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Short-Term Synaptic Depression Causes a Non-Monotonic
Response to Correlated Stimuli
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Unreliability is a ubiquitous feature of synaptic transmission in the brain. The information conveyed in the discharges of an ensemble of
cells (e.g., in the spike count or in the timing of synchronous events) may not be faithfully transmitted to the postsynaptic cell because a
large fraction of the spikes fail to elicit a synaptic response. In addition, short-term depression increases the failure rate with the
presynaptic activity. We use a simple neuron model with stochastic depressing synapses to understand the transformations undergone
by the spatiotemporal patterns of incoming spikes as these are first converted into synaptic current and afterward into the cell response.
We analyze the mean and SD of the current produced by different stimuli with spatiotemporal correlations. We find that the mean, which
carries information only about the spike count, rapidly saturates as the input rate increases. In contrast, the current deviation carries
information about the correlations. If the afferent action potentials are uncorrelated, it saturates monotonically, whereas if they are
correlated it increases, reaches a maximum, and then decreases to the value produced by the uncorrelated stimulus. This means that, at
high input rates, depression erases from the synaptic current any trace of the spatiotemporal structure of the input. The non-monotonic
behavior of the deviation can be inherited by the response rate provided that the mean current saturates below the current threshold
setting the cell in the fluctuation-driven regimen. Afferent correlations therefore enable the modulation of the response beyond the
saturation of the mean current.

Key words: synaptic integration; fluctuation-driven regimen; presynaptic spike correlations; synaptic short-term depression; vesicle
depletion; neural coding

Introduction
Since the first studies on synaptic transmission in the neuromus-
cular junction, Katz and Miledi (1968) realized that transmitter
release occurs stochastically. Additional studies found that cen-
tral synapses are also very unreliable (Hessler et al., 1993; Rosen-
mund et al., 1993) and that the transmission probability under-
goes temporary changes according to the recent activity
(Magleby, 1987; Zucker and Regehr, 2002). This probability de-
creases under depletion of the releasable transmitter vesicles (Do-
brunz and Stevens, 1997), giving rise to short-term synaptic de-
pression (STD).

Several works have explored the theoretical implications of
these findings on the transmission of information in neural cir-
cuits (Abbott et al., 1997; Lisman, 1997; Tsodyks and Markram,
1997; Matveev and Wang, 2000b). One of the most relevant con-
sequences of STD is that the synapses saturate at presynaptic rates
(�) higher than a limiting rate, that is, the mean stationary affer-
ent current (�I) does not depend on �. This saturation appears to
be a major constraint on the range of � within which neurons can

transmit information in the stationary regimen (Abbott et al.,
1997; Tsodyks and Markram, 1997). However, this argument is
based on the saturation of �I and neglects that the cell response is
also determined by the current fluctuations (�I). It may well be
that �I does not saturate as �I so that the response can be modu-
lated beyond the limiting frequency.

The role of the current fluctuations has been attracting much
attention recently (Chance et al., 2002; Kuhn et al., 2004;
Moreno-Bote and Parga, 2005). They were proposed as a candi-
date mechanism to generate the large variability found in the
activity of cortical cells (Softky and Koch, 1993), which would
hypothetically operate in a fluctuation-driven regimen (FDR)
(Gerstein and Mandelbrot, 1964; Shadlen and Newsome, 1994).
There, the mean synaptic current generated by the network is not
sufficient to drive the neurons toward threshold, and only the
fluctuations may trigger discharges (van Vreeswijk and Sompo-
linsky, 1996). Depression transforms these fluctuations in a non-
trivial manner; however, no studies have analyzed its impact on
the neuron response.

Here, we use a computational model to study the role of the
fluctuations on the stationary neuron response when the syn-
apses are stochastic and show STD. We analyze the impact of STD
on three factors: (1) the stochasticity of the transmission, (2) the
redundant connectivity of the neurons (i.e., connections made of
several contacts), and, most relevant, (3) the correlations be-
tween afferent spikes, analyzed using stimuli with different spa-
tiotemporal structure.
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It will be shown that (1) STD may lead naturally to the FDR,
because it automatically sets �I below the threshold current; (2)
in this regimen, fluctuations can be modulated by the input rate
even if the mean current has reached saturation; (3) at high rates,
STD tends to eliminate the impact of the input correlations; and
(4) as a result, correlations cause �I to exhibit a non-monotonic
behavior as a function of �, behavior that is inherited by the
response rate.

Preliminary results have appeared in abstract form (Moreno
et al., 2002a).

Materials and Methods
The synapse model
Because connected neurons rarely are connected by a single synapse, and
synapses sometimes have more than one synaptic specialization (the par-
ticular area in which vesicle exocytosis takes place) (Walmsley et al.,
1998), we will consider connections made of M “functional contacts,” the
term used to refer to any synaptic specialization in which release takes
place (Zador, 1998). Contacts sharing the same presynaptic cell will be
referred to as “common” contacts. Figure 1, A and B, illustrates two
examples in which each presynaptic cell establishes M � 3 and M � 2
common contacts, respectively. Cases with different values of M will be
compared at a fixed total number of contacts. This is done by varying the
number of presynaptic neurons as in the examples shown in Figure 1, A
and B.

At each of these contacts, a simple stochastic model of vesicle turnover
is implemented (Vere-Jones, 1966; Maass and Zador, 1999; Wang, 1999).
The model assumes a vesicle “releasable pool” (RP) of size N0, that is, it
can hold up to N0 vesicles. Vesicles within this pool are thought to be
“docked” and will also be referred to as “readily releasable” vesicles. We
assume the “univesicular release hypothesis,” which states that, indepen-
dently of the number of docked vesicles, an action potential (AP) can at
most trigger the fusion of one vesicle per functional contact (Edwards et
al., 1976). The release of a docked vesicle is modeled stochastically, that is,
on arrival of a spike, a release is triggered with a certain probability. This
probability is a function of the current number of releasable vesicles, n, as
follows:

p�n� � 1 � �1 � U�n n � 0, 1, . . . , N0, (1)

as proposed in a study of the hippocampal CA3–CA1 synapse (Dobrunz
and Stevens, 1997; Dobrunz, 2002). This dependence on n is illustrated in
Figure 1 D, where one can observe that the parameter U represents the
release probability when there is only one vesicle ready. The recovery of
vesicles when the RP is not fully replenished is also modeled randomly:
given that the number of vesicles ready to become docked is much larger
than N0 (De Camilli et al., 2001), the replenishment of a vacancy in the
RP can be taken as the first event from a Poisson process with homoge-
neous mean recovery time �v (Fig. 1C). This modeling is compatible with
the experimental observation that the recovery of the release probability
from depletion can be fitted with an exponential (Dobrunz and Stevens,
1997) (data not shown). When comparing instances with RPs of different
sizes, the recovery time �v will be normalized so that the ratio �v /N0 is the
same in all of the examples. This normalization is sketched in the two
examples shown in Figure 1C, in which the case with N0 � 4 has a
recovery time twice as large as that with N0 � 2. This scaling makes the
comparison between synapses with different N0 values easier, because (as
will be shown later) the current statistics in the limit of large � depends
only on the ratio �v /N0.

The average state of the synapses will be described by the probability
that an afferent spike reaching a functional contact triggers the release of
a vesicle. This “transmission probability” (Pt) will be obtained by com-
puting over a long stimulus the fraction of functional contacts that, being
hit by an AP, elicit a synaptic response.

Presynaptic activity: description of the stimuli
We will consider four different types of presynaptic activity: (1) “uncor-
related” stimuli, (2) “synchronous” stimuli, (3) “autocorrelated” stimuli,
and (4) “phase-locked periodic” stimuli.

Figure 2 shows a spike rastergram for each stimulus type, which serves
to explain graphically the reason of their choice. Because spikes are inde-
pendent, the raster obtained with the uncorrelated stimulus looks very
homogeneous in comparison with the rest, because it lacks any kind of
spatial or temporal structure (Fig. 2 A). In contrast, the other three stim-
uli were chosen as simple examples with only spatial (Fig. 2 B, synchro-
nous), only temporal (Fig. 2C, autocorrelated), and both spatial and
temporal structure (Fig. 2 D, phase-locked). In each of these rasters, the
corresponding structure is easily caught by the eye. Because of the pres-
ence of correlations, the global instantaneous activity of each stimulus
(drawn below each raster), presents a different profile: despite its sto-
chastic nature, the uncorrelated stimulus displays a much smaller tem-
poral variability than the other three.

The stimuli are defined in terms of the “statistics” of the spike trains.
Therefore, different trials do not reproduce the position of the spikes
precisely, only the statistics of the presynaptic trains is the same. During
a trial, each of the N presynaptic neurons elicits a spike train composed of
a sequence of APs at the times {ti

l}, which we write as (i � 1, 2, . . . N ):

Si�t� � �
l

spk

��t � ti
l�. (2)

Its mean firing rate (�) is defined as the mean number of spikes per unit

Figure 1. Illustrations of the synaptic connection characteristics in the stochastic model. A,
B, Two examples with different numbers of functional contacts per presynaptic cell (M � 3 and
2, respectively). At each contact, an independent model of vesicle turnover is implemented with
identical parameters. For the analysis performed in Figure 4, only the cases that, like these two
examples, have the same total number of contacts N � M are compared. C, Recovery of a
vacancy in the RP is stochastic and occurs independently at each vacancy. The mean recovery
time �v is scaled with the size of the RP, so that cases with different N0 can be compared fairly.
D, Plot of the release probability (release prob.) versus the number of releasable vesicles (Eq. 1)
with U � 0.75 and N0 � 4.
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time. Cross-correlations are quantified in terms of the correlation be-
tween two spikes of different spike trains (i � j),

Cij�t,t�� � �Si�t�Sj�t��� � �Si�t���Sj�t���, (3)

the brackets indicating average over trials, whereas a similar expression is
used to define the autocorrelation, which measures the degree of corre-
lation between two spikes of the same spike train,

Ai�t,t�� � �Si�t�Si�t��� � �Si�t���Si�t���. (4)

Uncorrelated stimuli. This stimulus is built under the assumption of com-
plete independence between any two spikes (regardless of whether they
are fired by the same or different cells). In practice, the stimulus consists
of a population of presynaptic neurons firing independent Poisson trains
with the same constant rate, �. We will use these stimuli to probe the
synaptic model and the effects of varying different synaptic parameters;
the elicited neuron response will serve as a control condition with which
to compare the responses to correlated stimuli.

Synchronous stimuli. The synchronous stimulus represents the sim-
plest example of instantaneous cooperative behavior between cells. To
isolate the effect of spatial correlations from temporal correlations, we

consider individual trains without autocorrelations (i.e., they all follow a
Poisson statistics with the same rate). The different trains, however, are
not generated independently, but they have a certain degree of syn-
chrony, which means that each cell, beyond discharges occurring syn-
chronously by chance, emits a fraction of its spikes at the same time as
some other cells (Fig. 2 B, inset). This is quantified in terms of the cross-
correlation between the spike trains of two presynaptic cells, which takes
the following form:

Cij�t,t�� � ����t � t��. (5)

The correlation coefficient (�) gives the probability above chance that,
given that fiber i produced a spike at time t, fiber j produces another spike
at the same time. It quantifies with values between 0 and 1 the strength of
the cross-correlations. It is 0 when all of the presynaptic neurons fire
independently, and it is 1 when they fire replicas of essentially the same
spike train.

To numerically generate the synchronous stimulus, we first generated
a Poisson “mother” train with rate �/�. Next, each individual train was
built as a thinned copy of the mother train from which some spikes,
randomly picked, were eliminated with a probability of 1 	 � per spike.

Figure 2. Spike rastergrams of the presynaptic population for the four stimuli studied. A, The uncorrelated stimulus lacks any kind of spatiotemporal structure and produces a very homogeneous
rastergram. B, The synchronous stimulus has a clear spatial structure, because some spikes from different cells fall aligned in time (inset), but it lacks any temporal structure. C, The autocorrelated
stimulus presents a temporal structure appreciable as horizontal filaments. The inset illustrates three rasters from a single neuron firing with different autocorrelation magnitude: as 	 increases, the
spikes tend to cluster in bursts. D, The phase-locked periodic stimulus displays both temporal and spatial correlations. The inset shows rasters from three cells. The common probability distribution
function of spike occurrence is shown as dashed lines. The global instantaneous activity (below each raster) was obtained from a single trial using a bin size dt � 10 ms. Thus, it exhibits the variability
perceived by the postsynaptic neuron in the spike count in a time window of the size of its membrane time constant (i.e., �m � 10 ms). These four examples show that spike correlations increase
this variability enormously. Parameters are as follows: N � 10,000, � � 5 Hz, � � 0.002 (B), 	 � 1.5 (C), f � 40 Hz, and 
 � 4 ms (D).
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Autocorrelated stimulus. This stimulus is a simple example of cooper-
ative behavior between spikes from the same cell. We chose a stimulus
with positive temporal correlations between pairs of spikes from the
same cell but not between spikes from different presynaptic trains, which
has a simple numerical implementation. More specifically, we generated
independent renewal trains with exponential autocorrelations [for de-
tails, see de la Rocha et al. (2002)]:

Ai�t,t�� � ���t � t�� 
 �	
e�t	t��/�c

�c
, (6)

and without cross-correlations: Cij(t,t�) � 0 (i � j). The magnitude of the
autocorrelations is measured by the dimensionless parameter 	, which
intuitively sets the excess of probability of, given one spike, finding an-
other one within a time range �c. Notice that 	 can be varied keeping the
firing rate � fixed. The inset in Figure 2C shows three examples of spike
trains generated with the same rate � � 10 Hz, the same correlation range
�c � 2 ms, but different 	 values: 0 (which is a Poisson process), 0.6, and
1.5. It is clear that, for larger values of 	, the APs cluster in bursts made of
more spikes (although their exact number varies from burst to burst). The
interval between consecutive spikes within a burst is of the order of �c.

Phase-locked periodic activity. As a last example, we combined a simple
periodic temporal structure with a spatial organization in which the cells
coordinate their firing by phase-locking their spikes to an external oscil-
lation of frequency f. Individual spike trains are constructed in the fol-
lowing way: each cell emits one AP at the same temporal phase of the
oscillation, but with a certain jitter. The value of the jitter of every spike is
drawn from a Gaussian distribution of deviation 
, truncated on the
sides at a half-period distance (to prevent the tails of consecutive Gaus-
sians from overlapping). The parameter 
 sets the precision of the phase-
locking of each neuron, and its value is kept fixed as the oscillation
frequency is varied. This pattern of spikes, which represents the output
activity of a network that oscillates rhythmically (Buzsaki and Draguhn,
2004), is illustrated in Figure 2 D.

Synaptic current
The activity of the N neurons of the presynaptic population gives rise to
the stimulus excitatory current Istim(t). Each AP can produce at most the
release of M vesicles. The release from a single vesicle is modeled as an
instantaneous pulse of current of size J. Thus, the transformations of the
train of APs into a sequence of instant current pulses is formulated as
followsa:

�
i

N

Si�t� � �
i

N �
l

spk

��t � ti
l� 3 Istim�t� � �

i

N �
n

M

Ji,n�
k

rel

��t � ti,n
k �.

(7)

The sums on the right run over presynaptic neurons (i � 1 . . . N ), over
common contacts for each presynaptic neuron (n � 1 . . . M ), and over
the releases produced at each particular contact (k � 1 . . . rel). We ig-
nored the variability in the number of common contacts found in exper-
iments (Gil et al., 1999; Silver et al., 2003), so that all connections are
made of the same number of them. On the contrary, we captured the
variability of quantum response across contacts by taking the efficacies
Ji,n randomly distributed with a Gaussian of mean J and coefficient of
variation � � 0.2– 0.4 (Gil et al., 1999). In the simulations, we will specify
the value of the ratio of the efficacy and the membrane capacitance, J/Cm,
which measures the quantal amplitude (i.e., the mean amplitude of the
EPSP produced by the release of a single vesicle) in voltage units.

The background current Ibg(t), which represents the afferent activity

from other cells of the network or from different brain areas, is generated
by Poisson events activating one excitatory and one inhibitory synapse at
constant rates �E and �I, respectively. These rates are of the order of
several spikes per millisecond, because they represent the superposition
of thousands of presynaptic trains at low cortical spontaneous frequen-
cies (e.g., �1–2 Hz).

The total instantaneous synaptic current reaching the target neuron is
the sum I(t) � Istim(t) 
 Ibg(t). We will normally be interested in its mean
and SD. To evaluate them, we will divide the duration T of a long trial
into small bins (of size dt), build the histogram of the current, and com-
pute its mean �I and deviation �I as follows:

�I �
1

NT
�
bins

NT

I�t� (8)

�I
2 �

1

NT
�
bins

NT

I�t�2 � �I
2, (9)

where data are taken starting from a time when the response of the target
neuron has reached its stationary state (depending on the input rate the
stationary regimen has reached after 0.1–1 s).

Without background component, the mean current �I has a simple
analytical expression, because it is equivalent to the mean total charge
entering the cell per unit time: because each of the N M contacts is hit by
� APs per unit time, and only a fraction Pt of them trigger the influx of the
quantum charge J, we have the following:

�I � NMJ�Pt. (10)

The deviation �I measures the magnitude of the “fluctuations” produced
by the stochasticity of the incoming spikes and of the synaptic
transmission.b

The model target neuron and the analysis of the response
We model the target neuron as a simple leaky integrate-and-fire (LIF)
unit (Ricciardi, 1977). This model describes the dynamics of the mem-
brane potential V(t) when it is below threshold by the following equation:

Cm

dV�t�

dt
� 	gL�V�t� � EL� 
 Istim�t� 
 Ibg�t� if V � �. (11)

Here, Cm is the total membrane capacitance, gL is the leak conductance,
and EL is the leak potential. The membrane time constant is �m � Cm/gL.
The terms Istim(t) and Ibg(t) represent the stimulus and background cur-
rent, respectively (see above). Eq. 11 is used until V(t) reaches the spike
generation threshold �. At that point, an AP is discharged, and the po-
tential V(t) is reset to H, where it is held during a refractory time �ref. The
“current threshold” is defined as the value of the current that depolarizes
the neuron exactly at its firing threshold; for the integrate-and-fire neu-
ron, it reads �I � �gL.

In this work, we will deal only with the “stationary” regimen, that is,
the response of the neuron will be computed after the transmission prob-
ability of its synapses has reached its steady state. We will characterize the
response mainly by means of the output firing rate (�out), defined as the
mean number of output APs per unit time. The output firing rate as a
function of the afferent rate will be referred to as the “response function.”

We will also compute the coefficient of variation of the response in-
terspike intervals, CVout, defined as the ratio between the SD and the
mean of the output interspike interval. This is a measure of the variability
of the output trains, which is 0 for purely periodic trains, equals 1 for
Poisson inputs, and is usually �1 for bursty spike trains. For the case of a
phase-locked stimulus, we will also compute the response vector
strength, VSout, which measures the degree of phase-locking of spike
responses varying between 0, for no temporal alignment, and 1, for per-
fect phase-locking (Goldberg and Brown, 1969).

aIn the numerical analysis, we deal with the variable

Idt�tk� �
1

dt �
kdt

�k
1�dt

Istim�t��dt�,

which is the integrated current over the kth bin of length dt � 1 ms. Thus, when numerically computing the mean
or the SD of the current, or when plotting traces, we will inevitably use Idt( t).

bFor the periodic stimulus (Fig. 2 D), �I captures both the input stochasticity and the variations of the current
produced by its temporal modulation.
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Parameter values
Unless specified otherwise, we will use the fol-
lowing parameter values: integrate-and-fire
model, EL � 0 mV, Cm � 300 pF, �m � Cm/gL �
10 ms, �ref � 2 ms, � � 15–9 mV, H � 10 – 6
mV; synaptic model, �v /N0 � 600 ms, U �
0.75, J/Cm � 0.25 mV, N0 � 1– 8; background,
�E � 3.7 spikes/ms, �I � 1.2 spikes/ms, JE/Cm �
0.25 mV, JI/Cm � 	0.35 mV. The total number
of synaptic functional contacts N � M equals
2000.

Simulations
Because the synaptic current is made of instan-
taneous pulses of current formally modeled as
Dirac � functions (Eq. 7), the evolution of the
potential (Eq. 11) can be solved in the simula-
tions exactly [i.e., the numerical method used
was not approximative (e.g., Runge-Kutta), but
it was an exact integration]. The response of the
neuron was simulated from three to five trials
of 40 –100 s, obtaining statistical errors for the
output variables of the size of the symbols used
in the plots. All simulations were performed on
a PC running under SUSE Linux. All graphs
were made using the plotting tools Grace and
Xfig.

Results
We will start by introducing the “causal”
relationship that, in our model, exists be-
tween depression and the FDR. It will be
shown that, in this regimen, capturing the
synaptic stochasticity in the model of STD
has an enormous impact on the response
behavior of the target cell. This will be il-
lustrated by probing two different models
of STD with uncorrelated poissonian
stimuli. The response here will serve as a
control condition to compare the response
to correlated stimuli analyzed later. The
number of functional contacts will also be
proved to be very important in shaping the response function.

The fluctuation-driven regimen
One of the most outstanding effects of STD is that the mean
stationary EPSP amplitude decreases with the afferent spike rate
�, behaving as 1/� for large enough presynaptic rate (Abbott et al.,
1997; Tsodyks and Markram, 1997) (Fig. 3A). The mean cur-
rent �I is proportional to the product of the mean EPSP and �
(Eq. 10) and therefore saturates as � increases (Fig. 3B). The average
membrane potential, which can be approximated by �V� � �I/gL, is
also upper bounded and its maximum value is given by the
following:

�V�max �
�max

gL
�

NMJ�m

Cm�v
, (12)

where �max is simply obtained by substituting in Eq. 10 the
rate of releases � Pt by its maximum value, given by the rate at
which vesicles recover, 1/�v. The question now is whether this
upper bound can constrain the cell to be, regardless of the
presynaptic rate, in the so-called “fluctuation-driven regi-
men” (Gerstein and Mandelbrot, 1964; Calvin and Stevens,
1968; Shadlen and Newsome, 1994). In the FDR, the mean

depolarization must be lower than the threshold, a condition
that is formulated as follows:

�V�max � �, (13)

which after substituting �V�max by the expression above can be
reformulated as follows:

N � �
Cm�v

JM�m
. (14)

Assigning some realistic values to the parameters on the right-
hand side allows us to estimate the number of presynaptic
neurons required to violate this inequality. Taking � � 15 mV,
MJ/Cm � 1 mV (which is a representative value of the nonde-
pressed EPSP size), �v � 500 ms, and �m � 10 ms, we obtain
that, if N � 750, the condition given in Eq. 13 is satisfied. We
confirmed this result by going through the same analysis with
a conductance-based LIF model obtaining a boundary of N �
600 (see Appendix). Although the total number of afferent
connections received by a cortical neuron exceeds these fig-
ures (Braitenberg and Schüz, 1991), estimations of the size of
what can be considered a population of neurons encoding the

Figure 3. Comparison between the stochastic and the deterministic models of STD. The two models (stochastic, squares;
deterministic, circles) are compared in the case of asynchronous Poisson input spike trains. A, The transmission probability, which
represents the mean normalized EPSP size in the deterministic model, decreases for high enough � as 1/�. B, The mean current,
which coincides for both depression models, saturates below �I (dotted line), implying an FDR. C, The current deviation behaves
differently in each model: in the deterministic model, it shows a non-monotonic behavior and takes substantially lower values
than in the stochastic model in which it is approximately monotonic. D, This affects significantly the value of �out, which
is much smaller for the deterministic model and shows a non-monotonic behavior inherited from �I. D, Inset, �out in the
suprathreshold regimen (the threshold was reduced to � � 7.4 mV), where �I does not determine the response behavior
and the two models give very similar output rates. E, F, Current and the potential traces for the stochastic (E) and the
deterministic (F ) models when � � 60 Hz. The current traces at this high input rate reveal that, whereas the large current
fluctuations produced by the stochastic model enable V(t) to reach threshold, the deterministic model does not generate
large enough fluctuations, and the response is smaller. The current histograms are plotted on the right. The value of �I is
superimposed on the current traces (solid line) together with the values �I � �I (dashed lines). � is represented by the
dotted line, whereas �I is indicated in the histograms by arrowheads. Parameters are as follows: stochastic model, M � 5,
N0 � 1; deterministic model, J/Cm � 1.25 mV, M � 1; all models, � � 0.4, � � 9.3 mV (for plots A–D), 7 mV (D, inset),
and 10.5 mV (for the traces), and H � 6 mV. The background activity was not included. The rest of the parameters are as
specified in Materials and Methods. spk/sec, Spikes/second.
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same information fall below this number [e.g., around a hun-
dred (Shadlen and Newsome, 1998)].c

Depression therefore implies that a neuron receiving an
input signal from a few hundred cells will work in the FDR.
This is true in the stationary state, that is, after the short tran-
sient interval required to depress the synapses. In the FDR,
current fluctuations play a fundamental role in driving the
response of the neuron, because the membrane potential
reaches � only on the arrival of positive fluctuations of I(t).
That is why their correct modeling takes special importance in
this regimen.

Current fluctuations in the deterministic and stochastic
models of STD
To show the relevance of the stochastic nature of the synaptic
transmission, we compare the current deviation and the neuron
response produced by two models of STD, namely, the stochastic
model of vesicle turnover described in Materials and Methods
and the widely used deterministic model of “averaged” synaptic
responses (Abbott et al., 1997; Tsodyks and Markram, 1997).
When N0 � 1, both models give, by construction, the same mean
current (Fig. 3B), but they lead to current fluctuations of different
magnitude and different behavior as a function of the rate (Fig.
3C). Because the deterministic model was proposed to fit synap-
tic responses averaged over trials (Tsodyks and Markram, 1997;
Varela et al., 1997), it lacks the trial-to-trial variability observed in
synaptic transmission (Stevens and Wang, 1994), and therefore
the fluctuations it generates are smaller than those produced by
the stochastic model, particularly at high input rates (Fig. 3C).
Specifically, in the stochastic model, a smaller probability of
transmission, Pt, increases the fraction of failure spikes. In con-
trast, Pt equals the normalized mean EPSC in the deterministic
model, and its decrease produces just smaller PSC amplitudes
(something that contradicts the quantal hypothesis) without fil-
tering any of the incoming spikes. At very large rates, the current
in the deterministic model is composed of a series of PSCs of
negligible size, closely spaced in time. This synaptic current has
almost no fluctuations and resembles, in the limit of large input
rate, an injection of constant current. This subtle difference
makes �I grow monotonically with � toward its saturation value
in the stochastic model, whereas in the deterministic model �I

shows a non-monotonic behavior tending to 0 at high input rates
(Fig. 3C).

Because the target cell is in the FDR, the amplitude of the
afferent fluctuations mainly determines its response function.
Thus, �out is much larger and saturates monotonically in the
stochastic model, whereas in the deterministic model it inherits
the non-monotonic behavior of �I and vanishes at high rates (Fig.
3D). Figure 3, E and F, illustrates traces generated by both models
at � � 60 Hz. Both produce the same mean depolarization, but
the smaller magnitude of the current fluctuations in the deter-
ministic model generates smaller fluctuations of the potential,
making the neuron fire at a lower rate.

If the mean current saturates above threshold (i.e., the su-
prathreshold regimen), the two models give similar rates, because
in this case the response is basically determined by the mean
current drive and the fluctuations play a secondary role (Fig. 3D,
inset).

The stochastic model seems, in summary, a more appropriate

model to investigate the response in the FDR, given that the de-
terministic model leads to the artifact of vanishing fluctuations at
high �, an effect that would contaminate the analysis performed
in what follows.

Effect of the synaptic parameters M and N0 on the
neuron response
We turn now to investigate the relevance of the size of the RP (N0)
and the number of functional contacts per presynaptic neuron
(M) in the response to uncorrelated stimuli. Studying the re-
sponse produced by synapses with several functional contacts will
serve us to understand the impact of spike synchrony analyzed
later. This happens because multiple functional contacts trivially
give rise to the synchronous release of vesicles, which will pro-
duce the same effect qualitatively as a synchronous stimulus.

The size of the RP is a controversial issue. Different experi-
ments in hippocampal slices have led to different values: whereas
Stevens and collaborators report values between 2 and 20 with
mean �N0� �5 (Dobrunz and Stevens, 1997; Murthy et al., 2001),
other groups have reported that the immediately releasable pool,
or “primed” pool, has a size close to 1 (Hanse and Gustafsson,
2001). Theoretical analysis of paired-pulse depression in cortical
neurons has reached the same conclusion, namely, that in some
synapses there must be a last “bottleneck” pool that only holds
around one vesicle (Matveev and Wang, 2000b).d For a fair com-
parison of synapses with different N0, the recovery time was ad-
justed to keep the ratio �v/N0 fixed (see Materials and Methods)
(Fig. 1C).

Regarding the number of common contacts, it is a widely
variable quantity across brain areas. An average number from the
somatosensory cortex lies around 5 for pyramidal cells (Markram
et al., 1997; Silver et al., 2003) and 17 for GABAergic interneurons
(Gupta et al., 2000). Among noncortical synapses, one can find
examples in which M rises up to 15–20 in the spinal cord (Walms-
ley, 1991), 20 in the cerebellum (Pedroarena and Schwarz, 2003),
and �1000 in the famous end-bulbs of Held (Held, 1893;
Schneggenburger et al., 2002). For a fair comparison of cases with
different M values in the following analysis, the total number of
contacts, N � M, is kept fixed (Fig. 1A,B).

The comparison of the transmission probability (Fig. 4A) and
the mean number of readily releasable vesicles (Fig. 4B) for two
different RP sizes (N0 � 1 and N0 � 4) reveals that these two
synaptic types differ only at low frequencies (� � 15 Hz). In this
range, synapses with larger N0 have a larger Pt and, on average,
have more vesicles ready for release. However, as the input rate
increases, more spikes reach the synapses per unit time and the
RP becomes more depleted. Both the transmission probability
and the mean number of releasable vesicles tend to 0 as 1/�
(dashed lines in Fig. 4A,B represent the fit 1/�). At these high
rates, synapses with different N0 are indistinguishable. In other
words, a synapse with N0 � 1 behaves as a synapse with a single
vesicle RP, but with a recovery time constant �v/N0 (Matveev and
Wang, 2000a; de la Rocha, 2003). This can be understood by
noting that, at high input rates, the RP is normally empty and
sometimes has at most one docked vesicle. Thus, if for instance
N0 � 2, after complete depletion of the RP, the replenishment of
one vesicle can come from the recovery of any of the two vacan-

cAn interesting example to look at is the average number of thalamocortical connections a cortical cell receives.
Models of V1 usually consider between 15 and 200 connections (Chance et al., 1998; Troyer et al., 1998; Shelley et al.,
2002), whereas in the barrel cortex estimates are in the order of a few tens (Kyriazi and Simons, 1993).

dThe particular case N0 � 1 also has a desirable property: in this situation, the stochastic model is directly consistent
with the phenomenological deterministic model based on “averaged responses” (Fuhrmann et al., 2002). In other
words, averaging the synaptic responses produced by the stochastic model with N0 � 1 over repetitions of the same
presynaptic spike train yields mean EPSP amplitudes that are well fitted with the deterministic model.
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cies, so that it can be viewed as a single vesicle process with a twice
as large recovery rate.

The mean current produced by synapses with N0 � 1 and
N0 � 4 is plotted in Figure 4C. In both cases, vesicle depletion
produces the saturation of �I at high input rates. Because, as it
was just shown, at high rates these synaptic types are indistin-
guishable, it is expected that they produce the same current sta-
tistics. Before the mean saturates, synapses with larger N0 gener-
ate a larger �I because the transmission probability is larger. With
the parameters chosen here, �I saturates below current threshold
(Fig. 4C, dotted line), which implies that the target cell works in
the FDR at all input rates.

The current SD is non-monotonic
As opposed to the mean current, which depends only on the total
number of functional contacts, N � M, current fluctuations are
very sensitive to the particular value of M (Fig. 4D,E): when the
synaptic connections have several common contacts, the vari-
ability of the current is larger because the PSCs are made of 1, or
2, . . . , or M quantum events. In contrast, if M � 1, the PSCs are
always unitary and only the random trigger of two simultaneous
releases by different presynaptic cells may occasionally generate
larger PSCs. This can be seen in Figure 4, D and E, where �I is
plotted for several M values (for N0 � 1 and N0 � 4, respectively):

at low and moderate input rates, M sets the gain of the fluctua-
tions so that larger M values produce larger I values. However, as
� increases, �I converges to a value independent of M. This as-
ymptotic convergence, in combination with the increase at low
rates, endows �I with a non-monotonic behavior when M � 1,
regardless of the value of N0.

Why does the effect of having M � 1 vanish at high input
rates? Figure 5 illustrates the explanation: top and bottom dia-
grams illustrate the sequence of releases (bars) and recovery in-
tervals (horizontal bands) produced at five common contacts by
a sequence of afferent spikes (top bars) reaching the presynaptic
terminals at � � 2 Hz (diagram A) and � � 40 Hz (diagram B).
Because N0 � 1, when a spike arrives during the recovery interval
of a contact, it produces a failure (dots) and otherwise it triggers
a release (i.e., U � 1). At the arrival of the first spike, the five
contacts are fully recovered, and the first AP triggers the synchro-
nous release of five vesicles. In the case in which � � 2 Hz, each
contact has time to recover before the next spike arrives, and thus
the synchrony in the releases across the M common contacts is
maintained. The PSCs generated at this input rate are large, be-
cause they are normally composed of three or four quantum
events, and therefore they generate large current fluctuations. In
contrast, when � � 40 Hz, the second AP arriving at the presyn-
aptic terminal finds all contacts depleted and the next “unitary”
release does not occur until one contact is eventually replenished.
Because the replenishment of vesicles occurs independently at
each contact, releases occur asynchronously producing mostly
unitary PSCs that give rise to smaller current fluctuations. In
conclusion, at high rates the releases produced at common con-
tacts become effectively asynchronous, because the transmission
probability becomes so small that, on arrival of an AP, at most
one of the contacts succeeds in releasing transmitter.

Non-monotonic behavior of the neuron response
Because the target cell has been set in the FDR, this non-
monotonic modulation of the current fluctuations has a great
impact on the output firing rate (Fig. 4F,G): the response func-
tion inherits the non-monotonic behavior of �I and converges at
high input rates to a value independent of the number of func-
tional contacts. Because M sets the gain of the fluctuations for low
and moderate values of �, it consequently also sets the gain of the
response rate.

The non-monotonicity is more prominent for synapses with
N0 � 4 than for those with N0 � 1. This occurs mainly as a
consequence of the larger mean current for N0 � 4 (Fig. 4C) but
also because the magnitude of the current fluctuations is a little
larger in that case (Fig. 4, compare D, E). Figure 4F, inset, shows
the maximum output rate plotted versus M for those two cases:
one sees that N0 sets the sensitivity of the response to variations of
the gain parameter M. For this reason, the non-monotonic shape
of �out appears clearly for all M � 4 when N0 � 4, whereas a much
larger value of M (M � 9) is required when N0 � 1.

A graphical explanation of why the response function acquires
a resonant shape can be viewed in Figure 6. The figure shows the
afferent spikes (top rasters), transmitter releases (bottom ras-
ters), synaptic current (top traces), and membrane potential
(bottom traces) produced by a presynaptic population with a
rather large M � 16, which serves to illustrate the effect more
clearly. These variables were monitored at low (� � 5 Hz) and
high (� � 100 Hz) input rate. At � � 5 Hz, the fewer APs per time
unit trigger synchronous releases at common contacts (Fig. 6A,
bottom raster); because we set N0 � 4, these synchronous releases
were approximately preserved even in the case that incoming

Figure 4. Impact of the RP size N0 and the number of common contacts M on the response.
A, B, The transmission probability (A) and the mean number of ready-releasable vesicles (B) of
synapses with N0 � 1 (open) and 4 (solid) is plotted against �. Regardless of the value of N0,
both quantities follow the same 1/� dependence at high � (dashed lines are the fit 1/�). C, The
mean current, which is independent of M, saturates to the same value for both N0 values. Before
saturation, it is larger in the case N0 � 4 because of the larger value of Pt . The dotted line
represents �I and indicates that the cell is in the FDR. D, E, The current deviation is plotted for
several values of M in the two cases N0 � 1 (D) and N0 � 4 (E). In both cases, synapses with
more common contacts generate a larger �I, but at high rates the deviation converges to a
common value regardless of the number M. F, G, The response firing rate acquires a resonant
behavior when the number of functional contacts is large enough (for M 
 5 if N0 � 4 and for
M 
 10 if N0 � 1). The asymptotic value of �out does not vary with M, meaning that at a large
input rate, different M values give rise to the same response. F, inset, shows the maximum �out

versus M. The dashed line indicates the asymptotic value of �out (i.e., the �out obtained when
�3�). Parameters are as in Figure 3A–D except that � � 10.6 mV and H � 9 mV. Back-
ground is not included. Notice the log scale used in the horizontal axes. spk/sec, Spikes/second.
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spikes came closely spaced in time (Fig. 6C). Because of the large
PSCs produced, the potential could reach threshold very fre-
quently, giving rise to a large spiking response. At � � 100 Hz, the
structure of common contacts is not perceptible in the release
raster (Fig. 6B, bottom raster). The PSCs generated, which are

now more, are mostly unitary and the
fluctuations of the current are severely re-
duced. The potential, which has a mean
that now lies closer to the threshold, does
not fluctuate in the strong manner that it
did at low input rate, and therefore it
reaches � fewer times. When the input rate
is very low (� � 2 Hz), although the mag-
nitude of the PSCs can be very large, they
are so few that the output rate is also low
(traces not shown).

Synchronous stimulus
We will now discuss a correlated stimulus
in which the presynaptic neurons fire syn-
chronous Poisson trains with the same
constant rate � and a correlation coeffi-
cient � (see Materials and Methods). We
will show that the impact of synchrony
across afferent APs resembles very much
that of synchronous releases produced by
common synaptic contacts, examined
above.

As a general rule, modifying the corre-
lations between presynaptic trains, while
keeping their rate fixed, does not alter the
“mean” synaptic current but may change
the current deviation substantially. As a
consequence, any information conveyed
by the spatiotemporal correlations of the
input is transmitted by the fluctuations of
the current but not by the mean drive. For
reliable static synapses, synchronizing the
afferent spikes increases the probability of
synchronous releases, which give rise to
PSPs composed of several unitary events.
This increases the magnitude of the fluc-
tuations (Shadlen and Newsome, 1998;
Salinas and Sejnowski, 2000; Moreno et
al., 2002b), something that generally in-
creases the output rate, particularly in the
FDR (Salinas and Sejnowski, 2000;
Moreno et al., 2002b).e For synapses
showing STD, synchrony increases �I too,
although in a nonuniform way with � (Fig.
7A): for low rates, the increase is larger
than for high rates generating a non-
monotonic behavior of �I as a function of
� (Moreno et al., 2002a). This occurs be-
cause the impact of synchrony is weighted
by the transmission probability Pt, which
decreases with � (Fig. 3A) (J. de la Rocha,
R. Moreno-Bote, and N. Parga, unpub-
lished observations). In other words, at
high rates, the input synchrony does not
affect the response, because it becomes
rather unlikely that the simultaneous ar-
rival of APs triggers the corresponding

synchronous releases.

eDepending on the ratio between the threshold and the quantum PSP size, the output rate can be a non-monotonic
function of �, exhibiting a maximum and eventually decreasing with the degree of correlation (Bernander et al.,
1994; Murthy and Fetz, 1994; Kuhn et al., 2003).

Figure 5. Desynchronization of releases produced at M common functional contacts. A, B, In each diagram, top bars represent
the input spike train for �� 2 and 40 Hz, respectively. Below, each row represents the releases (bars) produced by those spikes in
each of the M � 5 synaptic contacts established by a presynaptic cell. The releases are followed by the vesicle recovery intervals
(horizontal boxes), something that occurs randomly and independently across contacts. During these intervals, spikes fail to
trigger any response (solid dots); otherwise they produce a release (i.e., we set N0 �1 and U�1). It is clear that, at low rates (��
2 in A), the releases occurring at the common contacts are well synchronized, whereas, at higher rates (�� 40 Hz in B), they occur
almost independently. Note the different time scale of each diagram.

Figure 6. Current and potential traces produced by synapses with many common contacts. In A and B, the rasters represent
spikes from the presynaptic population (top) and releases triggered by six presynaptic cells (bottom). The grid dashed lines group
together releases from common contacts. The bottom traces show the synaptic current (top) and the membrane potential (bot-
tom) of the postsynaptic cell. The dotted line represents the threshold. A and B represent low and high input rates, respectively. A,
Because M � 16, the releases triggered by common contacts look like vertical bars when they occur synchronously at low input
rate. Releases inside the circle are redrawn at a larger scale in C. Synchronous releases generate very large fluctuations of the
synaptic current, which make the membrane potential fluctuate strongly, giving rise to a large output rate. B, When the input rate
is � � 100 Hz, releases from common contacts do not show any synchronous structure and produce current with a smaller
variability. The membrane potential shows smaller fluctuations, and because the target cell operates in the FDR, they give rise to
a lower output rate. Parameters are M � 16 and N0 � 4, and the rest are as in Figure 3A–D.
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The non-monotonic behavior of �I is
again inherited by �out, which displays a
tuned dependence on � with a “preferred”
presynaptic rate, �p. The preferred rate de-
pends on the synaptic parameters �v, U,
and N0 (data not shown). However, it re-
mains almost unaltered to variations of �
within a wide range of values of the corre-
lation coefficient (� � 0.01– 0.1 for N0 �
1). Furthermore, � sets the amplitude of
the tuning curve acting as a “gain control
parameter,” for low and moderate input
rates, within the range � � 0.01– 0.06 (for
N0 � 1, see Fig. 7B). The maximum re-
sponse initially follows an approximately
linear relationship with � and later satu-
rates (Fig. 7C).

In Figure 7D, we lowered the threshold
while keeping the rest of the parameters
fixed, so that the cell sits in the suprath-
reshold regimen. As expected, the re-
sponse no longer has a resonant shape but
increases monotonically for all correlation
values. Increasing the degree of synchrony
increases the rate, especially at low � at
which �I � �I (i.e., the cell is still in the
FDR), and depression is not very promi-
nent. This change, however, does not rep-
resent an increase of the gain, as it approx-
imately does in the subthreshold regimen
(Fig. 7B). Hereafter, we will therefore re-
strict the analysis to the FDR and will
come back to the general case in
Discussion.

The gain modulation observed in the
FDR and attributable to the afferent spike
correlations has important consequences
in the transmission of information carried
by the rate � to the postsynaptic cell. In the
absence of synchrony, �I is barely modu-
lated by the input rate (Fig. 7A, full cir-
cles), so that the information can be trans-
mitted by �I only in the range of low and
moderate � values, because at high presyn-
aptic rates, �I undergoes very little modu-
lation (Fig. 7A, solid line). Synchronizing
the afferent APs acts as a gain for �I (Fig.
7A), which because of depression may ac-
quire a prominent non-monotonic behav-
ior. Thus, when the mean current is saturated, the current fluc-
tuations become the main carrier of information, enabling the
modulation of the response (1) within a larger dynamical range of
the response and (2) for a wider range of � (Fig. 7A,B). For
instance, for � � 0.05, the response undergoes a �10 Hz variation
in the range � � 20 –100 Hz (Fig. 7B), whereas �I barely varies in
this range (Fig. 7A, solid line).

Figure 7E shows traces of the current and the membrane po-
tential at three presynaptic rates, namely, at 1 Hz, at the preferred
frequency �p � 9 Hz, and at 80 Hz, for � � 0.04. Apart from the
synchronized stimulus, the target cell receives a constant back-
ground activity (see Materials and Methods). As the rate in-
creases, the positive fluctuations in the current (produced by
synchronous releases) occur more often but are smaller, and the

mean current increases, taking the mean depolarization closer to
the threshold. Therefore, the neuron responds maximally at �p �
9 Hz, because the current reaches a compromise between large
fluctuations and large mean (note that the preferred frequency in
Fig. 7B does not produce the maximal fluctuations in Fig. 7A).
The histograms of the current at these three rate values are shown
in Figure 7, F–H, respectively (thick lines), along with the asyn-
chronous case, � � 0 (thin lines), drawn for comparison. At each
frequency, both histograms have the same mean (dotted lines),
which always falls below �I (arrowheads in the figure), but at � �
1 and 9 Hz they differ substantially (Fig. 7F,G). In these two
cases, synchronous releases skew the distribution and increase its
deviation, something that increases the output rate significantly.
At higher rate (� � 80 Hz), the skewness, which is the signature of

Figure 7. Effect of STD using a synchronous stimulus. The synaptic current and the neuron response are analyzed when the
presynaptic Poisson trains are synchronized with correlation coefficient � (Fig. 2 B). A, B, Current deviation �I and output rate
versus � for several degrees of synchrony. Synchrony endows the current fluctuations with a resonant behavior, which is inherited
by the response rate. The degree of synchrony � has almost no effect on the position of the maximum, but it finely sets the gain of
the response function. The mean current �I is also shown in A (solid line). C, Maximum response versus �. Dashed line indicates the
asymptotic value of �out. D, The threshold was lowered to � � 11 mV to analyze the response in the suprathreshold regimen. E,
Current (top) and potential (bottom) traces for three input frequencies with ��0.04. Horizontal dotted line represents threshold.
F–H, Current histograms computed from the traces shown in E (thick lines), along with histograms for the �� 0 case (thin lines).
F, Inset, A magnification in the y-axis of the same plot in which the tail cannot be perceived. The vertical dotted line represents �I,
and the arrowheads represent the position of �I. Parameters are as follows: � � 15 mV, H � 10 mV, M � 5, and N0 � 1. White
and black arrowheads in A signal �I for the subthreshold and suprathreshold regimens. Background is included. The rest are as in
Figure 3A–D. spk/sec, Spikes/second.

8424 • J. Neurosci., September 14, 2005 • 25(37):8416 – 8431 de la Rocha and Parga • STD Causes a Non-Monotonic Response



synchronous releases, disappears and the two distributions be-
come similar.

To better understand the consequences that synchrony and
STD may have in the transmission of information, we went be-
yond the analysis of the output rate and studied higher-order
statistics of the response. In this direction, we performed a sim-
ulation of two target neurons receiving APs from nonoverlapping
subpopulations, which are part of the same population of syn-
chronously firing cells. We then computed the output correlation
coefficient of the target pair, �out, which because of the afferent
correlations is different from 0. The observed general trend is
that, as synapses depress with an increasing afferent rate, the
correlation coefficient �out drops off to 0 (data not shown). This is
completely consistent with what we just saw, namely, that as
synapses become more unreliable the impact of input synchrony
vanishes, affecting the output firing rate but also weakening the
ability of the presynaptic population to generate additional syn-
chrony in the output ensemble of cells. We will go over the im-
plications of this result in Discussion.

To summarize, the impact of synchronized incoming spikes is
very similar to that of synaptic connections with several common
contacts, but the functional implications are very different, be-
cause � can be a dynamical variable, whereas M was a fixed pa-
rameter. Synchronized stimuli increase the current fluctuation
gain at low and moderate input rates, something that enhances
the gain of the non-monotonic response function.

Autocorrelated stimulus
Neurons in cortical and subcortical areas often display positive
autocorrelations in their spike times (Bair et al., 1994; Dan et al.,
1996; Baddeley et al., 1997; Goldman et al., 2002), meaning that
the emission of a spike by a presynaptic neuron increases the

probability of observing a new discharge
of the same neuron over a short time in-
terval (e.g., �10 –20 ms). In other words,
spikes are not homogeneously spread in
time, but they tend to come in clusters. A
typical case of short-range positive auto-
correlations is the emission of bursts ob-
served in many different areas (Lisman,
1997; Sherman, 2001; Krahe and Gabbi-
ani, 2004). We used a particular instance
of input statistics that produces spike
trains with short-range positive exponen-
tial autocorrelations (see Materials and
Methods). The magnitude of the autocor-
relations is set up by a parameter 	, which
yields a Poisson process for 	 � 0 and
trains with a bursty temporal structure for
	 
 1.5 (“bursts” composed of a variable
number of spikes with mean �4 –5). Ex-
amples of these spike trains for several val-
ues of 	 can be seen in Figure 2C, inset.

For nondepressing synapses, positive
autocorrelations have the same qualitative
effect as spatial cross-correlations
(Moreno et al., 2002b): the impact pro-
duced by incoming clusters of APs does
not depend on whether the spikes within
the cluster come from the same or from
different presynaptic cells.f This simple
principle seems not to be applicable when
synaptic transmission depends on the pre-

synaptic activity. With facilitating synapses, for instance, a cluster
of spikes coming from the same or from different cells, would not
produce the same depolarization: only if they are emitted by the
same presynaptic neuron, the synapse facilitates and gives rise to
a larger depolarization. However, we will see that, under the
choice of certain parameter values of the stochastic model, bursts
of spikes may produce qualitatively the same effect as the syn-
chronous activity considered before, although with a quantita-
tively smaller overall impact.

Clustering the incoming spikes can increase the fluctuations
of the synaptic current, because it may induce the temporal sum-
mation of consecutive PSCs elicited by the spikes within the
burst. This increase of the fluctuations is analyzed at the level of
the release statistics in Figure 8, where we compare two inputs
with the same rate but different correlation magnitudes: 	 � 0
(Poisson) and 	 � 1.5 (bursts). Figure 8, A and B, shows the
number of spikes falling in bins of size �m versus time.g As ex-
pected, the correlated case produces large positive fluctuations
because of the existence of bursts and the uncorrelated case looks
very homogeneous, producing one or no spikes per bin and only
occasionally two. Figure 8, C and D, depicts the number of “re-
leases” produced by those spike trains when the RP size is N0 � 4
and M � 5. The bursty input still produces larger fluctuations
than the Poisson stimulus. Notice that, because every AP can
produce from zero up to five releases, the variability of the re-
leases seems amplified with respect to that of the spike trains.

Figure 8, E and F, also shows a sequence of releases but for

fThis simple idea makes sense only if the spatial dimension of the postsynaptic cell can be ignored.
gBin size was taken equal to �m, because this is the longest time scale at which fluctuations in the number of spikes
are perceived by the target model neuron (Moreno et al., 2002b). Smaller bin sizes (e.g., 1 ms) would not capture the
clustered structure of the input.

Figure 8. Autocorrelated spike trains. Simulation examples of fluctuations produced in the spike count (A, B) and release count
(C, D, N0 � 4; E, F, N0 � 1) by a single spike train with and without autocorrelations (left and right panels, respectively) with a
fixed rate of � � 5 Hz. The spike count (or release count) per bin is plotted versus time on the left axes. Monotonically increasing
lines represent the cumulative spike count (or release count) on the right axes. A, B, The Poisson input normally generates a single
spike per bin and occasionally two. In contrast, the case of 	� 1.5 produces large positive fluctuations in the spike count because
of the presence of bursts. C–F, These large spike count fluctuations are transmitted to the release count only if N0 �4 (D), and they
are essentially filtered if N0 � 1 (F ). When M � 5, the release count fluctuations are amplified. Concerning the total release count
produced, it can be observed that the train with autocorrelations elicits fewer releases than the Poisson train regardless of N0

(compare D with C, and F with E). Bin size dt � 10 ms.
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synapses with N0 � 1. In contrast to the case N0 � 4, the large
fluctuations of the bursty input have been severely filtered out so
that now both bursty and Poisson inputs produce fluctuations of
similar magnitude. This difference can be easily understood:
bursts produced after a long silent interval might find the RP fully
replenished. Then, if N0 � 1, the burst can release at most one
vesicle per contact, whereas if N0 � 1, the same burst can release
up to N0 vesicles. This explains that, only in the case N0 � 1 and
when preceded by a long enough silent interval, a cluster of APs
can be faithfully translated into a significant fluctuation in the
number of releases. At high rates, the required long silent periods
never occur. The model with N0 � 1 becomes effectively a model
with N0 � 1 (as explained previously) (Fig. 4B), and the fluctu-
ations coming from the bursts are again filtered.

In addition, clustering the incoming spikes decreases the
mean release count, because a larger fraction of APs find the
synapses depleted. The monotonically increasing lines in Figure 8
represent the cumulative number of events (spikes or releases)
produced by Poisson and bursty inputs (scale on the right vertical
axes). Because both stimuli have the same rate (� � 5 Hz), the
total number of spikes is about the same (�200 spikes) (Fig.
8A,B). However, the total release count is smaller for the bursty
stimulus regardless of the value of N0 (Fig. 8C–F).

Positive input autocorrelations, therefore, may alter the re-
sponse of the cell in opposite directions depending on the relative
impact of these two effects, namely (1) the decrease of the mean
release count which implies a decrease of �I and occurs for any
size N0 (Fig. 9A,B); (2) the increase of the fluctuation of the
release count, which implies an increase of �I and crucially de-
pends on the value of N0: when N0 � 1 the bursty stimulus gen-
erates fluctuations with a similar overall magnitude as the Pois-
son stimulus (Fig. 9C), whereas if N0 � 1, �I increases
substantially at low and intermediate input rates (Fig. 9D). As a
consequence, only when N0 � 1 (and M 
 5)h, the increase in �I

yields to an increase of �out with 	, in that way enhancing the
resonant behavior obtained previously with Poisson input (Fig.
9F). If N0 � 1, it is the decrease in �I that dictates the decrease of
the response (Fig. 9E). The behavior at high input rate is ex-
pected: synapses saturate and, for any 	, both �I and �I (and in
turn �out) converge to the value given by the uncorrelated
stimulus.

Figure 9, G and H, shows the response CVout for the two cases
N0 � 1 and N0 � 4. As explained, when N0 � 1, autocorrelations
are severely filtered so that the CVout remains unaffected when 	
is increased. In contrast, when N0 � 4, bursty trains produce
slightly larger CVout values if the synapses are not very depressed,
which in this example means � � 30 Hz. Figure 9H, inset, shows
this sensitivity of the CVout to 	 at two values of the input rate,
� � 10 and 40 Hz. Although, for � �30 Hz, bursts of spikes
increase CVout, the impact is rather small if one considers, for
instance, that autocorrelated trains with 	 � 1.5 have themselves
an input CV � 2 and produce a maximum CVout � 1.2.

Spike and release rasters together with current and potential
traces neatly illustrate this effect (Fig. 10). Setting M � 5 for both
types of synapse, a Poisson and a bursty stimulus were compared
at a moderate input rate, � � 5 Hz. When N0 � 1, the bursts of
spikes are filtered by depletion of the synapses, a fact evident in
the nonbursty structure of the raster of releases compared with
the corresponding raster of autocorrelated spikes (Fig. 10B, bot-

tom and top rasters). Because of this efficient filtering of bursts,
fewer releases are triggered in comparison with the Poisson case
(Fig. 10A,B, compare bottom rasters) and the current trace
shows a reduction of its mean with barely any variation in the
fluctuations (Fig. 10A,B, compare top traces). As a result, the
response firing rate is smaller for the bursty stimulus than for the
Poisson input (Fig. 10A,B, bottom traces). In contrast, the exam-
ple with N0 � 4 shows that an afferent burst does usually elicit
several consecutive releases (a thinned version of the original
spike burst) (Fig. 10D, bottom raster). This leads to an increase of
the current fluctuations that, despite the decrease of �I, yields an
increase of the response firing rate (Fig. 10C,D, traces).

Phase-locked spike trains
We saw that, in the saturation regimen, synaptic depression may
filter out the input synchrony between presynaptic trains and the
positive autocorrelations of individual trains. We now show that
this effect also occurs when cross-correlations are generated by a
common drive. With nondepressing synapses, “signal-
correlations” increase the output rate (Salinas and Sejnowski,

hThe number of common contacts turns out to be a crucial parameter as well. Unless M 
 5, the increase �I

produced by the autocorrelations is too little to overcome the decrease in �I and, including autocorrelation, leads to
an decrease in the response even in the case N0 � 1 (data not shown).

Figure 9. Impact of autocorrelated stimuli using synapses with different N0. The response to
uncorrelated (	 � 0) and autocorrelated stimuli (	 � 1.5) is analyzed for M � 5 and two
values of the RP size: N0 � 1 (left) and N0 � 4 (right). A, B, The bursty stimulus produces a
smaller �I in both cases. The dotted line shows �I. C, D, The impact of autocorrelations in �I is
different in each type of synapse: for N0 � 1, bursts do not increase the overall magnitude of the
fluctuations (C). In contrast, with N0 � 4, the autocorrelations have a big impact, increasing �I,
because spike bursts can trigger release bursts. At high �, autocorrelations have no effect on
either �I or �I. E, F, As a consequence, if N0 � 4, autocorrelations enhance the resonant
response rate (F ), whereas if N0 � 1, the response decreases slightly (E). Dashed lines indicate
the asymptotic value of �out. F, Inset, Maximum �out versus 	 for N0 � 4. G, H, The response
CVout shows a slight increase with the input autocorrelations only if N0 � 4 and � � 30 Hz. H,
Inset, CVout versus 	 for N0 � 4 at � � 10 (
) and 40 Hz (�). Parameters are as follows: � �
10.6 mV, H � 9 mV, dt � 10 ms. The rest are as in Figure 3A–D. Legend in C applies to all of the
plots. spk/sec, Spikes/second.
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2000) (but see also Grande et al., 2004), which happens just be-
cause a coordinated population of neurons can produce larger
depolarizations than a population of independent neurons. Let
us then consider a simple configuration in which each presynap-
tic neuron fires, locked to a periodic signal of frequency f, one
spike per cycle. The precision of the spike timing is limited by a
fixed Gaussian jitter of SD 
 (for details, see Materials and
Methods).

Figure 11 shows the response of the target neuron as a func-
tion of the oscillation frequency for four values of 
 along with a
case in which each cell fires phase-locked to the same signal but at
a different phase (incoherent mode). As expected, coordinating
the firing across afferent trains in a coherent manner gives a larger
response, but only for low and intermediate input frequencies. As
with the two previous stimuli, in the coherent condition, �out

shows a resonant behavior, with a preferred frequency fp (Fig.
11A). Beyond fp, responses decrease sharply until a critical value
fc is reached (e.g., fc � 23 Hz for 
 � 10 ms), at which the response
coincides with that of the incoherent case. Beyond fc, the output
rate in the two modes are indistinguishable.

Figure 11B illustrates the input (dashed lines, VSin) and out-
put (symbols, VSout) vector strengths, a measure that quantifies

between 0 and 1 the precision of the
phase-locking of the spikes. Because the
parameter 
 is held constant as f varies,
the jitter relative to the cycle length in-
creases with the frequency, except for the
case 
 � 0 ms. This produces the mono-
tonic decrease of VSin if 
 � 0. Remark-
ably, in these three cases, VSout is always
larger than VSin, although eventually it
also drops to 0 as the frequency increases.

The non-monotonic behavior of the
response function occurs because, for de-
pressing synapses, Pt decreases with f so
that releases in a given synaptic contact
occur for a smaller fraction of cycles, a fact
that decreases the correlations between
the releases across contacts. In addition, if

 � 0, correlations become weaker, be-
cause the relative jitter increases. For f � fc,
the correlations are so small that they do
not affect the response rate of the cell.
However, the output spikes still carry in-
formation about the input signal, as can be
observed, in that VSout becomes 0 at a fre-
quency significantly higher than fc (Fig.
11B). This is particularly true when 
 � 0,
at which the input vector strength is al-
ways 1, and as a consequence VSout � 1 in
a very large range of f (up to 1 kHz).

Because for non-zero jitter, VSin de-
creases with the frequency, one might be
tempted to attribute the non-monotonic
shape of �out to this characteristic of the
stimulus or to its combined effect with de-
pression. The nonphysiological case 
 � 0
allows us to isolate the effect of depression
from that of the VSin decrease. Because the
non-monotonicity occurs here without
decrease in VSin, it becomes clear that the
resonant effect is solely attributable to de-
pression and that the decrease of VSin only

affects the position of the maximum.
Finally, it is worth mentioning that the resonant effect is still

present in the more general case in which cells fire at every cycle
with a certain probability p � 1 (data not shown).

Generalization of the results
In the present work, we constrained the analysis to “temporally
homogeneous” stimuli. However, it is clear that, in the general
case, the variability of the synaptic current registered from a cell
would have a large contribution from temporal variations of the
afferent signal. In a recent work, we explored the effect of depres-
sion over time-varying signals defined by their instantaneous fir-
ing rate, finding that, if the synapses work in saturation, the time-
varying structure of the input is also severely weakened as it is
converted into a synaptic current (J. de la Rocha and N. Parga,
unpublished observations). This damping of the afferent struc-
ture, which implies a loss of spatiotemporal information, seems
therefore to be a general property on synapses whose transmis-
sion reliability is substantially decreased as the presynaptic activ-
ity increases. This is not an exclusive feature of vesicle depletion;
a number of presynaptic mechanisms also yield a decrease of Pt:
inactivation of release machinery (Hsu et al., 1996), presynaptic

Figure 10. Current and potential traces produced by autocorrelated stimuli using synapses with different N0 values. In A–D, the
rasters represent spikes from the presynaptic population (top) and the releases triggered by successful spikes (bottom). The traces
show the synaptic current (top trace; histograms on the right) and the membrane potential of the postsynaptic cell (bottom trace).
Horizontal lines represent �I (solid), �I � �I (dashed), and threshold potential (dotted). A and C (B, D) represent Poisson
(autocorrelated) stimuli. A, B, If N0 � 1, the spike bursts in the autocorrelated stimulus are not transmitted as bursts of releases,
so that more spikes fail to release transmitter in comparison with noncorrelated input (compare their release rasters). This means
that the autocorrelations lead to a substantial reduction of �I with little variation of �I (see histograms in which thin line is 	 �
0 and thick line is 	 � 2.6). As a consequence, the target cell is less depolarized and its firing rate decreases (see membrane
traces). C, D, In contrast, when N0 � 4, a burst of spikes may trigger a thinned burst of releases, which provokes an increase of the
current fluctuations that, despite the decrease of �I, makes the output rate increase (see membrane traces). Parameters are as
follows: �� 5 Hz, M � 5, 	� 0 (A, C), and 	� 2.6 (B, D). The current was binned using dt � 10 ms. The rest of the parameters
are as in Figure 9.
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inhibition via metabotropic receptors (Davies and Collingridge,
1990; Scanziani et al., 1997), and others (for review, see Zucker
and Regehr, 2002). The non-monotonic behavior in �out is
achieved if Pt decreases at least as 1/�, something observed in the
cases cited above (Matveev and Wang, 2000a) but violated by
synapses showing activity-dependent recovery, that is, when �v

decreases with � (Dittman and Regehr, 1998; Stevens and Wes-
seling, 1998; Wang and Kaczmarek, 1998; Fuhrmann et al., 2004).

If synapses exhibit both depression and facilitation (Thom-
son, 1997; Markram et al., 1998), the resonance is still present
because facilitation does not prevent the synapse from saturating
at high � because of vesicle depletion (de la Rocha et al., 2004).
With facilitation alone, the result would however be very differ-
ent, namely, that only at high input rates, when the synapses are
facilitated, correlations would have a significant impact. The re-
sponse function would no longer be non-monotonic but would
produce superlinear behavior.

We used a somehow detailed model of the presynaptic termi-
nal, but an oversimplified leaky integrate-and-fire neuron model
without neither synaptic conductances nor synaptic filters. How-
ever, preliminary simulations using an LIF model with synaptic
conductances confirm our main results (data not shown). This
occurs because the kind of correlations used here change the
variance of the total current but do not alter the mean total con-
ductance substantially. Furthermore, depression constrains the

increase in the mean total conductance obtained from an increase
in the presynaptic rate. This is attributable to the saturation of the
release rate, which imposes an upper bound on the mean con-
ductance that an ensemble of cells can generate. In other words, a
finite presynaptic population cannot make the effective mem-
brane time constant of a cell increasingly smaller by simply bom-
barding the cell at a higher rate, because synaptic depression pre-
vents it.

Discussion
How does STD transform a neural signal conveyed by the coor-
dinated firing of an ensemble of presynaptic cells? STD leads to
saturation of the transmitter release process as the input rate (�)
increases. This implies (1) the saturation of the mean current (�I)
and (2) the loss of correlations in the afferent spike trains. If the
stimulus has spatiotemporal structure, the combination of these
two effects leads to a non-monotonic response function provided
that the neuron operates in the FDR.

The transformation of neural signals performed by short-
term plasticity has been the focus of many theoretical analyses in
the last years (Abbott et al., 1997; Tsodyks and Markram, 1997;
Chance et al., 1998). Depression based on vesicle depletion makes
the reliability of the synaptic transmission become a function of
the afferent activity. As increasing the number of afferent APs per
time unit depletes the readily releasable pool of vesicles, the trans-
mission probability decreases at high input rate as Pt � 1/� (Ab-
bott et al., 1997; Tsodyks and Markram, 1997; Matveev and
Wang, 2000a). This leads to the saturation of the mean synaptic
current, which becomes independent of the input rate (Eq. 10).
This result seemed to constrain the range of presynaptic rates in
which information could be efficiently encoded to low values of
this rate (Abbott et al., 1997; Tsodyks and Markram, 1997). This
argument, however, ignores that the postsynaptic response is de-
termined not only by the mean synaptic drive but also by the
current fluctuations.

This is particularly true in the FDR, a scenario in which the
mean membrane potential (without spiking) lies below threshold
and only the fluctuations of the current make V(t) reach thresh-
old (Gerstein and Mandelbrot, 1964; Shadlen and Newsome,
1994). This regimen has been usually discussed under the as-
sumption of a “balance” between the excitatory and the inhibi-
tory inputs (Shadlen and Newsome, 1994; van Vreeswijk and
Sompolinsky, 1996). When STD is considered, the saturation of
the mean current below the current threshold puts the target cell
in this regimen, without the need of the balance between excita-
tion and inhibition. This result does not rule out the balance
hypothesis as an important aspect underlying the FDR, but it
proposes a different complementary mechanism by which a cell
may stay in the FDR regardless of the spike rate of the presynaptic
population. Thus, the existence of depression alone would keep a
network of excitatory cells away from having suprathreshold sta-
ble states, and it would set the FDR as the default network regi-
men. Experimentally, one could distinguish which mechanism
underlies the FDR in each case because of their different signa-
tures: whereas a balanced state generally implies a large increase
in the total conductance of the cell (Borg-Graham et al., 1998),
depression upper-bounds this increase (see Results) and its pres-
ence can be better characterized by a decrease in the average EPSP
amplitude (Chung et al., 2002).

The existence of the non-monotonic response has several
computational implications. First, information can be transmit-
ted to the postsynaptic cell by the current fluctuations, even at
high values of the input rate (20 – 80 Hz) at which the mean

Figure 11. Response to phase-locked periodic stimuli. A, The response rate to phase-locked
presynaptic trains (Fig. 2 D) is shown for four different jitter magnitudes. The response of a case
in which the individual phases were randomly chosen (incoherent mode) is represented with
open symbols. The coherent input shows a resonant behavior and becomes indistinguishable
from the incoherent mode for high enough frequencies (beyond the corresponding fc). B, VSout

versus f is shown (symbols) along with the input vector strength (solid, 
 � 10 ms; dashed, 5
ms; dot-dashed, 2.5 ms; and long-dashed, 0 ms). Parameters are as follows: M�5, ��14 mV,
H � 10 mV, N0 � 1. Background is included. spk/sec, Spikes/second.
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synaptic current has saturated previously (Figs. 7A,B; 9B,F). In
addition, the cell displays a response function selective to a cer-
tain range of frequencies as opposed to the classical notion of a
response that increases monotonically with stimulus intensity.
This selectivity can be computationally interesting in sensory ar-
eas where cells are often tuned and respond maximally to certain
stimuli. Whereas the conventional view has been to ascribe re-
sponse tuning properties to solely circuit mechanisms, our results
present a single-cell mechanism, which could cooperate with the
circuitry to establish tuning. In the auditory system, for example,
cortical cells display a non-monotonic behavior as a function of
sound intensity (Phillips and Irvine, 1981; Sutter and Schreiner,
1995), an effect that could be partially replicated with our model
by considering that thalamocortical auditory cells increase their
rate with sound intensity and fire with a certain degree of syn-
chrony. In our non-monotonic response curves, the preferred
rate depends basically on the parameters U, and �v of the synaptic
model (data not shown), which have been found to undergo
long-term plasticity (Markram and Tsodyks, 1996). Such long-
term changes could enable the neurons to modify their tuning
properties.

Whereas depression provides the non-monotonicity, correla-
tions determine the magnitude of this modulation: synchrony,
for instance, generates a gain modulation, without the need of
network interactions (Fig. 7B) [although considering them
would probably sharpen the tuning (Salinas and Abbott, 1996)].
This gives rise to a mechanism of gain control, a phenomenon
with functional consequences that have been widely studied
(Salinas and Thier, 2000).

Our results also have important implications on the stability
of recurrent circuits. Differences in the levels of depression ob-
served in cortical excitatory and inhibitory synapses have been
proposed previously to be a mechanism promoting stability (Ga-
larreta and Hestrin, 1998; Varela et al., 1999). Our findings add
two different elements to the stability analysis. First, a non-
monotonic response represents a highly efficient way to maintain
adequate levels of activity. It prevents positive feedback from
becoming a source of instability because a large fluctuation in the
network activity always leads to a decrease in the activity in the
next integration period. Second, as mentioned before (see Re-
sults), depression compromises the efficacy of input synchrony
on generating “output” synchrony, because unreliable synapses
weaken the overall effect of presynaptic correlations. This would
prevent the network from developing epileptiform discharge pat-
terns: a transient partial synchronization would increase the fir-
ing rate of the network. This increase would depress the recurrent
synapses, thus dampening the recruitment of additional syn-
chrony and preserving the stability of the asynchronous state.

Several recent studies have addressed the general problem of
how current fluctuations impact on the neuron response
(Chance et al., 2002; Fellous et al., 2003; Kuhn et al., 2004). In
vitro experiments have consistently shown that increasing the
current variance produces an increase in �out that is particularly
significant if the input is subthreshold (Chance et al., 2002; Fel-
lous et al., 2003). This is consistent with our simulations per-
formed in both the FDR and the suprathreshold regimen in
which increasing the input synchrony produced an increase in �I,
which translated to an increase in the rate (Fig. 7A–D). An addi-
tional comparison of the results becomes difficult, because with
depressing synapses, synchrony is not equivalent to a constant
increase of �I but to a modulated variation that depends on the �
(Fig. 7A).

Although, in our simple LIF model, the non-monotonic re-

sponse was obtained only under the FDR, it is possible that cer-
tain active membrane properties such as low-threshold,
outward-rectifying currents (Reyes et al., 1994) may amplify the
impact of synchrony in the suprathreshold regimen. In vitro ex-
periments have shown that increasing the input fluctuations, at
high mean drive, boosts the response rate, because large hyper-
polarizing excursions allow the outward current to deactivate and
hence enhance the neuron excitability (Reyes et al., 1996). This
would imply that input synchrony combined with depression
could modulate the response function in a non-monotonic man-
ner even in the suprathreshold regimen.

Experimental (Chance et al., 2002) and theoretical studies
(Kuhn et al., 2004; Moreno-Bote and Parga, 2005) have analyzed
the effects of a change in the average conductance in the suprath-
reshold and subthreshold regimens, respectively. Using uncorre-
lated balanced inputs, they found that the increase of the mean
conductance with � leads to a decrease of the gain in the first case,
or to a non-monotonic behavior of the response in the second.
However, the non-monotonic response found in those works and
the one found here are caused by different mechanisms, although
in both cases the FDR is necessary. Whereas we increase the cur-
rent fluctuations by introducing correlations that do not modify
the total conductance substantially, the quoted studies increase
�I by augmenting the afferent rates in a balanced manner, some-
thing that increases greatly the total conductance. Furthermore,
as mentioned before, depression would prevent the linear in-
crease of the conductance with �, so that an increasingly larger
conductance could be achieved only by the recruitment of an
increasingly larger number of presynaptic terminals rather than
by a continuous increase in their firing rate.

We showed that the gain modulation of the non-monotonic
response by the magnitude of the correlations is a robust effect.
Systems showing selective neural response and gain modulation,
which abound in visual areas and in parietal cortex (Salinas and
Thier, 2000), are candidates in which this effect may occur. It is
known that V1 cells receive, apart from visual information from
the retina, a signal encoding the position of the eyes that modu-
lates their gain (Trotter and Celebrini, 1999). It is plausible that
this signal, which gates the flow of retinal information at the LGN
(Lal and Friedlander, 1989), could control the degree of syn-
chrony of geniculate cells [which can be very high (Alonso et al.,
1996)]. Additionally, thalamocortical synapses show prominent
STD (Stratford et al., 1996). Therefore, LGN cells exhibit syn-
chrony and are affected by depression, the two required ingredi-
ents that, through the mechanism described here, could contrib-
ute to the observed gain effects.

Appendix: Depression and the FDR
A more accurate quantification of how much depression may
constrain the target neuron to be in the subthreshold regimen can
be performed using an LIF neuron model with synaptic conduc-
tances (Dayan and Abbot, 2001):

Cm

dV�t�

dt
� 	gL�V�t� � EL� � ge�t��V�t� � Erev� if V � �.

(15)

The excitatory synaptic conductance, ge(t), undergoes a transient
change whenever a release takes place as described by the
following:

ge�t� � G exp�	
t � tspk

�s
�H�t � tspk�, (16)
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where tspk represents the spike time and H(t) is the Heaviside
function, which equals 1 for t � 0 and 0 otherwise. Using this
model, one can obtain an approximate expression for the average
membrane potential (Kuhn et al., 2004) as follows:

�V� �
gLEL 
 �ge�Erev

gL 
 �ge�
. (17)

Taking Erev � 0 mV as the AMPA reversal potential and given that
the average of the synaptic conductance reads �ge� � NMG�s�Pt,
one obtains the following:

�V� �
gLEL

gL 
 NMG�s�Pt
. (18)

The maximum �V�max is achieved when the release rate reaches its
upper bound �Pt3�v

	1. Substituting this expression into the
condition �V�max � �, which defines the FDR, we obtain the
following:

N �
�EL � � � gL�v

�GM�s
. (19)

Taking the values EL � 	70 mV, � � 	50 mV, �v � 500 ms, gL �
1⁄60 �S, �s � 3 ms, and MG � 1.75 nS (which produces a nonde-
pressed EPSP of 1 mV), one obtains the boundary N � 630. This
rather large number supports the idea that depression may con-
strain a postsynaptic cell, receiving an input signal from a few
hundred excitatory neurons firing at any rate, to work in the FDR.
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