool is linearly com-

bined with the activity of a negative pool.

(B) Population-averaged CP2,b for pairs of positive

and negative sensory-like neurons, computed from

Equation S23 for different values of D. Color code

corresponds to the value of D. Inset shows the

distribution of D that maximizes CP2,b in a 250 ms

window centered at the stimulation period. Dashed

line indicates the population-averaged CP2,b for

the mean value of optimal coefficients D = �1.

(C) Same as (B) for pairs of delay-activity neurons.

In this case, the optimal value of D was obtained by

averaging over the second half of the delay period

resulting in D = �1. Dashed line indicates the

population-averaged CP2,b for this value of D.

(D) CPN for the population of sensory-like PM

neurons, computed using Equation S31 for dif-

ferent values of D (color coded). The dashed line

corresponds to the CPN index for the optimal value

of D in a 250mswindow centered at the stimulation

period, D = �1.2.

(E) Same as panel (D) but for delay activity PM

neurons. The dashed line corresponds to the CPN

index for the optimal value D = �0.5, obtained

averaging over the second half of the delay period

(as it is explained in Figure 5). The number of

neurons in the positive and negative pool is

denoted by n+ and n� respectively. The gray box

indicates the period of stimulus presentation (see

also Figure S3).
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index. Figure 4 shows the results for sensory-like PM neurons

(Figures 4B and 4D) and delay-activity PM neurons (Figures 4C

and 4E) for different linear combinations of firing rates (character-

ized by the coefficient D, color coded). These analyses were

much more limited for S2 given our experimental database

(see Figure S3). For pairs of sensory-like PM neurons, the largest

values of CP2,b occur during the presentation of the stimulus. The

inset in Figure 4B shows the distribution of D values that maxi-

mize CP2,b in a 250 ms window centered at the stimulation

period. The mean value of D over the population of pairs is

D = �1, which corresponds to the difference of firing rates

between the oppositely tuned pairs of neurons. The dashed

line in Figure 4B represents the population-averaged CP2,b for

this value of D. For delay-activity neurons, large values of

CP2,b are observed during the entire delay period (Figure 4C).

The most predictive combination of firing rates was again close

to the difference (D = �1, averaged over the second half of the

delay period) and remained constant until the end of the delay

period. Again, the dashed line corresponds to the population

averaged CP2,b for D = �1. These results indicate that, as one

might intuitively suspect, the perceptual decision about stimulus

presence depends on the difference in activity between the re-

sponses of oppositely tuned neurons, in agreement with what
Neuron 80, 1532–1543, De
has been reported in other perceptual de-

cision-making tasks (Gold and Shadlen,

2001; Romo et al., 2003; Heekeren et al.,
2004; Romo and de Lafuente, 2013). Although in all the above

cases the CP2,b index reaches quite large values, it is still well

below its largest possible value. Furthermore, the decision-

making process probably involves interactions between pools

of multiple neurons (Figure 4A). Hence, we used the CPN index

(Equation 5) to look for linear combinations of mean firing rates

of multiple neurons in oppositely tuned pools that would covary

maximally with behavior. For sensory-like PM neurons, the

optimal combination is obtained during the stimulation period,

with D = �1.2 (Figure 4D). The dashed line corresponds to CPN

for this value of D. Although CPN is larger than CP2,b, it

remains below 1 and starts to decrease by the end of the

stimulus presentation period.

Most remarkably, the combination of pools of delay-activity

PM neurons reaches the value CPN = 1 soon after stimulus onset

and maintains it during the entire delay period (Figure 4E). Fig-

ure 5 (top) shows the temporal profile of the value of D that max-

imizes the CPN index at each time window. This optimal value

was obtained independently for each shifted time window, as

is illustrated in the inset. After a transient modulation, the optimal

value of D becomes stationary with a temporal mean of�0.5 until

the end of the delay period. Note that, because D in this case

depends on the numbers of neurons in each pool (see
cember 18, 2013 ª2013 Elsevier Inc. 1539



Figure 5. Delay-Activity Neurons Predict Unambiguously the Behav-

ioral Report

(A) Temporal profile of values of D that maximize the CPN in each 250 ms time

window independently. Inset shows the location of the maximum at a 250 ms

temporal bin centered at t = 2.0 s as an example. After a transient regime, the

optimal value of D reaches the stationary value D = �0.5.

(B) The CPN index for D = �0.5 is compatible with its maximum possible

value of 1 during the entire delay period (see also Figure S4). Shaded area

represents SEM.
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Equation S32), its temporal modulation is important but its spe-

cific value is not necessarily so. The transient positive values dur-

ing the stimulation period are due to the increased activity of the

negative pool at that time (Figure 1, middle bottom), which pro-

duces a transient positive difference between the firing rates in

hit and miss trials, opposite to the decrease in activity that this

pool exhibits during the delay period. Figure 5 (bottom) shows

the temporal evolution of the CPN index when the two pools

are combined using the stationary value D = �0.5. The value

CPN = 1 indicates that the population of delay-activity neurons

unambiguously predicts the behavioral report during the whole

delay period. Notice that because of the difficulties in measuring

the entire covariance matrix, we cannot obtain an optimal popu-

lation variable individually weighting each neuron’s firing rate

(Equation S38). However, under the assumption of discrete

pools, the CPN index already reaches its maximum possible

value, so the conclusion that this population perfectly predicts

the animal’s behavior still is valid.

Wewould like to note that the application of our analytical tools

does not require any assumption about the role of each pool in
1540 Neuron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc
the decision process. Even so, a plausible interpretation of the

optimal rate combination found for the population of delay-activ-

ity neurons is that the activity of the negative pool of PM neurons

represents the default decision that the stimulus is absent,

because when the stimulus is applied, the activity of these neu-

rons diminishes while the activity of neurons in the positive pool

increases.

What factor determines the saturation of the CPN index? We

have noticed before (Equation 6) that this index is affected by

the choice-conditioned correlation coefficients. In our data,

ðN� 1Þrw>>1 so CPN becomes independent of the number of

neurons and the amplification of a single neuron’s covariance

with behavior is controlled by the inverse of ð1+D2Þrw + 2Drb

(the dependence of CPN on the number of neurons is discussed

in the Supplemental Information, Figure S4). We have just seen

that for delay-activity neurons D = �0.5. In addition, since rb is

much smaller than rw (Figure 3B), this expression ismainly deter-

mined by rw, the choice-conditioned correlation coefficient of

neurons in the same pool. The smaller rw, the greater the ampli-

fication with respect to the single neuron’s CP index.

In view of this result, one may wonder if the population of

delay-activity neurons can predict the correct choice before

the onset of the tactile stimulus, when the presence of such stim-

ulus is indicated by a separate cue at the beginning of the trial. To

answer this question, we decoded the animal’s choice from the

population of neurons with delay activity in a variation of the task

in which the correct response button was illuminated at the

beginning of the trial (see Experimental Procedures). In this con-

trol task, monkeys were not required to attend the vibratory

stimuli but just to press the cued button at the end of the trial.

We hypothesized that if the correct choice is indicated by the

light cue at the beginning of the trial and the same neurons are

engaged in this variant of the task, the animal’s choice could

be decoded from the activity of the neural pools even before

the application of the stimulus. To test this hypothesis, we

evaluated a CPN index from the population firing rate during

stimulus-present and stimulus-absent control trials. We per-

formed this analysis for delay-activity neurons because they

are the only population showing significant covariation with

behavior during the delay period of the task. Indeed, before stim-

ulus onset, this index is significantly larger than the CPN in the

detection task (Figure 6). The large value and stationary profile

of the CPN index in control trials indicates that the choice is

made during the prestimulation period. After that, the choice is

kept in memory in the form of sustained activity until the end of

the delay period.

DISCUSSION

In decision-making tasks, the subject’s choice results from the

coordinated activity of neurons distributed in a large network

comprising numerous brain areas. Hence, the decision should

be decoded from population variables, based on the spiking

activities of the neuronal populations involved. It is then ex-

pected that correlated variability between the firing activities of

those neurons play a key role in determining the decision.

Indeed, the fact that single neurons covary with the subject’s

report is usually explained by the existence of pairwise
.



Figure 6. PM Neurons Reflect the Behavioral Choice throughout the
Trial when the Correct Response Is Indicated at the Start

(A) Temporal profile of CPN during the detection task, obtained from a set of

delay-activity neurons that were also recorded during cued trials.

(B) Temporal profile of the CPN index during control trials. In this case, CPNwas

computed using stimulus-present and stimulus-absent correct trials. The large

value of CPN before the stimulus presentation indicates that, in contrast to

detection-task trials, here the choice was made during the prestimulation

period. Shaded area represents SEM.
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correlations between neurons in the neuronal population (Shad-

len et al., 1996).

Experimental and computational studies have shown that

recurrent cortical networks can fire in an uncorrelated fashion,

even if they receive significant common inputs (Ecker et al.,

2010; Renart et al., 2010). There is no conflict between the ability

of cortical networks to decorrelate the responses of pairs of

neurons and the observation of significant correlated variability

in decision-making tasks. Good performance in these tasks

requires nonzero correlations evaluated using trials of both

choices, but choice-conditioned correlations are not con-

strained to be high. To gain further insight into these issues,

here we estimated the covariance of firing activity with behavior

in terms of pairwise noise correlations and found that choice

probability depends in a remarkably simple way on these quan-

tities: it is essentially given by the overall noise correlation coef-

ficient (computed from all trial types together) minus the average

choice-conditioned correlation. It is the first term (of Equation 8)
Ne
that is needed to explain why single neurons have a significant

CP, while it is the second term that, according to the decorrelat-

ing effect of recurrent cortical networks, has to be small. In fact,

the negative contribution of this term shows that nonzero choice-

conditioned noise correlations always decrease the covariance

between firing activity and behavior. The theoretical understand-

ing of this issue is verified with great accuracy by the analysis of

experimental data. CP is indeed explained by the difference

between the two correlation types (Figure 3C). Mean choice-

conditioned correlations are modulated during the time course

of the task, with values in the range between 0.2 and 0.05 (Fig-

ure 3B). At least part of these correlations can be explained by

the existence of an internally generated signal fluctuating from

trial to trial (Carnevale et al., 2012). The smallest observed value

could still contain this effect.

So, our study shows that correlations need to be considered if

one is to analyze covariations of population firing rate variables

with the subject’s report. In perceptual decision-making tasks,

the perceptual report results from neural processes distributed

over several interacting neuronal populations and over a number

of brain regions (Hernández et al., 2010; Siegel et al., 2011). The

relevant measure of covariance between firing activity and

behavior is a generalized CP index defined as a combination of

firing rates from appropriate pools of neurons. The hypothesis

behind this proposal is that when two or more neuronal popula-

tions transiently cooperate in the process of forming the deci-

sion, they produce a combined signal that accurately predicts

the behavioral report. Hence, the most relevant mixture of

the population’s firing rates can be obtained by maximizing the

covariance between the linear combination of rates and

behavior. Following these ideas, we found that populations of

PM neurons active during the delay period of a detection task

unequivocally predict the animal’s decision (Figure 4E). When

the animal is cued at the beginning of the trial about the correct

choice, full covariance with behavior may be reached even

before a (now irrelevant) stimulus is presented (Figure 6B).

In summary, we developed tools to evaluate the CP index from

the correlation structure of a network without assuming any

decision rule. The tools can be applied to both sensory and

frontal areas, as we showed in the analysis of S2 and PM neu-

rons. We then generalized the use of choice probability indices

to population variables and found a way to evaluate them based

on data from simultaneously recorded pairs of neurons. This

allowed us to propose a procedure for determining how the

activity of neurons in different populations should be combined

to optimally predict the subject’s behavior (based on the linear

Fisher’s discriminant). Finally, we were able to find a population

variable that fully covaries with behavior.

These analytical toolsmay be employed to study the dynamics

of cortical networks engaged in keeping relevant information in

short-term memory. In the detection task, our results suggest

that by the end of the stimulation period, the decision is already

made and it is maintained in short-termmemory during the entire

delay period. In a somatosensory discrimination task with two

delay periods (Brody et al., 2003; Hernández et al., 2010; Lemus

et al., 2007, 2009; Romo et al., 1999), a first vibratory stimulus is

kept inmemory during the first of these intervals and thismemory

is later compared with a second stimulus. After a second delay
uron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc. 1541
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period, the subject has to report which of the two stimuli vibrated

with the highest frequency. It was found that during this interval,

populations of PM neurons maintain in memory the frequency of

the two stimuli, even if the decision could already have been

made, as in the detection task (Hernández et al., 2010; Lemus

et al., 2007). Does this mean that the decision continues to be

elaborated, based on the information about the two stimuli main-

tained in working memory? Analyzing how CPN evolves in time

could answer these dynamical issues.

Neurons recorded in the detection task could be assigned to

one of a small set of pools, a property that simplified the study

of the CPN index. In discrimination tasks, however, neuronal

firing rates are rather heterogeneous (Jun et al., 2010) and the

use of general equations where neurons contribute with different

weights could be needed (Equations S38 and S39). In addition to

determining whether populations of PM neurons stably maintain

a decision after presentation of the second stimulus, estimating

the weights with which neurons contribute to the decision would

provide a method to rank neurons according to their relevance in

the task. This issue could be studied using data sets in which a

few tens of neurons have been recorded simultaneously (Her-

nández et al., 2008).

The ideas developed in this work could be applied to study

brain functions other than detection of sensory stimuli. Cohen

and Maunsell (2010, 2011) have noticed that attention fluctua-

tions are associated with fluctuations in psychophysical perfor-

mance. To reach this conclusion, these authors evaluated an

ROC index based on a population firing rate variable defined in

terms of two attentional states, a quantity somewhat similar to

our CPN index. Noise correlations are reduced by both spatial

and feature attention, a fact that is assumed to have a positive

effect on stimulus coding (Cohen and Maunsell 2010, 2011).

Our results show that noise correlations are also relevant to

explain the covariance between neuronal activity and choice

and that small choice-conditioned correlated variability is

needed to achieve a larger covariance with behavior both for

single cells and for neuronal populations (Figures 3C and 4).

Whether this is also true for neurons in higher visual areas such

as V4would require an analysis of the time course of correlations.

The simplicity of the approach presented here makes it

feasible to study awide spectrumof problems. Froma theoretical

viewpoint, weprovided an intuitive framework to understand how

first- and second-order statistics affect the relationship between

network firing activity and behavior, which can be used to further

develop computational methods. From a data analysis perspec-

tive, our approach could help to reveal how several cortical areas

contribute and collaborate in the decision-making process.
EXPERIMENTAL PROCEDURES

Detection Task

Data for this analysis were obtained from two earlier studies (de Lafuente and

Romo, 2005, 2006). Stimuli were delivered to the skin of the distal segment of

one digit of the restrained hand, via a computer-controlled stimulator (BME

Systems; 2 mm round tip). Initial probe indentation was 500 mm. Vibrotactile

stimuli consisted of trains of 20 Hz mechanical sinusoids with amplitudes of

2.3–34.6 mm. These were interleaved with an equal number of trials where

no mechanical vibrations were delivered to the skin (amplitude = 0). Animals

pressed one of two buttons to indicate stimulus present (left button) or stimulus
1542 Neuron 80, 1532–1543, December 18, 2013 ª2013 Elsevier Inc
absent (right button). They were rewarded with a drop of liquid for correct

responses.

Recordings

The activity of pairs of neurons were simultaneously recorded from the same

cortical area including secondary somatosensory cortex (S2), ventral premotor

cortex (VPc) on the left hemisphere, and dorsal premotor cortex (DPc) and

medial premotor cortex (MPc), bilaterally. Pairs from premotor cortices were

not distinguished in this report. Trials in the control light task proceeded

exactly as described in Figure 1A, except that at the probe down, the correct

target button was illuminated. Vibrotactile stimuli were delivered while the light

was kept on; then, at the probe up, the light was turned off. The monkey was

rewarded for pressing the previously illuminated button. Detailed description

of the experimental techniques was described in de Lafuente and Romo

(2005, 2006). Animals were handled in accordance with the standards of the

NIH and the Society for Neuroscience.

Data Analysis

Statistical Properties of the Firing Activity

Statistical properties of the firing activity (firing rate, firing rate variance, and

correlation coefficient) were computed for each neuron or pair of neurons as

a function of time using 250 ms sliding window displaced every 50 ms. Trials

were aligned to the time of stimulus onset.

Firing rate, r(t), was calculated as the number of spikes in one sliding window

divided by the its temporal length. Mean firing rate in condition c, mc(t), was ob-

tainedaveragingover all trialsof thiscondition. TheSEof themeanfiring ratewas

computed as the SDover trials dividedby the square root of the number of trials.

Variance of the firing rate in trials of condition c, sc(t), was obtained using

s2
cðtÞ=

D
riðtÞ2

E
c
� hriðtÞi2c; (Equation 10)

where c indicates average over trials of condition c. The SE of the variance was

s2cðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðNc � 1Þp

, where Nc is the number of trials of condition c.

Correlation coefficients of the firing rates of a pair of neurons (i, j), in trials of

condition c, were calculated following,

rcðtÞ=


riðtÞrjðtÞ

�
c
� hriðtÞic



rjðtÞ

�
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i;cðtÞs2

j;cðtÞ
q : (Equation 11)

Statistical properties of the firing activity were computed only from neural re-

cordings with at least five trials.

Measures of Covariance with Behavior

Choice probability indices were calculated using Equation 1 and computed by

direct numerical evaluation (Figure 2). The Complementary error function (erfc)

in Equation 1 was computed numerically (MATLAB,MathWorks). The SE of the

CP calculated using Equation 1 was obtained by propagation of the SEs of the

firing rates and firing rate variances over the formula. Direct numerical evalua-

tion of choice probability was obtained using methods of signal detection

theory (Green and Swets, 1966) implemented with custom software written

using MATLAB (MathWorks).

Population-averaged CP2,w index in Figure 2 was computed evaluating

Equation S16 for each pair of neurons and averaging over all pairs of neurons

within the same neural pool. Similarly, population-averaged CP2,b index in Fig-

ures 4B and 4C was obtained for each neuronal pair of neurons belonging to

different neural pools by evaluating Equation S23 and averaging over the cor-

responding population of pairs.

CPN in Figures 4D and 4E and in Figures 5 and 6 was computed from

population-averaged statistical properties of the firing activity using Equa-

tion S31. Population-averaged quantities were estimated pooling neurons

and neuron pairs across different recording sessions. Both CP2,b and CPN

were computed for different linear combinations of pool rates and the optimal

one was defined as that with maximum value of D2,b or DN, respectively. This

gives the optimal value of the coefficient D.

Full Noise Correlations and Choice-Conditioned Noise Correlations

In Figure 3B, the correlation coefficients of the firing rates computed with all

trials (R) were obtained numerically using Equation 11 and analytically by
.
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evaluating Equation S48. Both were computed for each pair of delay-activity

PM neurons and then averaged over the population of pairs.

Population-averaged choice probability index as a function of correlation

coefficients (Figure 3C) was computed evaluating Equations 8 for each pair

within the population of delay-activity PM neurons and then averaged over

the population of pairs.
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SUPPLEMENTAL DATA 

 

CP2,s index: verification of the analytical approximation (related to Figure 2) 

In Figure S1 we verify our formula S16 for CP2,w by comparing its prediction with the result 

obtained by direct numerical evaluation (see Experimental Procedures). The results obtained 

using our analytical expression are in good agreement with those obtained numerically. 

 

 

Figure S1: Numerical and analytical computation of the CP2,w index. Related to Figure 2.  Population-

averaged CP2,w index computed with Equation S16 (red traces) compared with the one obtained by direct numerical 

evaluation (green traces, see Experimental Procedures). Gray boxes indicate the period of stimulation and p is the 

number of neurons used in this analysis. (A) Pool of positive sensory-like PM neurons. (B) Pool of positive delay-

activity PM neurons. (C) Pool of positive S2 neurons. (D) Pool of negative delay-activity PM neurons. For this case 

we also show the population-averaged CP index in order to verify that the sum of activity of two neurons is more 

predictive than the activity of single neurons. Due to limitations in the number of simultaneously recorded neural 

pairs in our database, we cannot perform this analysis in pools of negative sensory-like PM and negative S2 neurons. 

 



Further data analysis of how correlated variability determines choice 

probability (related to Figure 3) 

 

Figure S2: Noise correlations and choice conditioned noise correlations determine the CP index. 

Related to Figure 3. (A)-(B) Temporal evolution of the mean correlation coefficients computed with all trials (R, 

blue and green traces) compared with the average of correlations obtained using hit and miss trials separately (ρ, red 

traces). Mean correlation coefficients were obtained averaging over all pairs from the same functional type. Gray 

boxes indicate the period of stimulus presentation, error bars represent standard error of the mean (SEM) and p is the 

number of pairs. Green traces are the correlation coefficients computed numerically. Blue traces are the predictions 

from Equation S48. (A) Pairs within the pool of positive sensory-like PM neurons (Left) and pairs of positive and 



negative PM sensory-like neurons (Right). (B) Pairs within the pool of positive S2 neurons. (C) Verification of the 

linear approximation for the CP in terms of the correlation coefficients (Equation S55). (Left) Pool of positive 

sensory-like PM neurons. (Middle) Pool of positive delay-activity PM neurons. (Right) Pool of positive S2 neurons. 

As expected the agreement is good except for large values of the CP index. (D) Population-averaged  2

0 2  

derived from Equation 1 (blue traces) compared with the one obtained using Equation 8 (red traces). Gray boxes 

indicate the stimulation period and p the number of pairs. (Left) Pool of positive sensory-like PM neurons. (Middle) 

Pool of positive delay-activity PM neurons. (Right) Pool of positive S2 neurons. 

 



CP2,b index and optimal rate combination for pairs of S2 neurons (related to 
Figure 4) 

 

Figure S3: Optimal rate combination for pairs of S2 neurons. Related to Figure 4. Population-averaged CP2,b for 

pairs of positive and negative S2 neurons, computed using Equation S23-S24 for different values of D. Color code 

corresponds to the value of D. The rate combination with optimal CP2,b, during the stimulation period, is obtained 

for D = -0.7 (black dotted line) . 



 

 

Figure S4: Dependence of the CPN index on the number of neurons. Related to Figure 5. (A) Time course of the 
CPN index (Left), numerator (Middle) and denominator (Right) of Equation S61 for N taking values between 5 and 
80 neurons per pool (color-coded). For small N the CPN index increases with N while at larger values of N it 
saturates. (B) Dependence on N of the CPN index (Left), the square of the numerator of Equation S61 (Middle) and 
the square of the denominator (Right) for a fixed time, t = 1 s. 



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Choice Probability Indices 

Arbitrary variable 

The generalized choice probability index of an arbitrary variable R is defined as the area under 

the receiver-operating-characteristic (ROC) curve, analogously to the choice probability index 

[1]. It can be expressed as [2], 
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0
GCP d     (S1) 

where, 
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A, B are the two possible choices and z is the threshold level. The quantity  

 z  is the probability of finding a type B trial with a value of R higher than the threshold z. In 

the same way,  z  is the probability of finding a type A trial with R higher than the threshold. 

In Equation S1 we are assuming that the mean value of the distribution of R over A trials is 

higher than the one in B trials, but the opposite case is analogous. 

The probability that a B trial is classified as A, as a function of the threshold z, can be expressed 

as, 
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from where 
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Then, Equation S1 can be written as, 
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Note that, because R is an arbitrary variable, it can take any value on the real axis. Therefore, the 

threshold z can also have any value from  to . If we assume that R has a Gaussian 

distribution in each of the two set of trials, then we can write, 
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and 
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By replacing both expressions in Equation S5, we can express GCP as  

 

 2 2

1
GCP erfc ,         =

2 2 1
2

A B

A B

      
    

  (S9) 

 

Single neuron firing activity 

When the arbitrary variable R is the firing rate r of a neuron, the generalized choice probability 

reduces to the choice probability index and can be expressed as, 
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where 
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that corresponds to Equation 1 of the main text. 

 

Sum of firing activities of two neurons (CP2,w) 

As the simplest example GCP index, consider the case where R is sum of the firing rates of two 

neurons from the same neural pool, rw = r1 + r2. 
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The variance 2
c for c = A,B can be expressed as, 
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and 12 1 2 1 2
c

c c c
r r r r   , is the covariance between r1 and r2 evaluated over trials of type c 

= A,B. 

From this we have, 
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A simple particular case is obtained if the variance of the firing rate distribution is equal for both 

neurons and both types of trials. Denoting this variance as 2  and defining the correlation 

coefficient conditioned to choice c, , 2
12 12
w c c   , we have 

 2,
2,

1
CP erfc

2 2
w

w

   
 

  (S17) 

  
   

 
1 1 2 2 1,2

2,
, ,

1212 12

2
= =

12

A B A B

w ww A w B

    

  

  


 
  (S18) 

where 1,2  is the arithmetic mean of 1  and 2 , and  , ,
12 12 120.5w w A w B    . The superscript w 

indicates that neurons 1 and 2 are within the same neural pool. 

 

Arbitrary combination of the firing activity of two neurons (CP2,b) 

If the two neurons belong to different pools, we take R as an arbitrary linear combination of their 
firing rates, rb = C1 r1 + C2 r2. 
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The variance of rb in trials of type c = A, B is, 
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From this we have, 
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where we defined 2 1D C C . 

Again, a simple particular case is obtained if the variance of the firing rate distribution is equal 

for both neurons and both types of trials. Denoting this variance as 2  and defining 

b, 2
12 12

c c   we have 
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where  , ,
12 12 120.5b b A b B    . The superscript b indicates that neurons 1 and 2 belong to different 

neural pools. 

 

Arbitrary combination of the firing activity of two neural pools (CPN) 

Consider now the case of two neural pools, denoted by subscripts + and -, having N+ and N- 

neurons respectively. Let us take R as a linear combination of their mean firing activities, 
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where , jr is the firing rate of neuron j in the population ,    . In order to calculate the ROC 

index we have to express 
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in terms of single neuron and neuron pair properties. In this case,  
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where the bar indicates population average, i.e., 
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The variance 2
c is now expressed as,  
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Defining 2 1D C C  we have, 
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with 
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In the application of Equations S31-S33 to experimental data, we estimated the population-

averaged quantities pooling neurons and pairs across different recording sessions. The 

population-averaged mean and variance of the firing rate in condition c, denoted by c
i and 2

i,c  

respectively, were obtained by pooling neurons from population i = +,- recorded across all the 

experimental sessions. To estimate the population averaged covariances of firing rates in 

condition c, referred as c
ij , we averaged over all the recorded pairs consisting of one neuron 

belonging to population i = +,- and the other to population j = +,- across all recording sessions. 

In general, the CPN index will depend on the number of neurons. In Figure S4 we explore this 

dependence in our experimental data. 

 

Weighted sum of the activity of a pool of neurons 

In a more general context one can study the covariation with behavior of arbitrary linear 

combinations of the neuron’s firing rates. We want to study how the variable  
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covaries with behavior. The generalized choice probability reads,  
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where, 
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The matrix Γ  is the arithmetic mean of the covariance matrices computed with trials of fixed 

each choice,   2A B Γ Γ Γ , and ,c ij i j i jcc c
rr r r Γ . 

The set of weights w  that maximize CPN  can be found by writing 2
N , 
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This quantity is the Fisher's Linear Discriminant between classes A and B. It measures the ratio 

between the squared difference of the mean values of Nr  in each class and the average variance 

within each decision. Assuming that Γ   has full rank, the optimal vector w is, 

  1opt A B w Γ μ μ  (S38) 

and the optimal CPN  is, 
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Notice that solving this optimization problem requires knowledge of the entire covariance 

matrix, Γ , an information that is experimentally very difficult to obtain because it involves the 

simultaneous recording of the entire population of neurons. In the particular case in which 

neurons belong to two discrete homogeneous pools, the CPN  reduces to the expression given in 

S31-S33. 

 

Choice probability and Correlation Structure 

The correlation coefficient ijR  between a pair of neurons (i,j) computed over trials of both 

decision types (A and B) is defined as, 
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where xr  is the firing rate of neuron x = i,j and x  is its mean value evaluated over all trials. The 

covariance  cov ,i jr r can be rewritten segregating trials according to the animal’s decision, 
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where NA and NB are the number of trials of each type and N = NA + NB. The mean firing rate 

over all trials can be expressed for both neurons (x = i, j) as, 
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with 
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Then, the covariance is 
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which can be expressed as, 
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where A
ij  and B

ij are covariance computed segregating trials according to types A and B, 

respectively. A similar decomposition can be done for variances of the firing rates (x=i, j), 
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Considering Equations S46 and S47 together,  
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where 
2 2

3
A B B AN N N N

K
N


 . 

For the particular case in which the variances of the two neurons are equal in both type of trials 

and the number of A and B trials is the same,  
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that is Equation 7 of the main text. Equation S49 expresses the usual correlation coefficient R in 

terms of correlations coefficients computed segregating trials according to the animal’s choice 

( A
ij  and B

ij ) and in terms of i  and j   (which is the quantity that determines the CP index, 

Equation S10). 

To obtain further insight about the meaning of this expression and to justify the approximate 

expression for the CP index (Equation 8), let us consider the Taylor expansion of 

  2ij i j     around   2 0i j     . Under this approximation, 
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with 
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where  , , 2w w A w B
ij ij ij    . Comparing the first and second term of the expansion we conclude 

that the accuracy of this approximation is good if 0AB
ij ijR   . For example, when  

0.15AB
ij ijR   , a pair (i,j) with i and j differing in 30% ( 0.3  ) will give a relative error of  

less than 9%. 

When Equation S49 is applied to a pair of neurons (1,2) within the same pool we have, 
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where  0 1 2 2    . This is Equation 8 in the main text. Notice from Equation S53 that, 

 12 12 0w wR     (S54) 

which means that correlations for neurons in the same pool, computed with fixed-choice trials, 
are smaller than those obtained with the whole set of trials.  

For small 0  the CP index of neurons in the pair (1,2) can be linearized, obtaining a rather simple 

relationship between this index and noise correlations, 
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and the corresponding average over the population of pairs. The error introduced by this 

linearization becomes significant at large values of CP (8% for CP = 0.75). 

Instead, if we consider that a pair of neurons (1,3) belonging to different pools have opposite 

sign of the difference of mean responses in the two conditions (that is, 1 3 0   ), from Equation 

S49 we have that 
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If for a pair of neurons from different pools 3 1  , then  0 1 3

1

2
     can be 

approximated in terms of the correlation coefficients of the pair (1,3) as, 
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where we defined  b b, b,
13 13 13 2A B    . 

As a more complex example, we now consider a two-pool network satisfying both conditions 

1 2 3    . Equations S53 and S57 can be seen as a constraint on the correlation structure of 

the network. Using this constraint, and replacing pair-wise correlations by their population-

averaged values ( wR , bR , w , b ) we obtain 
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which is Equation 9 in the main text. 

A similar study can be done for the other generalized indices. For a pair of neurons (1,2) within 

the same neural pool and a pair (1,3) between different pools, we have 
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The CPN index can be related to the choice-conditioned correlation coefficients as, 
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where  and  can be obtained averaging the expression in Equation S51 over the population 

of positive and negative neuronal pairs, respectively. 

 
Dependence of the CPN index on the number of neurons 

In order to explore the dependence of the CPN index on the number of neurons, we calculated 
this index taking from our database subsets of neurons with different sizes. We performed this 
analysis on the population of delay-activity PM neurons. We randomly selected the same number 
of neurons from the positive and negative pools and averaged the results over 100 repetitions for 
each population size. 

The CPN index for a two pools system with N neurons each can be expressed as, 
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Figure S4 (top row) shows the time course of CPN, the numerator and the denominator of 
Equation S57, for N taking values between 5 and 80 per pool. For small N the CPN index 
increases with N while at larger values of N it saturates. Figure S4 (bottom row) shows the 
dependence on N of the CPN index, num2 and den2 for a fixed time, t=1s.  

The dependence of CPN on N can be explained in terms of Equation S57. For small N, 
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which explains the linear dependence of num2 and den2 on N (Figure S4, bottom row) and the 
saturation of CPN at large N. 
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