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Supporting information

Details for the computation of the adiabatic firing

rate of LIF neurons

Here, we provide the details of the calculations to derive the adiabatic expression

for the firing rate for a LIF neuron shown in the main text.

In Sec. (1) we describe the LIF neuron and linear synaptic model used

throughout. Several characteristics like the mean and variance of the current

and the voltage are studied as a function of the membrane and synaptic time

constants of the model. The problem of finding the firing rate is solved in the

long Sec. (2) with the adiabatic approach. The firing rate of a neuron with

both fast and slow synaptic linear filters is found in Sec. (3). The case of two

and more filters is considered in Sec. (4). In Sec. (5) we study the problem of

simultaneous filtering by AMPA and NMDA synaptic receptors. Finally, In Sec.

(6) the FPE for the LIF neuron with a single linear synaptic filter is carefully

derived and numerical procedures are described in (7).

1 Model

We consider a LIF neuron with a single linear synaptic filter receiving many

independent Poisson spike trains. Based on this model, we first study the effect

of a single spike on the postsynaptic current and membrane potential. Second,

the means and variances of the current and voltage traces are determined when

the input is given by Poisson trains. In all cases we carefully analyze how those

quantities depend on the two timescales of the problem: the membrane and

synaptic time constants. This preliminary exploration will help us to under-

stand the effect of the membrane and synaptic time constants on the statistical
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properties of the current, voltage and firing response of the neuron.

The membrane potential V of the model neuron obeys

τm V̇ = −V + τm I(t) , (1)

where τm is the membrane time constant, and I(t) is the synaptic current. In

the model, a spike is evoked when V hits the threshold Θ, and then the voltage

is reset to H. Without loss of generality, the resting potential is taken at V = 0.

We take the absolute refractory period to be zero.

The current I(t) is an exponentially filtered version of the weighted sum of

all afferent spikes coming from the presynaptic connections

τsİ(t) = −I(t) + J
∑
i,k

δ(t− tki ) , (2)

where τs is the decay time constant of the exponential filter. Here tki labels the

arrival time of the kth spike from the ith presynaptic neuron. We assume that

spikes arrive at exponentially distributed intervals [Softky and Koch, 1993]. The

ratio J/τs is the size of the postsynaptic current generated by a single spike (see

eq. (3) below), while the parameter J is the total injected current per spike.

For simplicity, we do not take into account in this example the driving force

of the synaptic currents, allowing us to study the effect of temporal synaptic

filtering alone. The solution for conductance-based synapses has been presented

in [Moreno-Bote and Parga, 2005], and the firing rate in this case can be derived

using the general equations provided in Methods in the main text for the general

IF neuron.

We first analyze the effect of a single spike on the postsynaptic current and

membrane potential generated on the neuron. The postsynaptic current (PSC)

is a single exponential with decay time τs. Assuming that the spike arrives at

2



time t = 0, this current is

IPSC(t) =
J

τs
e−t/τsH(t) , (3)

where H(t) is the step (Heaviside) function (H(t) = 1 when t > 1 and it is

zero otherwise). This PSC provokes a postsynaptic potential (PSP) on the

neuron, whose rise time and decay time are determined by the synaptic and

membrane time constants. Assuming that the neuron is initially at the rest

potential (V = 0), the time course of the PSP can be obtained integrating the

PSC, eq. (3), with the equation for the voltage, eq. (1), leading to

VPSP (t) = J
τm

τm − τs
(e−t/τm − e−t/τs)H(t) . (4)

Note that the decay time of the PSP is determined by the longer of these

two time constants. Therefore, for synapses with long time constant, τs fully

controls the decay time of the PSP. In this case, the rise time of the PSP can

be approximated by the time needed to reach its peak value,

τrise ∼ τm ln
(
τs
τm

)
. (5)

In addition, for long τs the amplitude of the PSP is determined by the ratio

τm/τs. Changing the synaptic time constant in eq. (3) maintains fixed the total

charge injected by a single spike, J , as it can be seen by integrating the PSC

waveform over time. Increasing τs decreases the PSC amplitude but at the same

time broadens it in such a manner that the total injected charge is kept fixed.

Therefore, it is expected that for long τs the total synaptic current generated

by many input spikes is almost constant in time with very small fluctuations,

because each individual PSC spreads over time.

To gain some insight into the problem, we calculate for the model in eqs.
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(1 - 2) the mean and variance of both the synaptic current and the membrane

potential, disregarding the spiking threshold in the neuron model. All input

spike trains are lumped together into a single Poisson spike train with rate νin.

The total current generated by such a train is written as

I(t) =
∑
i

IPSC(t− ti) , (6)

where the ti’s are the spike arrival times. Its mean and variance are calculated

as

µ = 〈I(t)〉 = νin

∫ ∞
0

dtIPSC(t) = Jνin , (7)

σ2
I =

〈
I2(t)

〉
− 〈I(t)〉2 = νin

∫ ∞
0

dtI2
PSC(t) =

J2νin
2τs

. (8)

Unlike the mean current, the variance of the current decreases with the synaptic

time constant. Each PSC produces an independent PSP, so that

V (t) =
∑
i

VPSP (t− ti) . (9)

Again, the mean and variance of V (t) can be calculated easily:

〈V (t)〉 = νin

∫ ∞
0

dtVPSP (t) = Jνinτm , (10)

σ2
V =

〈
V 2(t)

〉
− 〈V (t)〉2 = (11)

= νin

∫ ∞
0

dtV 2
PSP (t) =

J2νinτ
2
m

2(τm + τs)
. (12)

These results show that both current and voltage fluctuations decrease as

1/τs for long synaptic time constants. In the subthreshold regime, where the
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mean membrane potential is below threshold, voltage fluctuations are required

to produce random threshold crossings. However, in the large τs limit, these

fluctuations are so much smoothed that slow filtering would eventually prevent

firing. We will show that the way the firing rate decreases to zero as τs grows is

faster than any power of 1/τs, so that a perturbative expansion of the output

firing rate in powers of 1/τs is not possible. Also we will show how to deal with

this mathematical singularity and calculate the output firing rate of the neuron

valid for long τs.

2 Solution for a single slow synaptic receptor

type

In this section we formally find that the adiabatic approach as described in the

Results in the main text solves the LIF neuron model with linear synaptic filter-

ing for long τs in the diffusion limit. Hence, the adiabatic firing rate represents

the exact solution for the firing rate of a LIF neuron for long enough τs. As

explained in the main text, the adiabatic rate provides also an excellent fit when

τs is comparable to τm. The adiabatic expression for the firing rate of a LIF

neuron has been found in [Moreno-Bote and Parga, 2004].

We start by writing down the FPE associated to the LIF neuron with linear

synaptic filtering. Then, we show that a naive expansion of the solution in

powers of 1/τs does not work in the subthreshold regime, and therefore a more

general approach is needed. The solution is presented later using the adiabatic

approach.

First, we consider the case of a single synaptic receptor type with long time

constant in a more rigorous way. Since the number of presynaptic spikes is

normally quite large and the evoked PSP’s are very small compared to the
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firing threshold, the spike trains in eq. (2) can be approximated [Ricciardi,

1977] by a white noise with mean µ and deviation σ as

τsİ(t) = −I(t) + µ+ ση(t) , (13)

(η(t) satisfies 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′)). The mean current is µ and

the variance of the current is σ2
I = σ2/2τs. The filter introduces exponential

correlations in the current with a correlation time τs

〈(I(t)− µ)(I(t′)− µ)〉 =
σ2

2τs
e−
|t−t′|
τs . (14)

Note that the variance of the current can be obtained from the correlation func-

tion when t = t′. It is worth mentioning the difference between this correlation

function and that used to investigate exponentially correlated input spike trains

in our previous work [Moreno et al., 2002, Moreno-Bote et al., 2008]. Here the

correlation function depends smoothly of the argument t−t′ because I(t) has at

most finite discontinuities (see the original process defined in eq. (2)). However,

when correlated input spike trains without synaptic filtering are considered, a

delta function at zero time lag always contributes to the current correlation

function, reflecting the fact that now the synaptic current I(t) has infinitely

large discontinuities.

Going on with the discussion, it is convenient to perform the linear trans-

formations

V = µτm + x

√
τm
2
σ

I = µ+ z
σ√
2τs

and rewrite eqs. (1, 13) in terms of x and z as
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ẋ = − x

τm
+

z
√
τmτs

, (15)

ż = − z

τs
+
√

2
τs
η(t) . (16)

In these units, the threshold and reset potentials read: Θ̂ =
√

2(Θ−µτm)/σ
√
τm

and Ĥ =
√

2(H − µτm)/σ
√
τm. The stationary Fokker-Planck equation (FPE)

[Brunel and Sergi, 1998, Moreno-Bote and Parga, 2004] associated to eqs. (15 -

16), which is derived in detail in Methods, is

[
∂

∂x
(x− εz) + ε2Lz

]
P (x, z) = −τmJ(z)δ(x− Ĥ) , (17)

where ε =
√
τm/τs and Lz = ∂

∂z z + ∂2

∂2z . P (x, z) is the stationary probability

density of having the neuron in the state (x, z). The source probability current

J(z) accounts for the reset effect: the flow of probability escaping at the thresh-

old is reinjected at the reset potential with the same rate and distribution in z

that it had when it escaped. The probability current J(z) has to be determined

in a self-consistent way, that is, it has to match the escape probability current

of the LIF neuron, which is the x-component of the probability current vector

evaluated at threshold. The equation relating J(z) and P (x, z) is obtained by

writing the left hand side of eq. (17) as the divergence of a probability current

vector ~J(x, z) [Risken, 1989] as

1
τm

[
∂

∂x
(x− εz) + ε2Lz

]
P (x, z) = −

[
∂

∂x
Jx(x, z) +

∂

∂z
Jz(x, z)

]
, (18)

from where one finds that
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Jx(x, z) =
1
τm

(−x+ εz)P (x, z) , (19)

Jz(x, z) = − ε2

τm

(
z +

∂

∂z

)
P (x, z) . (20)

After setting x = Θ̂ in Jx(x, z) one obtains that the escape probability current

has the expression

J(z) =
1
τm

(−Θ̂ + εz)P (Θ̂, z) . (21)

The output firing rate is then computed as

ν =
∫ ∞
−∞

dz J(z) . (22)

The probability current J(z) cannot be negative because there cannot be prob-

ability flow entering from the region x > Θ̂. Then, the integral in eq. (22) only

extends from the value of z above which the probability current J(z) is positive

(see eq. (21)):

z ≥ zmin = Θ̂/ε . (23)

Below zmin, J(z) is made zero by imposing that P (Θ̂, z) = 0 for z < zmin, and

then the firing rate (22) can be written as

ν =
∫ ∞
zmin

dz J(z) . (24)

In the next section we try to find a solution of eqs. (17,21,24) using a

perturbative expansion of both the probability density and current probability

density in powers of ε (see expansion (25) below), and show why this attempt
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fails.

2.1 A naive perturbative expansion does not exist in the

subthreshold regime

We first perform a naive perturbative expansions of P (x, z) and J(z) in powers

of ε =
√
τm/τs as

P = P̃0 + εP̃1 +O(ε2)

J = J̃0 + εJ̃1 +O(ε2) . (25)

Introducing them into the FPE (17) and eq. (21), we find that the coefficients

of the expansion satisfy

0 =
∂

∂x
(xP̃n − zP̃n−1) + LzP̃n−2 + τmJ̃n(z)δ(x− Ĥ) , (26)

where we define P̃n = 0 for n < 0. Along with this equation the following

conditions should hold:

i) P̃n(Θ̂, z) = 0 ∀z < zmin ≡ Θ̂/ε (27)

ii) J̃n(z) = τ−1
m (zP̃n−1(Θ̂, z)− Θ̂P̃n(Θ̂, z)) (28)

iii)
∫ Θ̂

−∞
dx

∫ ∞
−∞

dz P̃n(x, z) = δn,0 (29)

iv) limz→±∞z P̃n → 0, limx→−∞x P̃n → 0 . (30)

Here δn,0 is the Kronecker’s delta (δn,0 = 1 if n = 0, otherwise it is zero).

Condition i) comes from condition (23); ii) results from eq. (21); iii) just means

that P (x, z) is a density function (unit integral); finally, iv) specifies that the
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probability currents have to be zero at infinity.

Because the z obeys eq. (16), its stationary marginal probability density is

a Gaussian with unit variance. This introduces a useful additional constraint

over the coefficients P̃n(x, z),

∫ Θ̂

−∞
dx P̃n(x, z) = δn,0

e−z
2/2

√
2π

. (31)

In what follows, crucially, we have to distinguish two different cases: the supra-

and the subthreshold regimes.

Suprathreshold regime: In this case, the mean depolarization, µτm, is above

threshold, µτm > Θ (Θ̂ < 0). Then, from eq. (28) we obtain

J̃0(z) = −τ−1
m Θ̂P̃0(Θ̂, z) , (32)

which is positive. Solving the FPE (26) at zero-th order with the conditions

(28, 30) leads to

P̃0(x, z) = −τmJ̃0(z)
H(x− Ĥ)

x
. (33)

Using conditions (22, 31) for n = 0, we find J̃0(z) = ν̃0 e
−z2/2/

√
2π, from where

we obtain that the zero-th order firing rate is

ν̃−1
0 = τm ln(Ĥ/Θ̂) = τm ln

(
H − µτm
Θ− µτm

)
. (34)

Note that ν̃0 is the rate of a LIF neuron driven by a noiseless current with

intensity µ. Thus, in the suprathreshold regime and when τs is very large, input

fluctuations are filtered out and the neuron acts as a noiseless integrator. It

is straightforward to carry on with the expansion by using eq. (26) and the

conditions (24, 29, 31) for the n−th order. When this is done, one finds that
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the first order correction to the rate is zero (ν̃1 = 0) and that the firing rate up

to second order is

ν ∼ ν̃0 +
τ2
mν̃

2
0

τs

[
τmν̃0(Θ̂−1 − Ĥ−1)2 − Θ̂−2 − Ĥ−2

2

]
. (35)

This expression has also been obtained in [Moreno-Bote and Parga, 2004, Moreno

and Parga, 2004].

Subthreshold regime: Now we prove that in this regime the perturbative

expansion of the firing rate does not exist. Here, the mean depolarization is

below threshold (Θ̂ > 0). Since the probability current J(z) cannot be negative,

the zero-th order probability current,

J̃0(z) = −τ−1
m Θ̂P̃0(Θ̂, z) , (36)

cannot be negative. Then, since Θ̂ > 0, the density P̃0(Θ̂, z) has to be zero,

and also J̃0 = 0. This implies that the zero-th order rate is ν̃0 = 0 in the

subthreshold regime. Assuming that P̃m(Θ̂, z) = 0 for all m < n, it is easy to

prove by induction that P̃n(Θ̂, z) = 0: If P̃m(Θ̂, z) = 0 for all m < n, then (see

eq. (28))

J̃n(z) = −τ−1
m Θ̂P̃n(Θ̂, z) . (37)

Since J(z) cannot be negative and J̃m = 0 for all m < n, the order J̃n cannot

be negative. But since Θ̂ > 0, P̃n(Θ̂, z) has to be zero too and, in fact, at all

orders the Jn are zero. This proves that the output firing rate in eq. (22) does

not admit an expansion in powers of ε in the subthreshold regime.

To go more deeply into the problem, let us write the FPE (26) at zero-th

order:
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0 =
∂

∂x
xP̃0 . (38)

The solution that satisfies the conditions (27 - 30) is

P̃0(x, z) = δ(x) e−z
2/2/
√

2π . (39)

Then, the whole probability is placed at x = 0, or equivalently, at the equi-

librium potential V = µτm. Being the whole probability far from threshold,

the neuron does not fire in the long τs limit, because fluctuations have been

removed. As we have indirectly showed, the perturbative correction of a delta

function is ill-possed in this problem and the next order densities P̃n are not

defined.

2.2 A regularized adiabatic approach for slow filters

We have found that the coefficients for the expansion of the escape probability

current in powers of ε are not defined, unless the input parameters are in the

suprathreshold regime (Θ̂ < 0). This shows that such a perturbative expansion

of the output firing rate, eq. (22), is not possible for the full input parameter

space.

Investigating in some detail the problem and the analytical expressions in-

volved in it, it can be noticed that in the suprathreshold regime zmin in eq.

(24) approaches minus infinity for long τs, leading to a well behaving output

rate when τs is large. However, in the subthreshold regime, zmin approaches

infinity apparently so fast that the firing rate does not admit a perturbative ex-

pansion in powers of ε. Because an expansion was possible when the integration

interval [zmin,∞) did not get empty, that is, in the suprathreshold regime, this

suggests maintaining fixed zmin in eq. (24) as τs increases, and at the same time
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performing an expansion of P (x, z) and J(z) in powers of a convenient pertur-

bative parameter. This presumably would lead to a well defined expansion of

the output rate in both the sub- and suprathreshold regimes. Indeed, this is

what happens, as we explain below.

This idea is implemented by defining a new constant γ that replaces ε in the

FPE (17), while ε2 is left unchanged, to obtain the FPE

[
∂

∂x
(x− γz) + ε2Lz

]
P (x, z) = −τmJ(z)δ(x− Ĥ) . (40)

At the same time, we must express the probability current as (see eq. (21))

J(z) =
1
τm

(−Θ̂ + γz)P (Θ̂, z) . (41)

Now the key idea becomes apparent: to solve the FPE (40,41) we expand the

stationary probability density and the probability current in powers of ε2 as

P = P0 + ε2P1 +O(ε4)

J = J0 + ε2J1 +O(ε4) (42)

maintaining fixed the parameter γ. Only at the end, when the coefficients Pn

and Jn have been determined, γ can be given its true value ε. Note that the

coefficients Pn and Jn depend on γ but not on ε2. While the FPE (17) is

defined in a one-dimensional parameter space (ε), the FPE (40) has extended

its range to the two dimensional parameter space (γ, ε). The restriction of the

new FPE to the case γ = ε leads to the original formulation of the problem,

although this new FPE is somehow easier to solve. The choice of fixing γ while

taking the limit ε2 → 0 in the expansion is called distinguished limit in singular

perturbation theory, since it involves a balance between two terms in the left
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side of FPE (40) (see e.g. [Bender and Orszag, 1978]).

It is also possible to understand the physical meaning of the limit ε → 0

with fixed γ that led us to the FPE (40). For that, let us come back to the

stochastic equations defined in (15 - 16) and rewrite them in the new space of

parameters (γ, ε) as

ẋ =
1
τm

(−x+ γz) ,

ż = − z

τs
+
√

2
τs
η(t) . (43)

The effect of any fluctuation in the normalized current, z, lasts for a time τs,

and its effect on the normalized voltage, x, is constant as τs grows, because γ

is now a fixed parameter. This will lead to the possibility of an expansion of

the rate in powers of 1/τs (or, equivalently, ε2) for fixed γ. Now we proceed to

determine the leading order solution for the expansion (42).

Solution of the FPE in the long τs limit: we introduce the expansion (42)

into the FPE (40) and collect terms according to powers of ε2. Each order has to

be solved along with conditions similar to those in eqs. (29 - 30), but conditions

(27 - 28) have to be replaced by

i) Pn(Θ̂, z) = 0 ∀z < Θ̂/γ (44)

ii) Jn(z) = τ−1
m (γz − Θ̂)Pn(Θ̂, z) . (45)

Because the equation for the normalized current z has not changed, condition

(31) still holds. Carrying on with the perturbative analysis we find that in

general the nth order density Pn satisfies a differential equation that depends
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on the previous order Pn−1 and the probability current at the same order Jn as

0 =
∂

∂x
(x− γz)Pn + LzPn−1 + τmJn(z)δ(x− Ĥ) , (46)

where we defined Pn = 0 for n < 0. The leading order has to be dealt with in

two cases. When z ≥ Θ̂/γ, J0(z) is positive (see eq. (41)), and then the FPE

(46) is

0 =
∂

∂x
(x− γz)P0 + τmJ0(z)δ(x− Ĥ) , (47)

whose solution, using condition (30), is

P0(x, z) =
τmJ0(z)H(x− Ĥ)

γz − x
. (48)

When z < Θ̂/γ, the equation we have to solve is

0 =
∂

∂x
(x− γz)P0 . (49)

Its solution satisfying condition (30) is

P0(x, z) = D(z)δ(x− γz) , (50)

where D(z) depends only on z. The density P0(x, z) can be written as a single

expression:

P0(x, z) =
τmJ0(z)H(x− Ĥ)

γz − x
+D(z)δ(x− γz)H(Θ̂/γ − z) . (51)

Note that if z ≥ Θ̂/γ, the neuron can fire and the potential is distributed

continuously from Ĥ to Θ̂ (first term in eq. (51)). However, if z < Θ̂/γ, the

synaptic fluctuations are not high enough to induce firing, and the membrane
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potential is held at x = γz, which is below threshold (second term in eq. (51)).

To determine the unknowns D(z) and J0(z) in eq. (51), we introduce P0

into the constraint (31), giving D(z) = e−z
2/2/
√

2π and

J0(z) =
e−z

2/2

√
2π

ν0(z), (52)

where we have defined

ν0
−1(z) = τm ln

(
Ĥ − εz
Θ̂− εz

)
. (53)

Note that at this point we have replaced γ by ε =
√
τm/τs. Introducing J0(z)

into eq. (24) leads to the adiabatic expression for the output firing rate at

zero-th order

ν =
∫ ∞

Θ̂/ε

dz√
2π

e−z
2/2 ν0(z) , (54)

as it appears in Results in the main text.

3 One fast and one slow synaptic types

In this section we continue the discussion of slow filters based on the FPE, but

this time in the presence of a second, fast filter. In this case, the total current

in eq. (1) has two contributions, I(t) = I1(t)+I2(t), which in the diffusion limit

are

τsİ1(t) = −I1(t) + µ1 + σ1η(t)

I2(t) = µ2 + σ2ζ(t) . (55)
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The quantities µ1, µ2 and σ2
1 , σ2

2 are the means and variances of the inhibitory

and excitatory currents, and η(t) and ζ(t) are two independent white noise

processes with unit variance. Defining µ ≡ µ1 + µ2 and performing the linear

transformation

V = µτm + x

√
τm
2
σ2

I1 = µ1 + z
σ1√
2τs

the equations for the voltage and the current are transformed into

ẋ =
1
τm

[−x+
√

2τm ζ(t) +
√
αγ z] , (56)

ż = − z

τs
+
√

2
τs
η(t) .

Again we write γ in place of ε. Here α ≡ σ2
1/σ

2
2 , and the threshold and reset po-

tentials now become: Θ̂ =
√

2(Θ−µτm)/σ2
√
τm and Ĥ =

√
2(H−µτm)/σ2

√
τm.

The current autocorrelation is

〈(I(t)− µ)(I(t′)− µ)〉 = σ2
2δ(t− t′) +

σ2
1

2τs
e−
|t−t′|
τs . (57)

Note that the autocorrelation has a delta function, something that did not

happen with a single slow filter, eq. (14). The stationary FPE reads [Moreno-

Bote and Parga, 2004]

[
Lx − γ

√
αz

∂

∂x
+ ε2Lz

]
P (x, z) = −τmJ(z)δ(x− Ĥ) . (58)

As before, γ will be treated as a fixed parameter, and an expansion in the

parameter ε2 of both the density P (x, z) and the escape probability current
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as in eq. (42) will be employed to find the output firing rate of the neuron.

Again, J(z) acts in the FPE (58) as a source term injecting probability current

at the reset potential at the same rate and the same distribution that z has

when the probability escapes at threshold. It is the probability current vector

in the direction of x and evaluated at threshold. The probability density current

vector for this FPE is [Risken, 1989]

~J(x, z) =
1
τm

[
− ∂

∂x
− x+ γ

√
αz , −ε2

(
∂

∂z
+ z

)]
P (x, z) , (59)

which obeys the continuity equation

~∇. ~J(x, z) + τmδ(x− Ĥ)J(z) = 0 , (60)

with ~∇ = [ ∂∂x ,
∂
∂z ]. The escape probability current is then

J(z) =
1
τm

(
− ∂

∂x
− x+ γ

√
αz

)
P (x, z)|x=Θ̂ , (61)

which has to be inserted into the FPE (58).

Solution of the FPE in the long τs limit: We start by introducing the

expansion in eq. (42) of the density and escape probability current into the

FPE (58). Each order Pn(x, z) and Jn(z) must be determined self-consistently

using the set of conditions

i) Pn(Θ̂, z) = 0 ∀z (62)

ii) Jn(z) = − 1
τm

∂

∂x
Pn(Θ̂, z) , (63)

along with the conditions (29, 30). The first important difference with respect
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to the case of a single slow filter is that now condition i) states that the density

has to be zero at threshold for all z. Secondly, condition ii) on the probability

density flux involves now a derivative of the probability density evaluated at

threshold. To obtain the coefficients Pn and Jn, we proceed as with the case

with a single synaptic time constant (section (2.2)). At each order n, the density

Pn satisfies

[
Lx − γ

√
αz

∂

∂x

]
Pn + LzPn−1 = −τmδ(x− Ĥ)Jn(z) . (64)

Solving this equation for n = 0, we obtain that the zero-th order density is a

function of the unknown zero-th order escape probability current of the form

P0(x, z) = τm J0(z) e−
(x−γ

√
αz)2

2

∫ Θ̂

x

du e
(u−γ

√
αz)2

2 H(u− Ĥ) . (65)

Since the Pn’s solve a equation identical to eq. (31), inserting P0 into this

equation leads to the expression for the zero-th order probability current

J0(z) =
1√

2πτm
e−z

2/2νfast(z) , (66)

where we have defined the quantities

νfast(z)−1 =
√
π

2
τm

∫ Θ̂−ε
√
αz

Ĥ−ε
√
αz

dt et
2/2 (1 + erf(t/

√
2)). , (67)

where erf(t) is the error function. The output firing rate of the neuron up to

zero order is obtained by integration over z as

ν =
∫ ∞
−∞

dz√
2π

e−z
2/2νfast(z) . (68)

The quantity νfast(z) in eq. (68) has also an intuitive meaning: it is the rate of

a LIF neuron driven by a current with effective mean µeff = µ+ zσ1/
√

2τs and
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variance σ2
2 [Ricciardi, 1977]. As it can be appreciated, the output firing rate is

given by the average of νfast(z) with the stationary distribution of z, as in the

case with a single slow filter. The formula (68) admits an expansion in powers

of ε, which up to O(ε2) is

ν = F0 +
C

τs
(69)

F0 = νfast(0)

C ≡ ατ2
mF2

0 [τmF0( R(Θ̂/
√

2)−R(Ĥ/
√

2) )2

− Θ̂R(Θ̂/
√

2)− ĤR(Ĥ/
√

2)
2

] ,

where R(t) =
√

π
2 e
t2 (1 + erf(t)).

At leading order, the rate is just F0, the firing rate of a LIF neuron driven

by a white noise input with mean µ and variance of the fast noise σ2
2 [Ricciardi,

1977]. The firing rate approaches F0 as the synaptic time constant increases.

We have approximated the rate using the zero-th order term in the expansion

(42). This approximation contains a term O(ε2) (see eq. (69)). However, other

contributions to the total firing rate at order O(ε2) could also come from the

non zero-th order terms of the expansion. In particular, it could come from the

first order in the expansion (42). However, it is possible to see that an expansion

in powers of ε of the probability current J1 at first order gives a dominant order

O(ε2), that globally leads to a correction O(ε4) to the firing rate, and therefore

it can be neglected (see [Moreno et al., 2002, Moreno-Bote et al., 2008]).

It is also possible to obtain the firing rate for a LIF neuron with a single

slow filter, eq. (54), from the expression of the rate in the case of both fast and

slow filters, eq. (68). This is done by taking the limit of vanishing fast noise,

σ2
2 → 0, in eq. (68) so that the fast synapse disappears and there is only a single
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slow synapse. In this limit, contributions to the integral (68) are different from

zero when z ≥ Θ/γ
√
α, where we can approximate (see e.g. [Abramowitz and

Stegun, 1964])

e
u2
2

∫ u

−∞
dve−

v2
2 ∼ −1

u
, (70)

where u is assumed to be large and negative. Integrating over u and setting

α = σ2
1/σ

2
2 gives the expression (54) where σ = σ1.

The results found above can be extended to any other IF neuron model. A

general formula similar to eq. (68) for the firing rate of an IF neuron with both

fast and slow filters is given in the Methods section in the main text.

4 Two and more slow filters

In this appendix we study the case of two (and more) long synaptic time con-

stants, τ1 and τ2. They could correspond to AMPA and GABA synapses when

τm is very short (τm ∼ 1− 5ms). The membrane potential obeys the equations

V̇ = − V

τm
+ µ+

σ1√
2τ1

z1 +
σ2√
2τ2

z2 ,

ż1 = −z1

τ1
+
√

2
τ1
η1(t) ,

ż2 = −z2

τ2
+
√

2
τ2
η2(t) , (71)

where µ = µ1+µ2, is the total current generated by the inputs, σ2
1 and σ2

2 are the

input variances, and η1(t) and η2(t) are two independent white noise processes

with zero mean and unit variance. Using the same techniques described in this

work, we find that the output firing rate is
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ν =
1√

2πτm

∫
Ω

dz1dz2
e−

1
2 (z21+z22)∫ Θ

H
dV
(

σ1√
2τ1
z1 + σ2√

2τ2
z2 − V

τm
+ µ

)−1 . (72)

The region Ω of the plane (z1, z2) is defined as Ω : ∀z1z2 /
σ1√
2τ1
z1 + σ2√

2τ2
z2 −

V
τm

+µ ≥ 0, ∀ V ∈ [H,Θ], that is, all those synaptic fluctuations that make the

drift positive for all membrane potentials lying between the reset and threshold

values. Let us simplify the formula (72) by defining two orthonormal variables

u =
1√
2B

[
σ1√
τ1
z1 +

σ2√
τ2
z2]

v =
1√
2B

[− σ2√
τ2
z1 +

σ1√
τ1
z2]

B =

√
σ2

1

2τ1
+
σ2

2

2τ2
.

Thus, the condition defining Ω reduces to Ω : ∀u /Bu − V
τm

+ µ ≥ 0, ∀ V ∈

[H,Θ], or equivalently u ≥ Θ−µτm
Bτm

. We can define the effective reset, threshold

and γ values as

Θ̂eff =
√

2(Θ− µτm)√
(σ2

1 + σ2
2)τm

Ĥeff =
√

2(H − µτm)√
(σ2

1 + σ2
2)τm

εeff =

√
σ2

1
τm
τ1

+ σ2
2
τm
τ2

σ2
1 + σ2

2

.

The renormalized threshold and reset, Θ̂eff and Ĥeff , are defined similarly

as in the one synaptic type case. With these definitions, formula (72) can be

expressed identically to formula (54) as
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ν =
∫ ∞

Θ̂eff/εeff

du√
2π

e−u
2/2 ν0(Ĥeff − εeffu, Θ̂eff − εeffu) , (73)

where ν0
−1(a, b) = τm ln(a/b). The neuron responds to fluctuations u above a

critical value Θ̂eff/εeff . Then it detects large fluctuations in a combination of

both excitatory and inhibitory drive. Additionally, this formula can be gener-

alized to include N synaptic filters, which is done by defining µ as the sum of

the individual mean synaptic currents, µ =
∑N
i=1 µi, and

Θ̂eff =
√

2(Θ− µτm)√∑N
i=1 σ

2
i τm

Ĥeff =
√

2(H − µτm)√∑N
i=1 σ

2
i τm

εeff =

√√√√∑N
i=1 σ

2
i
τm
τi∑N

i=1 σ
2
i

.

5 The role of NMDA and AMPA synaptic noise.

We move to a relevant situation found in the central nervous system. Spikes

arriving at many central neurons can generate at the same time fast and slow

unitary currents. Fast AMPA receptors filter presynaptic inputs with a time

constant τAMPA ∼ 1 − 10ms, while for NMDA receptors the time constant is

longer, τNMDA ∼ 50− 150ms. Because both receptor types normally coexist in

central neuron synapses [Bekkers and Stevens, 1989], the information contained

in the inputs is present in the membrane potential at these two timescales. For

the sake of clarity, in this section we work directly on the synaptic current

variable I(t), without transforming it into the normalized variable z. We first

describe the model of simultaneously active AMPA and NMDA receptors, and
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then we find by simple arguments an ad hoc formula for the firing rate of this

neuron. This section is partly based on the results found in our work [Moreno-

Bote and Parga, 2005].

The membrane potential V of the leaky IF neuron obeys

τm V̇ = −V + τm I(t) (74)

I(t) = IAMPA(t) + INMDA(t) , (75)

where I(t) is the total afferent current composed by the sum of two contributions

generated by AMPA and NMDA filters, IAMPA(t) and INMDA(t) respectively.

Cortical [Crair and Malenka, 1995, Myme et al., 2003, Fleidervish et al.,

1998] and deep cerebellar nuclei [Anchisi et al., 2001] neurons receive a large

number of presynaptic spikes through their AMPA and NMDA receptors. We

model their contribution to the total input current by two white noise processes

with means µAMPA, µNMDA, and variances σ2
AMPA, σ2

NMDA. In this model,

the presynaptic signal generates the following AMPA and NMDA currents

τAMPAİAMPA(t) = −IAMPA(t) + µAMPA + σAMPA η(t) ,

τNMDAİNMDA(t) = −INMDA(t) + µNMDA + σNMDA η(t) , (76)

where η(t) is a Gaussian white noise with zero mean and unit variance. Since

both filters receive the same spikes, they integrate the same white noise, what

introduces a large correlation between the currents. Writing the current without

driving forces to model subtreshold dynamics is justified because then V is very

far from the reversal potential of excitatory synapses.

We start by providing a qualitative derivation of an expression for the firing
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rate of this model neuron valid for τNMDA >> τm and τAMPA comparable to

τm, which might be a realistic case [Bernander et al., 1991]. Since the synaptic

time constants are either longer (τNMDA) or at most comparable (τAMPA) to

τm, we assume that the current is approximately constant during a time period

τm, that is, I(t) = I. A LIF neuron receiving such a constant current fires with

instantaneous rate (see main text and [Tuckwell, 1988])

ν−1(I) = τm ln
(
τmI −H
τmI −Θ

)
. (77)

The current defined in eqs. (75, 76) is a random variable which we describe with

a probability density distribution ρ(I). Then, following the reasoning described

in the first section of Results, the mean firing rate can be computed by averaging

the rate at constant current, eq. (77), with the probability density ρ(I) as

ν =
∫ ∞
Imin

dIρ(I) ν(I) , (78)

where the integral extends from Imin = Θ/τm. This threshold current is the

minimal current required for the neuron to fire (see eq. (74)). To evaluate the

firing rate we still need the distribution ρ(I) for the stochastic process defined

in eqs. (75, 76). Since ρ(I) is Gaussian, it is fully determined by its mean µ

and variance σ2
I . The mean is simply the sum of the AMPA and NMDA mean

currents, µ = µAMPA +µNMDA. To obtain the variance we first solve eqs. (76)

with the initial condition Ik(0) = 0 (k = AMPA,NMDA) to obtain

Ik(t) = µk(1− e−t/τk) +
σk
τk
e−t/τk

∫ t

0

ds es/τk η(s) . (79)

The variance σ2
I is computed as
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σ2
I = limt→∞ 〈(IAMPA(t) + INMDA(t)− µ)(IAMPA(t) + INMDA(t)− µ)〉

=
1
2

(
σ2
AMPA

τAMPA
+
σ2
NMDA

τNMDA
+ 4

σAMPAσNMDA

τAMPA + τNMDA

)
. (80)

The first two terms are the current variances generated by the AMPA and

NMDA input fluctuations, while the third positive term arises from the corre-

lations between AMPA and NMDA input fluctuations. If AMPA and NMDA

filters were driven by two independent white noises, the third term would not

be present. Note also that the effect of combined AMPA and NMDA events is

to increase the synaptic noise relative to that provided by independently driven

synapses. After determining ρ(I) with µ and σ2
I in the way just described and

using eq. (77), the firing rate in eq. (78) can be finally written as

ν =
∫ ∞
Imin

dI√
2πσIτm

e
− (I−µ)2

2σ2
I ln−1

(
τmI −H
τmI −Θ

)
. (81)

This expression generalizes the result found in the previous sections for a current

filtered through a single slow synaptic filter. The firing rate for this particular

case is readily obtained from eq. (81) by setting to zero the mean and variance

of one of the two receptors. The prediction given by eq. (81) has been compared

with simulations results of a neuron receiving both AMPA and NMDA currents

in [Moreno-Bote and Parga, 2005], providing excellent fits.

6 Derivation of the FPE for the LIF neuron

We consider the LIF neuron defined by eqs. (1, 13). First, we perform the linear

transformation

26



V = µτm + x

√
τm
2
σ , I = µ+ z

σ√
2τs

, (82)

to obtain

ẋ = − x

τm
+

z
√
τmτs

, ż = − z

τs
+
√

2
τs
η(t) . (83)

To derive the FPE associated to eqs. (83), we first discretize the time and

obtain

x′(w) = x+
x

τm
δt− z

√
τmτs

δt ,

z′(w) = z +
z

τc
δt−

√
2
τc
w
√
δt , (84)

which relates the initial state (x′(w), z′(w)) with the final state (x, z) after a

time δt. Note that the initial point coordinates appear on the left side of the

equations, whereas the final point coordinates appear on the right side. Here,

w = w(t) are i.i.d. random variables defined at each time step t taking values

+1 and −1 with equal probability 1/2. Then, 〈w(t)〉 = 0,
〈
w2(t)

〉
= 1 and

〈w(t)w(t′)〉 = 0 for t 6= t′. This means that the quantity w/
√
δt, which appears

above, approximates the delta function, since
〈
w(t)/

√
δt
〉

= 0,
〈
w2(t)/δt

〉
=

1/δt, and 〈w(t)w(t′)/δt〉 = 0 for t 6= t′.

The critical point is to understand how to relate the probability density at

time t + δt, P (x, z, t + δt), with the density at a previous time t, P (x′, z′, t).

First, note that the probability of finding a neuron within an infinitesimal cell

of size δx′δz′ around the state (x′, z′) at time t has probability P (x′, z′, t)δx′δz′.

Second, the state cell centered at (x′, z′) with area δx′δz′ will be projected at

the successive time t+ δt into another cell centered at (x, z) with surface δxδz
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close to the previous one, obeying the rules defined in eqs. (84). By conservation

of the probability, we have that

P (x, z, t+ δt) δxδz =
∑
w=±1

p(w) P (x′(w), z′(w), t) δx′δz′ . (85)

This is because the two states (x′(w), z′(w)) (w = 1 and w = −1) defined

above are the only ones from where one can arrive to the state (x, z) after an

infinitesimal amount of time δt. In addition, the box around state (x′, z′) is

compressed to the box around the final state (x, z) by a factor δxδy = (1 −

δt/τm)(1− δt/τc)δx′δy′, given by the decaying terms in eqs. (83).

After expanding the densities in eq. (85) in powers of
√
δt, we find that all

terms O(
√
δt) are zero (since 〈w〉 = 0), while the terms O(δt) do not vanish.

Then, we can equal the terms at O(δt) to obtain the FPE

τm
∂

∂t
P (x, z, t) =

[
∂

∂x
(x− εz) + ε2Lz

]
P (x, z, t) . (86)

For the stationary regime, the time derivative of the probability density is

zero. In order to have a stationary FPE, however, whenever a neuron reaches

threshold, the state has to be absorbed and reinjected at the reset. This leads

to the FPE (17).

7 Numerical procedures

Here we describe the numerical procedures used to simulate the LIF neuron.

Analogous procedures have been followed for the other IF neurons considered.

The voltage and noise eqs. (83) are solved using Euler’s method. This is done

by discretizing the time with bins of size δt = 5 10−4ms � τm and use eqs.

(84). When x > Θ̂, a spike is emitted and the normalized voltage it is reset

to x = Ĥ. The variable z is not reset after a spike, so its value before a spike
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rolls over to the next integration interval. The variable w(t) are i.i.d. random

variables taking values +1 and −1 with equal probability 1/2. Fortran90 custom

programs were used for all simulations and numerical integrations.
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