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Delivery of neurotransmitter produces on a synapse a current that flows
through the membrane and gets transmitted into the soma of the neu-
ron, where it is integrated. The decay time of the current depends on the
synaptic receptor’s type and ranges from a few (e.g., AMPA receptors) to a
few hundred milliseconds (e.g., NMDA receptors). The role of the variety
of synaptic timescales, several of them coexisting in the same neuron, is
at present not understood. A prime question to answer is which is the
effect of temporal filtering at different timescales of the incoming spike
trains on the neuron’s response. Here, based on our previous work on lin-
ear synaptic filtering, we build a general theory for the stationary firing
response of integrate-and-fire (IF) neurons receiving stochastic inputs fil-
tered by one, two, or multiple synaptic channels, each characterized by an
arbitrary timescale. The formalism applies to arbitrary IF model neurons
and arbitrary forms of input noise (i.e., not required to be gaussian or to
have small amplitude), as well as to any form of synaptic filtering (linear
or nonlinear). The theory determines with exact analytical expressions
the firing rate of an IF neuron for long synaptic time constants using the
adiabatic approach. The correlated spiking (cross-correlations function)
of two neurons receiving common as well as independent sources of
noise is also described. The theory is illustrated using leaky, quadratic,
and noise-thresholded IF neurons. Although the adiabatic approach is ex-
act when at least one of the synaptic timescales is long, it provides a good
prediction of the firing rate even when the timescales of the synapses are
comparable to that of the leak of the neuron; it is not required that the
synaptic time constants are longer than the mean interspike intervals or
that the noise has small variance. The distribution of the potential for
general IF neurons is also characterized. Our results provide powerful
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analytical tools that can allow a quantitative description of the dynamics
of neuronal networks with realistic synaptic dynamics.

1 Introduction

A neuron communicates with other neurons by generating synaptic cur-
rents through the corresponding synapses. The nature of these events de-
pends on the presynaptic neurotransmitter and the postsynaptic receptors.
Several types of receptors can coexist in the same neuron, each with its
characteristic timescale. Within the excitatory class, AMPA-type synap-
tic receptors open during 1–5 ms (Silver, Traynelis, & Cull-Candy, 1992;
Barbour, Keller, Llano, & Marty, 1994; Umemiya, Senda, & Murphy, 1999;
Angulo, Rossier, & Audinat, 1999; Zamanillo et al., 1999), while the ac-
tivation of NMDA receptors lasts for about 100 ms (see, e.g., Umemiya
et al., 1999; Myme, Sugino, Turrigiano, & Nelson, 2003). Both synaptic re-
ceptors are activated by release of neurotransmitter glutamate from gluta-
matergic presynaptic cells. Similarly, there are also fast and slow inhibitory
synapses—τGABAA ∼ 5 to 10 ms (Xiang, Huguenard, & Prince, 1998; Banks,
Li, & Pearce, 1998; Okada, Onodera, van Renterghem, & Takahashi, 2000)
and τGABAB ∼ 100 ms (Otis, De Koninck, & Mody, 1993), which are activated
by release of GABA from GABAergic presynaptic cells. Therefore, spikes
arriving at the presynaptic terminals can initiate a variety of synaptic cur-
rents on the postsynaptic neuron with different time courses and lasting for
quite different time intervals. The variety in duration of spike aftereffects on
postsynaptic neurons could have important computational consequences,
because it could allow the same information to be present in the neuron at
different timescales. In a similar way, it could provide a basis for transmit-
ting and combining information carried at several temporal resolutions.

In addition, the effect of an impinging spike on the membrane potential
of a neuron depends on the membrane time constant of the neuron. While in
resting conditions, the membrane time constant is quite large (τm ∼ 20 ms;
see e.g., Paré, Shink, Gaudreau, Destexhe, & Lang, 1998), during intense
presynaptic background activity or intense stimulation, its value can be
reduced by several times (Bernander, Douglas, Martin, & Koch, 1991; Paré
et al., 1998; Destexhe & Paré, 1999; Borg-Graham, Monier, & Frégnac, 1998;
Hirsch, Alonso, Reid, & Martinez, 1998; Anderson, Carandini, & Ferster,
2000). Thus, depending on the background activity and the nature of the
stimulation, the same synapse can produce different effects on the neuron. It
is then reasonable that the synaptic time constants τs have to be considered
in relation to the effective membrane time constant: what matters for the
neuron behavior is the ratio τs/τm. According to this idea, synaptic filters
can be classified as slow or fast, depending on whether that ratio is larger
or smaller than one, respectively.

The above considerations imply that it is important to know how the
presence of synaptic filters with timescales longer or shorter than the
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membrane time constant affects the neuron’s firing statistics. Previous work
on LIF neurons has determined analytically their firing rate when synapses
have long time constants (Moreno-Bote & Parga, 2004), as well as when they
have short time constants (Ricciardi, 1977; Brunel & Sergi, 1998; Fourcaud &
Brunel, 2002; Camera, Giuglianio, Senn, & Fusi, 2008). By interpolating be-
tween these two limits, an analytical expression for the firing rate exists that
determines its value for all τs (Moreno-Bote & Parga, 2004). Neurons with
both fast and slow synaptic filtering have also been studied in Moreno-
Bote and Parga (2004). Further developments have addressed the case of
conductance-based IF neurons (Moreno-Bote & Parga, 2005) and the effect
of input correlations on a pair of LIF neurons (Moreno-Bote & Parga, 2006).
The expressions for the firing rate are exact in the specified limits of short
or long τs compared to τm and do not require further assumptions about the
amplitude of the noise. A related important issue is to know whether the
ratio between synaptic and membrane time constants determines the oper-
ating regime of the neurons and its computational capabilities. For instance,
it is known that the firing variability depends on that ratio (Svirskis &
Rinzel, 2000; Moreno-Bote & Parga, 2004; Muller, Buesing, Schemmel, &
Meier, 2007; Chizhov & Graham, 2008). Also, in neural networks in which
the effective membrane time constant of the neurons can become very
short, it would be very useful to have analytical predictions for the fir-
ing rate (Shelley, McLaughlin, Shapley, & Wielaard, 2002; Moreno-Bote &
Parga, 2005; Cai, Rangan, & McLaughlin, 2005; Apfaltrer, Ly, & Tranchina,
2006).

Here we introduce a theory to describe the firing rate of general IF neu-
rons receiving arbitrarily filtered inputs, which extends previous results
for LIF neurons with gaussian inputs (Moreno-Bote & Parga, 2004, 2005,
2006; Brunel & Sergi, 1998; Fourcaud & Brunel, 2002). The formalism is
presented in a detailed, didactic manner along with a consideration of use-
ful examples. We first derive the expressions for the firing rate and spike
correlation function in a qualitative way using the adiabatic approach in-
troduced in Moreno-Bote and Parga (2004). The formal derivation of the
expression for the firing rate valid for arbitrary IF neurons with arbitrary
input structure in the limit of long synaptic timescale in the presence or
not of fast filters is provided in the appendix (finer details for the LIF
neuron case are presented in the Supporting Information, available online
at http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2010.06-09
-1036). Then we analyze the expressions of the firing rate and correlation
function for LIF neurons and use them to predict the input-output transfer
function of individual neurons and the synchronous firing pattern of pairs
of neurons receiving both common and independent sources of inputs. We
continue applying the formalism to describe the firing rate of QIF and NTIF
neurons. Finally, we provide an exhaustive list of the analytical expressions
for the firing rate and correlation function of general IF neurons and for the
particular cases of LIF, QIF, and NTIF neurons.
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2 Results

2.1 The Adiabatic Approach. We are interested in describing the fir-
ing statistics of simple but realistic neuron models receiving temporarily
correlated inputs. In this section, we study in a general way the response
properties of neurons with randomly varying inputs. We apply the results
to completely determine the firing rate of IF neurons driven by stochastic
currents with a long correlation timescale. The firing rate in this limit, called
the adiabatic firing rate, is particularly simple and can be derived by qual-
itative means. Thus, we leave its formal derivation for the appendix. The
adiabatic firing rate is compared to another candidate simple expression,
and we show that the latter gives worse fits of the simulated data. Then the
case of fast and slow stochastic inputs is considered. We finally show that
our formalism can be extended to study the correlated firing of a pair of
neurons receiving common as well as independent sources of noise.

2.1.1 The Adiabatic Firing Rate. We start by considering a neuron model
in which the firing rate as a function of a constant input current I can be
computed. We call this quantity ν(I ). Under constant stimulation and for
deterministic neurons, the rate ν(I ) describes completely the statistics of
the output spike train except for an initial phase: the output spike train
is a periodic pattern with interspike intervals of length T(I ) = 1/ν(I ). The
firing rate for a fixed input current can be very easily calculated for IF-like
neurons. However, this idea can be extended to any other neuron model
or real neurons in which the function ν(I ) can be computed numerically or
experimentally.

Because we are ultimately interested in the response of neurons to
stochastic inputs, the steady-state description alone does not suffice, yet
it can be easily extended to the case in which inputs change slowly com-
pared to the dynamics of the neuron under consideration—for instance, to
an LIF neuron with membrane time constant τm and gaussian white noise
filtered with synaptic time constant τs � τm. For more complex neurons, τs

should also be larger than all other timescales present in the system. We will
show that although the timescale separation condition could seem restric-
tive, the equations obtained are applicable even when the input changes as
fast as the dynamics of the neuron.

Let us assume that the condition that the neuron’s dynamics is faster
than the synaptic time constant is satisfied. Then, during a time interval
�t shorter than τs , the current I (t) will be reasonably constant. Therefore,
during that interval, the neuron will fire with a constant rate ν(I (t)) and
ν(I (t)) × �t spikes will be emitted. Since this spike count can be smaller than
one, ν(I (t)) × �t < 1, ν(I (t)) needs to be interpreted as a firing probability
rather than a firing rate.

Finally, let P(I ) be the distribution of input currents, not necessarily
time independent. For instance, in an Ornstein-Uhlenbeck process, the
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distribution will be a time-independent gaussian (Risken, 1989), but in
general it can be skewed, bimodal, or flat, or have any other shape, and it
can depend on time. Hence, the probability density that the neuron emits
a spike can be computed by averaging the rate ν(I (t)) with the probability
distribution of currents as

ν �
∫

dI P(I ) ν(I ). (2.1)

We call this expression the adiabatic firing rate, in analogy with the timescale
separation technique introduced in the early developments of quantum
mechanics by Bohr and Oppenheimer (1927) to deal with the slow motion
of the nuclei in molecules. (See also Risken, 1989, for later applications
of this idea in the field of stochastic dynamical systems to eliminate fast
variables.) This equation shows that the firing rate of a neuron with slow
stochastic inputs can be estimated using the input-to-rate transfer function
of the neuron for stationary inputs and the distribution of the inputs. The
calculations required to compute equation 2.1 are illustrated in Figure 1B.
A complete proof of this result for general IF models and arbitrary forms
of slow stochastic input processes is given in the appendix. Note that the
current does not need to be a scalar.

The adiabatic expression of the firing rate is simple and generally valid
under the following conditions. First, the neuron should have a known
sustained response ν(I ) for constant input current. Second, the current has
to be a slow enough stochastic process with known distribution P(I ). For
stationary input statistics, P(I ) is the steady-state probability distribution
of the current.

When the input statistics is time independent with finite correlation time,
equation 2.1 is equivalent to the temporal average of ν(I (t)),

ν � 1
T

∫ T

0
dt ν(I (t)). (2.2)

Here, the time window T over which the firing rate is averaged is much
longer than the correlation time so that many independent realizations of
the current I (t) occur. In this work we will focus on inputs with stationary
statistics with finite correlation time.

2.1.2 A Suboptimal Alternative Expression for the Firing Rate. One could
argue that equation 2.1 is not the only plausible way of estimating the firing
rate. In fact, another plausible estimate of the firing rate can be built at
follows. First, when the neuron receives a slow current I , it will emit a
spike at intervals T(I ) = 1/ν(I ). This quantity is calculated as the inverse
of the firing rate ν(I ) (since for fixed current, the spike train is periodic).
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Figure 1: Adiabatic firing rate for an IF neuron driven by a noisy current
filtered by slow synapses (B) and when, in addition, there is fast noise (C).
(A) Schematic of a neuron receiving a noisy input filtered by synapses, I (t),
and its response. Here, the distribution of the current is stationary (same at all
times), although this is not necessary in general. (B) A slowly fluctuating cur-
rent (left) generates a slowly fluctuating firing probability (right) in the neuron.
The firing rate of the neuron can be obtained by time-averaging the instanta-
neous firing probability ν(t), equation 2.2. Alternatively, the firing rate can be
analytically computed (middle) by integrating over the current the product of
the probability distribution of the current, P(I ), and the steady-state firing rate
of the neuron receiving constant current I , ν(I ), equation 2.1. (C) When there is
also fast noise, the rate with averaged fast noise (solid line), ν f ast(I ), has to be
used instead of the noise-free firing rate ν(I ) (dotted line). Typically ν f ast is a
smooth function of I .
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Then we could estimate the mean interspike interval (ISI), denoted T , by
averaging T(I ) with the known probability P(I ) as

T �
∫

d I P(I ) T(I ). (2.3)

From this mean ISI, the firing rate of the neuron can be estimated as
ν = 1/T , which is different from that given by the adiabatic expression,
equation 2.1. We call equation 2.3 the fake adiabatic expression for the firing
rate.

Which is the correct equation? In this letter, we prove that equation 2.1
provides the correct estimate of the firing rate for slow stochastic inputs.
Equation 2.3 (with ν = 1/T) or variations of it (see equation 2.22), on the
contrary, deviate systematically from the true firing rate. This is because
averaging T(I ) with P(I ) introduces biases in the estimate of the mean
ISI due to the oversampling of long ISIs (i.e., T(I )s generated with strong
input currents) relative to short ISIs (i.e., T(I )s generated with weak in-
put currents), a problem known as biased sampling (Cox & Lewis, 1966;
Middleton, Chacron, Lindner, & Longtin, 2003). However, when the bias
in equation 2.3 is corrected appropriately, the original expression for the
firing rate in equation 2.1 is recovered, as expected. To see this, note that the
implicit assumption in equation 2.3 that the current I is constant for each
period ISI, with a duration T(I ), leads to the result that the distribution of I
does not follow the desired distribution P(I ), but rather c T(I ) P(I ), where
c is a normalization constant. This suggests that the correction for the bias
in equation 2.3 consists of replacing the distribution P(I ) in equation 2.3
by C P(I ) T−1(I ), where C is a normalization constant. With this replace-
ment, the currents are distributed according to P(I ). Hence, the corrected
expression for the mean ISI becomes

T �
∫

d I C
P(I )
T(I )

T(I ) = C =
(∫

d I P(I ) ν(I )
)−1

, (2.4)

which is identical to the adiabatic expression of the firing rate in equa-
tion 2.1. The above reasoning, however, requires that T(I ) is finite for all I ,
which is a very restrictive condition. For instance, for LIF neurons in both
the sub- and suprathreshold regimes, there are values of the current for
which T(I ) becomes infinity (see section 2.2), making the derivation pre-
sented above inappropriate in this case. On the contrary, we will show that
equation 2.1 holds true even when T(I ) becomes infinity for some set of
currents (i.e., ν(I ) becomes zero). In the following we will use equation 2.3
and a variation of it, equation 2.22 to highlight how large the bias sampling
effect is on the estimation of the firing rate.
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2.1.3 Fast Noise and Slow Noise. An important case arises when fast cur-
rents are present. For instance, AMPA synaptic receptors receiving Poisson
spike trains will produce current fluctuations with a correlation timescale
of a few milliseconds, which is better modeled as fast instead of slow noise.

Our theory can also be extended to include this case. Let ν f ast(I ) be the
firing rate of a neuron receiving a constant current I and where all sources
of fast noise have been averaged. The function ν f ast(I ) does not have a
hard threshold below which firing is forbidden, but it is a rather smooth
function of the input I (see Figure 1C). This is because the presence of fast
noise allows firing even when I is below the firing threshold of the neuron.
Under this condition, the firing rate of a neuron receiving both fast noise
and slow noise with a known distribution P(I ) can be calculated as

ν �
∫

d I P(I ) ν f ast(I ), (2.5)

as shown in the appendix.

2.1.4 Cross-Correlation Function. The formalism that we have described is
not limited to the study of the first-order statistics of the neuron’s firing, but
it can also be extended to account for the second-order statistics. Here we
find the two-point correlation function of the output spike trains of a pair of
IF neurons receiving arbitrary forms of correlated and independent inputs.
The equations are derived in an intuitive way. Finally, simpler equations
are obtained for weakly correlated signals.

We now consider two neurons, not necessarily identical. They fire with
rates ν1(Itot,1) and ν2(Itot,2) when they receive constant input currents Itot,1,
Itot,2. Let us assume that the neurons receive a common stochastic current,
Ic(t), as well as independent currents I1(t) and I2(t), as shown in Figure 2A.
Therefore, the total currents to neurons 1 and 2 are Itot,1(t) = I1(t) + Ic(t) and
Itot,2(t) = I2(t) + Ic(t), respectively. Since the two neurons have a common
stochastic input, Ic(t), they will fire in a correlated way: if neuron 1 emits a
spike at time t, neuron 2 will fire a spike at time t′ more or less likely than
that given by chance (chance probability here means the rate of firing of
neuron 2). The cross-correlation function of the output spike trains of the
neurons is defined as

C(t, t′) =
〈∑

i

δ(t − ti )
∑

j

δ(t′ − tj )

〉
, (2.6)

where ti( j) are the spike times from neuron 1(2), the sums extend over all
output spikes, and the average is across all possible realizations of the
output spikes (see, e.g., Riehle, Grun, Diesmann, & Aertsen, 1997; Bair,
Zohary, & Newsome, 2001). The cross-correlation function describes the
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Figure 2: Cross-correlation between the output spike trains of a pair of neurons
receiving independent and common noisy inputs. (A) Two IF neurons with
common sources of noise will fire in a correlated way; the probability of having
a spike at time t from neuron 1 and another spike at time t′ from neuron 2 will
not be the product of the instantaneous firing rates of the individual neurons.
(B) To compute the correlation function of the output spike trains, C(t, t′), one
has to average the instantaneous firing rates of neuron 1 receiving the currents
I1 and Ic at time t, and the rate of neuron 2 receiving the currents I ′

1 and I ′
c at

time t′ over the distributions of the currents, equation 2.7.
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synchronization pattern between the two spike trains up to second-order
statistics, and it expresses the joint probability density that neuron 1 fires
at time t and that neuron 2 fires at time t′. When the two neurons fire inde-
pendently, the cross-correlation function becomes the product of their firing
rates, ν1ν2. In general, however, the cross-correlation function is different
from the pure product of the firing rates of the two neurons.

As usual, we assume that the current fluctuations are slower than the
membrane time constant of the neurons. The two-point probability density
of the common current is some known function P(Ic, t; I ′

c, t′), which speci-
fies the probability density of having the common current with value Ic at
time t and with value I ′

c at a time t′ (primes denote quantities at time t′).
In the adiabatic approach, the two-point cross-correlation function,

equation 2.6, can be expressed as

C(t, t′) �
∫

d I1 d I ′
2 d Ic d I ′

c P(Ic, t; I ′
c, t′) P(I1) P(I ′

2)

× ν1(I1 + Ic) ν2(I ′
2 + I ′

c). (2.7)

This equation can be understood as follows. Neuron 1 receives a current I1 +
Ic at time t, while neuron 2 receives the current I ′

2 + I ′
c at time t′, as shown in

Figure 2B. Since the current fluctuations are slow, at those times the neurons
fire with probabilities ν1(I1 + Ic) and ν2(I ′

2 + I ′
c), respectively. Equation 2.7

simply states that the two-point correlation function of the output spike
trains is the average of the product of the instantaneous firing rates of
the two neurons evaluated at times t and t′. This average of instantaneous
firing rates over synaptic currents approximates the average over stochastic
realizations of the spikes in equation 2.6.

The integral expression in equation 2.7 can be rewritten in a simpler
way. Since the currents I1 and I ′

2 are independent, the integrals of those two
variables with the factorized distribution P(I1)P(I ′

2) in equation 2.7 can be
computed first, obtaining

C(t, t′) �
∫

d Ic d I ′
c P(Ic, t; I ′

c, t′) ν̃1(Ic) ν̃2(I ′
c), (2.8)

where ν̃i (Ic) = ∫
d Ii P(Ii )ν(Ii + Ic) is the firing rate of neuron i (i = 1, 2)

averaged over its independent current Ii for fixed common current Ic .
This intuitive derivation of the cross-correlation function in the adia-

batic approach is presented here for the first time, and it can be shown to
be identical to the one obtained in Moreno-Bote and Parga (2006) for the
case of LIF neurons receiving filtered white noise (see below). It is worth
emphasizing that equation 2.7 can be applied to more general models of
spiking neurons and to rather general forms of noise distributions and noise
correlation structure.



1538 R. Moreno-Bote and N. Parga

Equations 2.7 and 2.8 become particularly simple when the fluctuations
of the common input are a small fraction of the total current fluctuations
to the neurons. Then the averaged firing rates can be expanded around the
mean value of the common current, μc , in powers of Ic − μc and I ′

c − μc ,
and take the linear approximation to obtain

ν̃i (Ic) � ν̃i (μc) + ν̃ ′
i (μc) (Ic − μc) (2.9)

(here ν̃ ′
i (μc) is the derivative function of ν̃i (Ic) evaluated at the mean cur-

rent). After averaging over Ic and I ′
c we find

C(t, t′) � ν̃1(μc) ν̃2(μc) + ν̃ ′
1(μc) ν̃ ′

2(μc)

×
∫

d Ic d I ′
c (Ic − μc) (I ′

c − μc) P(Ic, t; I ′
c, t′). (2.10)

By noting that the integral in the second term on the right-hand side is the
cross-correlation function of the common input, denoted CI,c(t, t′), equation
2.10 can be written simply as

C(t, t′) � ν̃1(μc) ν̃2(μc) + ν̃ ′
1(μc) ν̃ ′

2(μc) CI,c(t, t′). (2.11)

The first term in the sum is the chance probability of observing spikes
emitted at times t and t′ from neurons 1 and 2, respectively. The second
term expresses the excess probability above that expected by chance that
the spikes are emitted at those times. It is concluded that the autocorrelation
of the common fluctuating input is linearly transformed into the cross-
correlation of the neurons’ output spike trains. For instance, for an Ornstein-
Uhlenbeck process with timescale τs and variance σ 2

I,c one obtains

CI,c(t, t′) = σ 2
I,c e−|t−t′ |/τs , (2.12)

and therefore the cross-correlation function of the output spike trains will
also be an exponential with the same timescale and whose amplitude in-
creases with the square of the common noise amplitude. (It is easy to see
that the cross-correlation function depends in general only on the time
difference t − t′ for stochastic inputs with stationary statistics.)

It is important to note that equations 2.7 and 2.8 not only apply to the
case of small common noise amplitude but also to large amplitudes, since
the adiabatic approach is nonlinear in σ 2

I,c .

2.2 Firing Rate and Correlations of LIF Neurons. Here we summarize
the analytical results for the case of an LIF neuron that follow from the gen-
eral expressions presented above and are formally derived in the appendix.
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A more detailed exposition of the LIF neuron case is provided in the Sup-
porting Information.

2.2.1 LIF Neurons with Slow Filters. We start by considering the case of
synaptic receptors with long time constants. This case is the relevant one to
study the dynamics of neurons in the so-called high-conductance regime, in
which the membrane time constant can become shorter or comparable to the
synaptic time constants. This case naturally arises also when strongly fluc-
tuating GABAA synaptic currents pass through a neuronal membrane with
relatively short τm. It also accounts for the case of neurons strongly inner-
vated by NMDA or GABAB receptors, hypothesized to be crucial to stabilize
working-memory states (Wang, 1999). Here we will focus on synaptic recep-
tors with a single timescale, while the more general case with two or more
slow synapses with different timescales is considered in the Supporting
Information.

The membrane potential V of an LIF neuron obeys

τm V̇ = −V + τm I (t), (2.13)

where τm is the membrane time constant and I (t) is the synaptic current. In
the model, a spike is evoked when V reaches the threshold �, and then the
voltage is reset to H. Without loss of generality, the resting potential is set
at V = 0. We take the absolute refractory period to be zero.

When the number of presynaptic spikes is large and the evoked
postsynaptic potentials are small compared to the voltage threshold, a sum
of input Poisson spike trains can be approximated using the diffusion ap-
proximation by a white noise with mean μ and deviation σ (see Supporting
Information, section 1, and Ricciardi, 1977), generating a current given by
Brunel and Sergi (1998):

τs İ (t) = −I (t) + μ + ση(t). (2.14)

Here, η(t) is a white noise process with zero mean and unit variance, 〈η(t)〉 =
0 and 〈η(t)η(t′)〉 = δ(t − t′), μ is the mean current and σ 2

I = σ 2/2τs is the
variance of the current. The filter introduces exponential correlations in the
current with a correlation time τs ,

〈(I (t) − μ)(I (t′) − μ)〉 = σ 2

2τs
e− |t−t′ |

τs , (2.15)

and therefore the noisy input to the LIF neuron cannot be described by a
white noise process. The process defined in equation 2.14 is known as the
Ornstein-Uhlenbeck process (Risken, 1989). Note that the variance of the
current can be obtained from the correlation function when t = t′.
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The adiabatic expression of the firing rate for the LIF neuron defined
in equations 2.13 and 2.14 can be built using equation 2.1 as follows. First,
the distribution of the current is a gaussian with mean μ and variance
σ 2

I = σ 2/2τs ,

P(I ) = 1√
2πσI

e
− (I−μ)2

2σ2
I . (2.16)

Second, solving equation 2.13 for constant current I with initial condition
H and final condition � leads to the expression of the instantaneous firing
rate

ν(I )−1 = τm ln
(

τm I − H
τm I − �

)
, (2.17)

for I > Imin = �/τm and zero otherwise. Inserting the two above quantities
into equation 2.1, one gets that the firing rate is

ν =
∫ ∞

Imin

d I√
2πσI τm

e
− (I−μ)2

2σ2
I ln−1

(
τm I − H
τm I − �

)
. (2.18)

The system defined in equations 2.13 and 2.14 can be linearly transformed

into an equivalent one using V = μτm + x
√

τm
2 σ and I = μ + z σ√

2τs
. The

normalized current z is distributed as a gaussian with zero mean and unit
variance (see the appendix). In the new variables, the reset and threshold
potential read �̂ = √

2(� − μτm)/σ
√

τm and Ĥ = √
2(H − μτm)/σ

√
τm, and

the firing rate in equation 2.18 becomes

ν =
∫ ∞

�̂/ε

dz√
2π

e−z2/2 ν0(z), (2.19)

with

ν0
−1(z) = τm ln

(
Ĥ − εz

�̂ − εz

)
, (2.20)

where ε = √
τm/τs .

Expanding equation 2.19 in powers of ε in the suprathreshold regime
(μτm > �), we find that the firing rate up to second order is

ν ∼ ν̃0 + τ 2
mν̃2

0

τs

[
τmν̃0(�̂

−1 − Ĥ
−1

)2 − �̂
−2 − Ĥ

−2

2

]
, (2.21)
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Figure 3: Firing rate for an LIF neuron with slow synapses. (Left) The adiabatic
firing rate (bottom line), equation 2.19, is compared to the fake adiabatic rate (top
line), equation 2.22, and simulation results (data points). The last rate provides
very poor predictions. Parameters are μ = 70 Hz, σ 2 = 40 Hz, H = 0, � = 1
and τm = 10 ms. (Right) The adiabatic firing rate as a function of τs remains
constant (horizontal lines) when the amount of noise increases as σ 2 = σ 2

0 τs for
fixed σ 2

0 . The adiabatic expression is good even when τs ∼ 2τm = 20 ms. The
data points approach the analytical limit as τs increases. When H is very close
to �, the firing rate converges more slowly to the adiabatic limit (not shown).
As τs approaches zero, the total noise σ 2 approaches zero. In that limit, the
absence of noise produces a lack of firing in the subthreshold regime, as shown
by the simulation. Parameters from bottom to top: μ = 60 Hz, σ 2

0 = 1500 Hz2;
μ = 70 Hz, σ 2

0 = 2500 Hz2; μ = 70 Hz, σ 2
0 = 5000 Hz2; μ = 80 Hz, σ 2

0 = 5000 Hz2.
Other parameters are as in the left panel.

where ν̃−1
0 = τm ln(Ĥ/�̂). Note that ν̃0 is the rate of an LIF neuron driven

by a noiseless current with intensity μ. An identical expression for the rate
in the suprathreshold regime is found in the Supporting Information using
the Fokker-Planck equation (FPE) associated with the variables (x, z) in
powers of ε. We also show in the Supporting Information that the firing
rate in equation 2.19 does not admit an expansion in powers of ε in the
subthreshold regime (μτm < �). This indicates that a naive expansion of
the solution of the FPE in powers of ε will not work for all regimes. In the
appendix for the general case and in the Supporting Information for the LIF
neuron, we show how to regularize the expansion and find an asymptotic
solution valid for all regimes. The zeroth-order term in the regularized
expansion of the exact rate of an LIF neuron equals equation 2.19.

The prediction of the firing rate given by the adiabatic approach, equation
2.19, has been compared with simulation results in Figure 3. In the left panel,
the noise σ 2 is kept fixed. The adiabatic firing rate (bottom line) becomes
exact when τs is much longer than the membrane time constant of the
neuron, but it also provides a good approximation when τs is comparable
to τm = 10 ms. Only the case of subthreshold neurons has been shown here,
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but similar fits are found for suprathreshold neurons. In the right panel,
the noise has been increased linearly with the timescale of the noise as
σ 2 = σ 2

0 τs for some fixed σ 2
0 . Since the adiabatic firing rate depends on the

noise level through the product of σ 2/τs (recall the definitions of ε, zmin and
the normalized thresholds), by increasing σ 2 linearly with τs , the adiabatic
firing rate does not change (horizontal lines). The simulation results show
that the firing rate approaches the adiabatic limit when τs becomes long and
that the adiabatic rate provides a good prediction when τs ∼ 2τm = 20 ms,
and an acceptable prediction even when τs = τm = 10 ms (the adiabatic rate
accounts for 80% of the simulated rate on average in the last case). These
comparisons also show that the adiabatic approach does not require that
the noise amplitude is small.

2.2.2 Range of Validity of the Adiabatic Approach. It is important to note that
the mean ISIs obtained in the left panel of Figure 3 are very long compared
to the synaptic time constant used (e.g., a rate of 10 Hz equals a mean ISI of
100 ms, which is much longer than the synaptic time constant at that point,
20 ms). Therefore, our theory does not require that the fluctuations live for a
long period of time compared to the mean ISI of the neuron (∼100 ms), but
rather that they live for a time of the order of its membrane time constant
(∼10 ms).

2.2.3 Comparison with the Fake Adiabatic Approach. The adiabatic expres-
sion is much better than other alternatives. For instance, we find that equa-
tion 2.3 predicts zero firing rate in the subthreshold regime in LIF neurons
for all values of τs , since there are values of the current for which the ISI
becomes infinity. Although the zero value is correct in the long τs limit, and
it is also predicted by the adiabatic firing rate, it shows that equation 2.3 is
strictly valid only in that limit. An improved version of the expression that
does not give a trivial erroneous result in the subthreshold regime is one
in which the probability distribution of I is renormalized to include only
those I > Imin for which the ISI is finite, T(I ) < ∞, as

T �
∫ ∞

Imin
d I P(I ) T(I )∫ ∞

Imin
d I P(I )

. (2.22)

However, in this case too, the prediction is worse than that given by the
adiabatic rate, as shown in the left panel of Figure 3 (top line). Smaller but
still substantial disagreements are obtained in the suprathreshold regime.

2.2.4 Equivalent But Computationally Faster Implementation of the Adiabatic
Firing Rate. The adiabatic expression of the firing rate for an LIF neuron
in the long τs limit, equation 2.19, is appealing because of its simplicity. It
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is also very efficient computationally, since it involves the calculation of a
single integral, requiring only a summation of the order of 103 terms.

However, it is possible to enhance further the computational efficiency
of the adiabatic firing rate (Moreno-Bote & Parga, 2006). The fast expression
for the firing rate of an LIF neuron is

ν = lim
t→∞

∞∑
n=1

(εzn(t) − Ĥ)(εzn(t) − �̂)√
2πτm n ε(�̂ − Ĥ)

e−zn(t)2/2, (2.23)

where zn(t) ≡ ε−1(�̂ − Ĥe−t/nτm )/(1 − e−t/nτm ). Unlike equation 2.19, which
involves an integral, equation 2.23 requires only a sum of a series that can
be cut at n ∼ 200 (using t = 200 ms), giving high accuracy. This results
in almost an order of magnitude improvement in computation speed in
comparison with the integral form, equation 2.19. Equations 2.19 and 2.23
predict the same firing rate.

2.2.5 Distribution of Currents Conditioned to Output Spike Times. The dis-
tribution of z (normalized currents) at the output spike time, denoted
p(z|spike), can be computed directly from the probability density flow of
the voltage at threshold (see equations A.20 and A.21 in the appendix; see
also Supporting Information). It can be written as

p(z|spike) = C
e−z2/2

√
2π

ν0(z), (2.24)

defined for z > zmin and C is the normalization constant. Since ν0(z) is
zero for z < zmin, the distribution of z conditioned to the spike times is
skewed toward positive values of the fluctuations. This distribution has
been derived in Moreno-Bote and Parga (2004, 2006) and Schwalger and
Schimansky-Geier (2008).

2.2.6 The Diffusion Approximation. In Figure 4 we check the validity of
the diffusion approximation, equation 2.14. For that purpose, we have gen-
erated excitatory and inhibitory Poisson trains with firing rates νE and νI

and predicted the output firing rate of an LIF neuron with a single synaptic
time constant using formula 2.19. The parameters μ and σ 2 can be written
as (see Supporting Information and Ricciardi, 1977)

μ = NE J EνE − NI J I νI

σ 2 = NE J 2
EνE + NI J 2

I νI . (2.25)

The predictions are in good agreement with the simulation results even for
values of τs lower than τm.
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Figure 4: Output firing rate of an LIF neuron driven by Poisson trains as a func-
tion of τs . The parameters for the Poisson input (see equation 2.25) are J E = 0.02,
νE = 4500 Hz (we have taken NE = 1 and no inhibition) for the bottom curve,
J E = 0.03, νE = 3000 Hz for the middle curve, and J E = 0.03, νE = 5000 Hz,
J I = 0.02, νI = 1000 Hz (NE = NI = 1) for the upper curve. With these parame-
ters, we have, respectively, σ 2 = 1.7, 2.7, and 5.7 Hz, and μ = 90 Hz in all cases.
The other parameters are as in Figure 3 (τm = 10 ms). Full lines are obtained
with equation 2.19.

2.2.7 Short τs Limit and Interpolation Procedure. Until now, we have de-
termined the firing rate of an LIF neuron in the presence of a slow filter.
It would be desirable to know the firing response of these neurons in the
opposite limit in which the synaptic time constants are short but nonzero.
Here we describe how to estimate the firing rate in the presence of a single
filter characterized by any value of τs (Moreno-Bote & Parga, 2004).

A general analytical expression to compute the rate of crossing an absorb-
ing barrier for an arbitrary nonlinear system driven by colored noise with
short timescale τs has been first found by Doering, Hagan, and Levermore
(1987). The authors showed, in particular, that the correction to the rate in re-
lation to the rate with white noise is of order

√
τs . This technique has been ap-

plied to compute the firing rate of an LIF neuron with a fast but finite synap-
tic timescale (Brunel & Sergi, 1998; Fourcaud & Brunel, 2002) obtaining,

ν = F0 − 1.46
√

τsτmF2
0 [R(�̂/

√
2) − R(Ĥ/

√
2)], (2.26)

where we have defined F0 ≡ ν f ast(0) (see equation 2.39), and R(t) =√
π
2 et2

(1 + erf(t)).
We can now interpolate between the two limits, equation 2.19 and 2.26,

by introducing higher orders in
√

τs (Moreno-Bote & Parga, 2004). At short
τs we use

ν = F0 + A
√

τs + Bτs + Cτ 3/2
s , (2.27)
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where A is the coefficient of the correction term in equation 2.26, while at
long τs we employ equation 2.19. Both limits are joined at an intermediate
value of the synaptic time constant, τs,inter ∼ τm, and B and C are set to
obtain a continuous and differentiable interpolating curve at τs = τs,inter .
The exact value of τs,inter does not alter the interpolation curve much, and
it can be safely taken as a constant independent of the input parameters in
the subthreshold regime. When the input is in the suprathreshold regime,
a rather higher τs,inter has to be chosen, but again it does not depend too
much on the values of the parameters.

2.2.8 Cross-Correlogram of Pairs of Neurons with Synaptic Filters. Another
application of our theory refers to the correlation pattern of two neurons in
response to independent and common inputs. We consider two LIF neurons,
whose voltages are coupled through the equations

τmV̇1 =−V1 + τm(I1(t) + Ic(t)),

τmV̇2 =−V2 + τm(I2(t) + Ic(t)). (2.28)

Each neuron receives an independent current Ii (t) (i = 1, 2) and a com-
mon current Ic(t). The latter can result from shared presynaptic inputs, but
also from different presynaptic inputs that are themselves correlated. The
independent and common currents are described by the equations

τs İi (t) =−Ii (t) + μind + σindηi (t),

τs İc(t) =−Ic(t) + μc + σcηc(t), (2.29)

where the ηs are independent white noise waveforms with zero mean
and unit variance. The currents are therefore colored gaussian noises with
timescale τs , mean μind , and variance σ 2

ind/
√

2τs for the independent com-
ponents and mean μc and variance σ 2

c /
√

2τs for the common component.
Note that each neuron receives inputs with total mean μ = μind + μc and
total variance σ 2 = σ 2

ind + σ 2
c . The two neurons do not need to be identical,

but for simplicity, we consider only identical cells here.
The synchronous firing pattern between the two LIF neurons is described

by the cross-correlation function of the output spike trains, C(t, t′), which
in the adiabatic approach is given by equation 2.7. Because the inputs have
stationary statistics, we can write C(�) ≡ C(t, t + �). Using the definitions
u1 = √

2τs(I1 + Ic − μ)/σ and u2 = √
2τs(I ′

2 + I ′
c − μ)/σ and integrating out

two of the current variables, equation 2.7 becomes

C(�) =
∫ ∞

�̂/ε

du
∫ ∞

�̂/ε

du2 P(u2,�|u1) p(u1) ν0(u1) ν0(u2), (2.30)
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where ν0(u) is as in equation 2.19, P(u2,�|u1) is a gaussian distribution over
the variable u2,

P(u2,�|u1) = 1√
2π (1 − e−2|�|/τs σ 4

c /σ 4)
e
− (u2−u1e−|�|/τs σ2

c /σ2)2

2(1−e−2|�|/τs σ4
c /σ4) , (2.31)

and p(u1) is a gaussian with mean zero and unit variance.
An equivalent expression for the cross-correlation function of the output

spike trains for two LIF cells has been found in Moreno-Bote and Parga
(2006),

C(�) = lim
t→∞

∞∑
n,m=1

(εan − Ĥ)(εbn − Ĥ)

n m τ 2
m ε2 (�̂ − Ĥ)2

(εam − �̂)(εbm − �̂)P(bm,�|an) p(an), (2.32)

where an ≡ un(t) and bm ≡ um(t + �), with

un(t) ≡ ε−1(�̂ − Ĥe−t/nτm )/(1 − e−t/nτm ) . (2.33)

The function P(u2,�|u1) is a gaussian with mean 〈u2(�, u1)〉 = u1e−�/τs σ 2
c /

σ 2 and variance Var(u2(�)) = 1 − e−2�/τs σ 4
c /σ 4, and p(u1) is a gaussian with

mean zero and unit variance, as defined in equation 2.30. These distributions
need to be evaluated at the corresponding values of an and bm, which depend
on times t and t + �, respectively.

The two analytical expressions, equations 2.30 and 2.32, are compared to
simulations in Figure 5. The two predictions give the same numerical values
(thick full line) and are very close to the simulated cross-correlation function
even when similar values of τs and τm are used. The linear approximation
of the cross-correlation function, equations 2.10 and 2.11 (see Section 2.5),
subestimates the true values but also provides a good match. The linear
prediction improves as the amount of common noise relative to the inde-
pendent noise lowers (note that in the simulations the amount of common
noise used is not small compared to the amount of independent noise).
The linear approximation provides a fast estimate of the cross-correlation
function. Equation 2.32 consists of a double sum over an infinite series,
but in practice it is extremely fast because it can be cut using the first two
hundred terms in each sum (use t = 200 ms). Equation 2.30 provides the
slowest prediction, since it involves a double integral.

The cross-correlograms are typically characterized by a single peak in
both the sub- and suprathreshold regimes when the fraction of total noise
that is common is small, while oscillatory patterns arise when the frac-
tion approaches one (not shown; Moreno-Bote & Parga, 2006). For small
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Figure 5: Normalized cross-correlation function of the output spike trains
from two LIF neurons receiving common as well as independent sources of
noise filtered by synapses. This is defined as Cnor (�) = ν−1C(�) − ν, where ν

is the firing rate of the neurons. The full, thick full, and dashed lines corre-
spond to numerical simulations, the prediction using equation 2.30 or 2.32,
and the linear approximation given by equations 2.10 and 2.11, respectively.
Parameters are μ = 80 Hz, σ 2

ind = σ 2
c = 16 Hz, H = 0.5, � = 1, τm = 10 ms, and

τs = 20 ms.

fractions, the correlation timescale of the output spike trains is τs , the time
constant of the synapses driving the two neurons, as predicted by the linear
approximation in equations 2.10 and 2.11.

Here, we have described the cross-correlation function of the output
spike trains of a pair of LIF neurons. However, our theory also allows a
detailed description of other statistical properties of the spiking response,
such as the coefficient of variation of the ISIs (CVI SI ), the Fano factor of the
spike count of the output spike train (FN), and its autocorrelation function
(Moreno-Bote & Parga, 2006).

2.2.9 Probability Distribution of the Voltage. It is also possible to deter-
mine the probability distribution of the normalized voltages, P0(x), as (see
Supporting Information)

P0(x) = H(x − Ĥ)
∫ ∞

�̂/ε

dz
e−z2/2 ν0(z) τm√

2π (εz − x)
+ 1√

2π ε
e−x2/2ε2

, (2.34)

where H(y) is the Heaviside (step) function. This distribution reveals the
existence of two different states. One of them corresponds to firing periods
of the neuron (first term) and the other to silent periods (second term).
The latter, which can be considered as the free distribution (i.e., no effect
of the voltage threshold), is a gaussian with width ε = √

τs/τm. A similar
expression for the voltage distribution in the case of a conductance-based
IF neuron has been found in Moreno-Bote and Parga (2005), where also two
different regimes were characterized.



1548 R. Moreno-Bote and N. Parga

2.2.10 LIF Neurons with One Fast and One Slow Synaptic Type. We con-
tinue the discussion of slow filters this time in the presence of a second,
fast filter. This is a possible scenario found in a study about the effect of
background activity on τm when AMPA (fast) and GABAA (slow) synaptic
receptors types are present (Destexhe, Rudolph, Fellous, & Sejnowski, 2001).
In that work, it was argued that background activity reduces the membrane
time constant of the neuron several times, so that τm ∼ 5 ms. Then AMPA
synapses are fast compared with τm, and we can approximate τAMPA = 0.
However, GABAA receptors display a slower time decay, τGABAA ∼ 10 ms,
and they can be taken as slow compared with the membrane dynamics.

In this case, the total current in equation 2.13 has two contributions,
I (t) = I1(t) + I2(t), which in the diffusion limit are

τs İ1(t) =−I1(t) + μ1 + σ1η(t)

I2(t) =μ2 + σ2ζ (t). (2.35)

The first equation corresponds to the inhibitory current, in which τs can
be made equal to τGABAA . The second equation corresponds to the fast
approximation of AMPA synaptic receptors. The quantities μ1, μ2 and σ 2

1 ,
σ 2

2 are the means and variances of the inhibitory and excitatory inputs,
and η(t) and ζ (t) are two independent white noise processes with unit
variance. Defining μ ≡ μ1 + μ2 and performing the linear transformation

V = μτm + x
√

τm
2 σ2 and I1 = μ1 + z σ1√

2τs
, the equations for the voltage and

the current are transformed into

ẋ = 1
τm

[−x +
√

2τm ζ (t) + √
αε z], (2.36)

ż = − z
τs

+
√

2
τs

η(t).

Here, ε = √
τm/τs , α ≡ σ 2

1 /σ 2
2 , and the threshold and reset potentials now

become �̂ = √
2(� − μτm)/σ2

√
τm and Ĥ = √

2(H − μτm)/σ2
√

τm. The cur-
rent autocorrelation is

〈(I (t) − μ)(I (t′) − μ)〉 = σ 2
2 δ(t − t′) + σ 2

1

2τs
e− |t−t′ |

τs . (2.37)

Note that the autocorrelation has a delta function, something that did not
happen with a single slow filter, equation 2.15.

The firing rate valid for long τs can be found by performing an expansion
of the FPE associated to the variables (x, z) in powers of ε = √

τm/τs (see
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the appendix and Supporting Information). Up to second order, it takes the
expression

ν =
∫ ∞

−∞

dz√
2π

e−z2/2ν f ast(z), (2.38)

with

ν f ast(z)−1 =
√

π

2
τm

∫ �̂−ε
√

αz

Ĥ−ε
√

αz
dt et2/2 (1 + erf(t/

√
2)), (2.39)

where erf(t) is the error function.
The quantity ν f ast(z) in equation 2.38 has an intuitive meaning: it is

the rate of an LIF neuron driven by a white noise input with effective
mean μe f f = μ + zσ1/

√
2τs and variance σ 2

2 (Ricciardi, 1977). As it can be
appreciated, the output firing rate is given by the average of ν f ast(z) with
the stationary distribution of z, as in the case with a single slow filter.

Formula 2.38 admits an expansion in powers of ε (Supporting Informa-
tion). At leading order, the rate is just F0 ≡ ν f ast(0), the firing rate of an
LIF neuron driven by a white noise input with mean μ and variance σ 2

2
(Ricciardi, 1977). The firing rate approaches F0 as the synaptic time con-
stant increases, as shown in Figure 6, where a comparison between the
predictions provided by equation 2.38 and simulated data is presented. A
perturbative expansion of the firing rate in equation 2.38 in powers of 1/τs

exists in both the supra- and the subthreshold regimes. This contrasts with
the case of a single slow filter, where the firing rate admitted a perturbative
expansion in powers of 1/τs only in the suprathreshold regime.

An expression for the output firing rate identical to that in equation
2.38 has been found in Moreno, de la Rocha, Renart, and Parga (2002) and
Moreno-Bote, Renart, and Parga (2008) for an input with spike correlations.
More specifically, in that work, we calculated the output firing rate of an
LIF neuron driven by exponentially correlated presynaptic spikes charac-
terized by a correlation time constant τc and magnitude α. However, in the
situation presented in this work, the presynaptic currents in equation 2.35
are modeled as white noises that approximate independent Poisson firing
of a pool of presynaptic neurons (see the Supporting Information). The two
expressions are identical because in the presence of two filters, one slow
and another infinitely fast, the total input I (t) has exactly the exponential
correlations (see equation 2.37) that were considered in Moreno et al. (2002)
and Moreno-Bote et al. (2008) to model exponentially correlated spikes with
correlation time τc = τs and positive correlation magnitude α = σ 2

1 /σ 2
2 .

The results found above can be extended to any other IF neuron model.
A general formula similar to equation 2.38 for the firing rate of a general IF
neuron with both fast and slow filters is given in the appendix.
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Figure 6: Output firing rate for an LIF neuron with one fast and one finite
τs synaptic filters in both the sub- (left) and suprathreshold (right) regimes as
a function of τs . The synaptic timescale τs can correspond to the decay time
constant of inhibitory synapses (see text). Solid lines correspond to the rate
predicted by formula 2.38, and the ticks on the right indicate the firing rate limit
as τs approaches infinity. In the subthreshold regime, μ = 80 Hz (top curve)
and μ = 40 Hz (bottom curve), and in both cases σ 2

AMPA = 20 Hz and σ 2
GABA =

80 Hz (α = 4). In the suprathreshold regime μ = 210 Hz, σ 2
AMPA = 0.1 Hz and

σ 2
GABA = 3.6 Hz (α = 36). The horizontal line is the firing rate to which the firing

rate approaches. In both regimes τm = 5 ms and the other parameters are as in
Figure 3.

2.2.11 The Transfer Function with Slow and Fast Synaptic Filters. We plot
in Figure 7 the input-to-rate transfer function for an LIF neuron. The firing
rate is plotted as a function of the mean current μ for three different τs for
both a single slow filter (left) and one slow and another fast filter (right).
As τs increases, the fluctuations of the slow input noise are filtered out,
and the curve becomes steeper as a function of μ. For the same mean input
drive μ, the firing rate decreases as a function of τs . In these figures, the
single formulas 2.19 and 2.38 are used without interpolation to test their
range of validity. Even when the synaptic time constant is chosen to be
τs = τm = 10 ms (top curves), the prediction is rather close to the simulation
results. Note that in the presence of fast noise, the transfer function is
smoother than in the case of a single slow filter.

2.3 Firing Rate for the QIF Neuron. The adiabatic expression for the
firing rate of an LIF neuron, equation 2.19, is an example of the more general
expression for the rate of a spiking neuron with slow noise given in equation
2.1 (see also equation A.22). Here, we apply the general theory to the QIF
neuron (Ermentrout & Kopell, 1986; Wang & Buzsaki, 1996; Hansel & Mato,
2003; Brunel & Latham, 2003). This neuron model is expected to describe
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Figure 7: Input-to-rate transfer function for an LIF neuron. (Left) Output firing
rate as a function of μ for a neuron with a single synaptic filter. The synaptic
time constant is τs = 10, 40, and 150 ms for the upper, intermediate, and bottom
curves. In all cases, the input variance is σ 2 = 30 Hz. (Right) Output firing rate as
a function of μ for a neuron with an infinitely fast and a slow synaptic filter. The
synaptic time constant is τs = 10, 30, and 100 ms for the upper, intermediate,
and bottom curves. In all cases, the input variances are σ 2

AMPA = 4 Hz and
σ 2

GABA = 20 Hz, giving α = 5. Besides, H = 0, � = 1 and τm = 10 ms for the two
panels.

the dynamics of type I neurons when the output firing rate is low. It obeys
the equation

τmV̇ = V2 + τm I (t), (2.40)

where the current I (t) is an Ornstein-Uhlenbeck process with timescale
τs , mean μ, and variance σ 2/2τs , as defined in equation 2.14. For constant
current I , the firing rate is

ν(I ) =
√

I
τm

[
arctan

(
�√
τm I

)
− arctan

(
H√
τm I

)]−1

, (2.41)

where � and H are the threshold and reset potentials of the neuron (Hansel
& Mato, 2003). If these potentials are set at H = −∞ and � = ∞, then the
firing rate is

ν(I ) = 1
π

√
I
τm

. (2.42)

For this case, because of the quadratic term in equation 2.40, the membrane
potential can travel from the reset to the threshold voltages in a finite time.
Using our general equation for the firing rate of an IF neuron with slow
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Figure 8: Output firing rate for a QIF neuron in the subthreshold regime (μ <

0) as a function of τs . Simulation results are compared with the theoretical
prediction, equation 2.43 (solid curves). Input parameters are μ = −103 Hz
and σ 2 = 2 105, 105, and 2 104 Hz from top to bottom. The reset and threshold
potentials are at −∞ and ∞, respectively, and τm = 10 ms.

filters (equations 2.1 and A.22), we find that the output firing rate for long
τs of a QIF neuron with infinite threshold and reset potentials is

ν = 1√
2π3τm

∫ ∞

zmin

dz e−z2/2
√

μ + σ√
2τs

z, (2.43)

with zmin = −√
2τsμ/σ (a similar expression holds when the potentials take

finite values). In the subthreshold regime (μ < 0), this firing rate cannot
be expressed as a series in 1/τs . However, in the suprathreshold regime
(μ > 0), the expansion is possible, and it is

ν = 1
π

√
μ

τm

(
1 − σ 2

16μ2τs

)
(2.44)

(see Brunel & Latham, 2003, and section 3). Equation 2.43 provides a gen-
eral expression for both sub- and suprathreshold regimes. In Figure 8 we
have plotted the output firing rate of a QIF neuron simulated numerically
by equations 2.40 and 2.14, and we have compared the results with the the-
oretical prediction. The predictions are excellent for τs ≥ τm = 10 ms and
good even for τs shorter than τm.

2.4 Noise-Thresholded IF Neuron. Here we consider a neuronal inte-
grator in which the noise is rectified so that the drift is always nonnegative
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Figure 9: Simulated and exact theoretical output firing rate as an function of τs

for an NTIF neuron in the suprathreshold regime (top) and in the subthreshold
regime (bottom). Input parameters are μ = 50 Hz and σ 2 = 50 Hz (top) and
μ = −100 Hz and σ 2 = 450 Hz (bottom). In the two cases, H = 0 and � = 1.

(i.e., the voltage is moving always upward). The voltage of the noise-
thresholded IF (NTIF) neuron obeys

V̇ =
(

μ + z
σ√
2τs

)
H(z − zmin) (2.45)

with zmin = −√
2τsμ/σ . With this choice, the drift is always a nonnegative

function. In this case, the formula derived for long τs ,

νexact = 1√
2π (� − H)

[
μ

∫ ∞

zmin

dz e−z2/2 + σ√
2τs

e−z2
min/2

]
, (2.46)

is exact for all τs (see the right panel in Figure 9). It is also easy to check
that the density P(V, z) = H(V − H)p(z)/(� − H), where p(z) is a normal,
solves exactly the FPE associated with equation 2.45. Equation 2.46 can
also be obtained from the general expression for the firing rate of nonleaky
integrators found in Brette (2004).

2.5 List of Expressions. In this section, we provide an exhaustive list of
the analytical expressions found in the letter. The expressions for the firing
rates can be obtained from the general theory presented in the appendix.
In the examples considered here, we use Ornstein-Unlenbeck processes
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(colored noise) to generate the input currents, equation 2.14, but a broad
range of noises can be considered, as described in the appendix.1

2.5.1 The Adiabatic Firing Rate for Slow Input Currents.

a. The general expression for the adiabatic firing rate is (see equation 2.1)

ν =
∫

d I P(I ) ν(I ), (2.47)

where ν(I ) is the steady-state firing rate of the neuron receiving a constant
current I , and P(I ) is the distribution of currents. The formal derivation
for this expression for a general IF neuron and arbitrary input distributions
is provided in equation A.22.

b. The firing rate of an LIF neuron driven by colored inputs with long
timescale τs can be calculated as (see equation 2.19)

ν =
∫ ∞

�̂/ε

dz√
2π

e−z2/2 ν0(z), (2.48)

with ν0
−1(z) = τm ln( Ĥ−εz

�̂−εz
), �̂ = √

2(� − μτm)/σ
√

τm, Ĥ = √
2(H −

μτm)/σ
√

τm, and ε = √
τm/τs . The adiabatic expression provides an excel-

lent approximation to the firing rate as long as τs > τm. A detailed proof
of this particular case is provided in the Supporting Information. In the
suprathreshold regime, the firing rate up to second order in ε is (see equation
2.21)

ν = ν̃0 + τ 2
mν̃2

0

τs

[
τmν̃0(�̂

−1 − Ĥ
−1

)2 − �̂
−2 − Ĥ

−2

2

]
, (2.49)

where ν̃−1
0 = τm ln(Ĥ/�̂).

c. An equivalent expression for the LIF neuron receiving colored inputs
with long timescale τs is given by (see equation 2.18)

ν =
∫ ∞

Imin

d I√
2πσI τm

e
− (I−μ)2

2σ2
I ln−1

(
τm I − H
τm I − �

)
, (2.50)

1The firing rate and correlation function for other models of noise can be obtained by
replacing the gaussian distributions in the expressions presented here by the correspond-
ing steady-state distributions.
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where Imin = �/τm and σ 2
I = σ 2/2τs is the variance of the input current.

This expression is linked to that in b by the transformation I = μ + z σ√
2τs

.
See the Supporting Information for an application to AMPA and NMDA
synaptic receptors.

d. The fast implementation of the firing rate for the LIF neuron driven
by colored inputs with long timescale τs is (see equation 2.23)

ν = lim
t→∞

∞∑
n=1

(εzn(t) − Ĥ)(εzn(t) − �̂)√
2πτm n ε(�̂ − Ĥ)

e−zn(t)2/2, (2.51)

with zn(t) ≡ ε−1(�̂ − Ĥe−t/nτm )/(1 − e−t/nτm ). This expression is equivalent
to that in b. Only the first 200 terms are required for an excellent approxi-
mation (use t = 200 ms).

e. The firing rate of a QIF neuron receiving colored inputs with long
timescale τs is (see equation 2.43)

ν = 1√
2π3τm

∫ ∞

zmin

dz e−z2/2
√

μ + σ√
2τs

z, (2.52)

with zmin = −√
2τsμ/σ (a similar expression holds when the potentials take

finite values). In the suprathreshold regime (μ > 0) this expression is equiv-
alent to (see equation 2.44)

ν = 1
π

√
μ

τm

(
1 − σ 2

16μ2τs

)
. (2.53)

f. The firing rate of an NTIF neuron receiving colored inputs with long
timescale τs is (see equation 2.46)

νexact = 1√
2π (� − H)

[
μ

∫ ∞

zmin

dz e−z2/2 + σ√
2τs

e−z2
min/2

]
, (2.54)

with zmin = −√
2τsμ/σ . In this case, the expression is exact for all τs .

2.5.2 The Firing Rate with Fast and Slow Filters.

a. The general expression for the firing rate is (see equation 2.5)

ν =
∫

d I P(I ) ν f ast(I ), (2.55)

where ν f ast(I ) is the steady-state firing rate of the neuron receiving a con-
stant current I and averaged across the fast noise. A proof for this expression
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for a general IF neuron and arbitrary input distributions can be found in
equation A.33.

b. The firing rate of an LIF neuron receiving both white noise inputs and
colored inputs with long timescale τs is written as (see equation 2.38)

ν =
∫ ∞

−∞

dz√
2π

e−z2/2ν f ast(z), (2.56)

with ν f ast(z)−1 = √
π
2 τm

∫ �̂−ε
√

αz
Ĥ−ε

√
αz

dt et2/2 (1 + erf(t/
√

2)).

2.5.3 Correlation Function.

a. The general expression for the two-point correlation function for
two neurons receiving correlated colored noise with long timescale is (see
equation 2.7)

C(t, t′) =
∫

d I1 d I ′
2 d Ic d I ′

c P(Ic, t; I ′
c, t′) P(I1) P(I ′

2)

×ν1(I1 + Ic) ν2(I ′
2 + I ′

c), (2.57)

where νi (I ) is the steady-state firing rate of neuron (i = 1, 2) driven by
constant current I , P(Ii ) is the distribution of current Ii to neuron i , and
P(Ic, t; I ′

c, t′) is the joint probability density of the common current at two
different times.

b. The linear approximation (valid for weak correlations), equation 2.11,
of the previous expression is

C(t, t′) � ν̃1(μc) ν̃2(μc) + ν̃ ′
1(μc) ν̃ ′

2(μc) CI,c(t, t′) , (2.58)

where ν̃i (Ic) = ∫
d Ii P(Ii )ν(Ii + Ic), ν̃ ′

i (μc) is the derivative of ν̃i (Ic) evaluated
at the mean value of Ic , μc , and

CI,c(t, t′) =
∫

d Ic d I ′
c (Ic − μc) (I ′

c − μc) P(Ic, t; I ′
c, t′). (2.59)

c. The two-point correlation function of the output spike train for two LIF
neurons receiving independent as well as common colored inputs (common
and total input variances σ 2

c and σ 2 respectively (see equations 2.28 and 2.29)
with long timescale τs is calculated as (see equation 2.30)

C(�) =
∫ ∞

�̂/ε

du
∫ ∞

�̂/ε

du2 P(u2,�|u1) p(u1) ν0(u1) ν0(u2), (2.60)
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where

P(u2,�|u1) = 1√
2π (1 − e−2|�|/τs σ 4

c /σ 4)
e
− (u2−u1e−|�|/τs σ2

c /σ2)2

2(1−e−2|�|/τs σ4
c /σ4) , (2.61)

and p(u1) is a gaussian with mean zero and unit variance.
d. The linear approximation of the cross-correlation function for two LIF

neurons given in c is

C(�) = ν̃(μc)2 + ν̃ ′(μc)2 CI,c(�), (2.62)

where ν̃(Ic) = ∫
d I P(I )ν(I + Ic) with ν−1(I ) = τm ln( τm I−H

τm I−�
), ν̃ ′(μc) is the

derivative of ν̃(Ic) evaluated at μc , and

CI,c(�) = σ 2
c

2τs
e−|�|/τs . (2.63)

e. The fast implementation of the correlation function given in c for two
LIF neurons is (see equation 2.32)

C(�) = lim
t→∞

∞∑
n,m=1

(εan − Ĥ)(εbn − Ĥ)

n m τ 2
m ε2 (�̂ − Ĥ)2

(εam − �̂)(εbm − �̂)P(bm,�|an) p(an),

where an ≡ un(t) and bm ≡ um(t + �) with

un(t) ≡ ε−1(�̂ − Ĥe−t/nτm )/(1 − e−t/nτm ), (2.64)

P(u2,�|u1) is a gaussian distribution with mean 〈u2(�, u1)〉= u1e−�/τs σ 2
c /σ 2

and variance Var (u2(�)) = 1 − e−2�/τs σ 4
c /σ 4, and p(u1) is a gaussian distri-

bution with mean zero and unit variance, as in c. Only the first two hun-
dred terms in each sum are required for an excellent approximation (use
t = 200 ms). This expression is equivalent to that in c.

3 Discussion

We have developed a theory that describes analytically the firing rate of
IF neurons driven by arbitrary forms of slow stochastic inputs and when
fast forms of noise are present too. The theory is exact when the timescale
governing the noise fluctuations is much longer than the intrinsic timescales
of the neuron, but it can also be applied to the case in which the timescales
are comparable. It is worth emphasizing that our theory does not require



1558 R. Moreno-Bote and N. Parga

that the interspike intervals are short compared to the timescale of the
stochastic inputs, but rather that the latter is longer or comparable to the
membrane time constant of the neuron. Our approach does not require that
the noise amplitude is small either.

Other work has also addressed the problem of studying the firing
properties of IF-like neurons driven by slow stochastic inputs. Salinas and
Sejnowski (2002) considered an input current that could take two discrete
values. Although interesting, the input model cannot approximate the
current generated by a sum of spike trains. Svirskis and Rinzel (2000) have
found an estimate of the firing rate of a neuron model in which the potential
can be above threshold and the reset effect is not included. Middleton et al.
(2003) have studied the distributions of interspike intervals in nonleaky IF
neurons with slow stochastic inputs and provided analytical expressions
for them that are valid in the limit of small noise amplitude and when the
synaptic timescale is at least one order of magnitude longer than the mean
interspike interval. Their technique cannot be applied to compute the firing
rate of LIF neurons in the noise-driven regime since it requires that for
any frozen value of the input noise, the interspike interval is noninfinity.
Schwalger and Schimansky-Geier (2008) have studied the interspike
interval distributions and the Fano factor of the spike count of the output
spike train in LIF neurons driven by slow stochastic inputs and derived
analytical expressions for them. The computation of the interspike interval
distribution requires knowing the distribution of synaptic currents at the
spike times found in Moreno-Bote and Parga (2004, 2006). Their analytical
expressions are valid when the synaptic time constant is several orders of
magnitude longer than the membrane time constant. In Moreno-Bote and
Parga (2006), we have developed a method that allows computing the Fano
factor and the autocorrelation function of the output spike trains accurately
even when τs is similar to τm. The crucial difference between the two
approaches lies in that Schwalger and Schimansky-Geier (2008) assume that
the currents are constant across time after an output spike, while in Moreno-
Bote and Parga (2006), we fully consider the stochastic temporal evolution
of the currents after an output spike. Gerstner (1999) has studied models in
which the threshold potential after a spike is a slow, random variable. These
models can be solved exactly, but they cannot be mapped to IF neurons
with slow, noisy inputs. This is because the noisy threshold is drawn from a
distribution only at the moments of the spikes, not continuously over time,
as it happens in neuron models receiving fluctuating inputs. In a recent
work, Brunel and Latham (2003) have used our naive expansion in powers
of 1/

√
τs for long synaptic time constants (described in detail in Supporting

Information) to compute the firing rate of a QIF neuron in the suprathresh-
old regime in that limit. However, our naive expansion can be applied only
to the suprathreshold regime, in which the mean input drive dominates
the spiking behavior of the neuron and noise plays a secondary role.
Here, using a regularized expansion, we have found an expression for
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the firing rate of a QIF neuron valid in both the supra- and subthreshold
regimes.

Chizhov and Graham (2008) have elaborated a new procedure to com-
pute the firing rate of LIF neurons receiving colored noise with arbitrary
timescale τs . Our and their analytical expressions for the firing rate have
been compared in their Figure 4, providing both a good match with the
simulated data. Their method, however, differs from ours substantially.
The reset effect after generation of a spike is not considered in Chizhov
and Graham (2008), which makes the statement of the problem easier. This
approximation is well justified in cases in which the interspike intervals
are longer than the membrane time constant. Moreover, their calculation
of the firing rate in the stationary case involves two steps. First, the associ-
ated FPE without reset effect is solved numerically for several values of the
neuron parameters and τs , and the results are then fit by simple functions;
the fits are good at least in the parameter regime used. And second, these
simple fit functions are employed in the final expression of the firing rate,
which involves a double integral that can only be computed numerically.
In contrast, by solving analytically the FPE with reset effect, we have pro-
vided analytical expressions for the firing rate of general IF neurons that
are exact in the long τs limit, involve a single integral for the LIF and QIF
neurons, and whose asymptotic behavior is mathematically different from
that obtained in Chizhov and Graham (2008) for the LIF neuron.

Recently Carandini (2004) has introduced a model (the gaussian-
rectification model) to characterize the firing response of neurons under
stimulation in visual cortex. First, the voltage responses of the neuron to
the stimulus are averaged over trials and then filtered at 50 Hz to obtain
a coarse voltage, Vc . Then for any arbitrary value of the coarse voltage,
the firing probability of the neuron given the voltage, ν(Vc), is experimen-
tally obtained. Several interesting characteristics of the firing response can
then studied, but interesting to us is the way the mean firing rate would
be computed. Since the voltage distribution, PG(Vc), can be experimentally
computed (it is well approximated by a gaussian), then the mean firing rate
could be obtained by averaging the rate with the voltage as

ν =
∫

dVc PG(Vc) ν(Vc). (3.1)

Typically the function ν(Vc) is smooth, as it corresponds to the case of
averaging the voltage over all fast fluctuations over a time window of
20 ms (50 Hz low pass filtering). Therefore, equation 3.1 resembles the
adiabatic expression for the firing rate of a neuron driven with fast and slow
stochastic inputs, equation 2.5, with the difference that the voltage average is
replaced by the synaptic current average. Carandini (2004) has presented the
above formalism to describe quantitatively the firing response of visually
stimulated neurons. We have derived a similar description in terms of input
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currents (Moreno-Bote & Parga, 2004) as a formal way of characterizing the
firing rate of neurons receiving inputs with long correlation timescales.

The difference between averaging voltage in Carandini’s model and
synaptic inputs (currents or conductances) in our theory is substantial.
Since voltages are necessarily upper-bounded by the spiking threshold of
the neuron, computing the firing rate as a function of the voltage might
be susceptible to large statistical errors, since many possible firing rates
will correspond to similar voltages around the spiking threshold. However,
computing the firing rate as a function of the input current (or synaptic
conductances) does not suffer this statistical problem, since currents are not
upper-bounded in the range of values typically observed. In fact, we have
previously shown that the firing rate of conductance-based IF neurons can
be computed using an average of the firing rate as a function of the instanta-
neous synaptic conductances over the distribution of synaptic conductances
(Moreno-Bote & Parga, 2005). Since voltages and synaptic conductances can
be measured in vivo, it would be interesting to compare quantitatively the
predictions for the firing properties of visual cortex neurons using the two
alternative ways of averaging discussed above.

In this letter, we have also provided expressions for the cross-correlation
function between the output spike trains of two IF neurons receiving com-
mon as well as independent sources of noise and applied the theory to the
LIF neuron (see also Moreno-Bote & Parga, 2006). The theory allows describ-
ing quantitatively the peak, width, area of the cross-correlation function,
and the correlation coefficient of the output spike trains. We have also found
simplified equations for the cross-correlation function that establish a linear
relationship between input and output correlations. Several recent works
have described analytically the temporal profile of the cross-correlation
function of a pair of spiking neurons, but using simplified models that do
not have the after-spike reset characteristic of the IF neuron (Svirskis &
Hounsgaard, 2003; Tchumatchenko, Malyshev, Geisel, Volgushev, & Wolf,
2010; Burak, Lewallen, & Sompolinsky, 2009). De la Rocha, Doiron, Shea-
Brown, Josic, and Reyes (2007) have presented analytical expressions to
compute the coefficient of correlation for LIF neurons in the limit of weak
input correlations, but these expressions do not allow an analytical descrip-
tion of the temporal profile of the cross-correlation function. Our theory and
its extension to interconnected neurons might be crucial for describing the
temporal correlation patterns found in retina and cortex (Riehle et al., 1997;
Bair et al., 2001; Kohn & Smith, 2005; Pillow et al., 2008) and the determi-
nation of connectivity matrices underlying those patterns using IF neurons
as the basic functional units.

Although we have focused on the description of the firing rate and cross-
correlation function of the output spike trains of a pair of IF neurons, our
theory can also be applied to study other statistical properties of the spiking
response, such as the coefficient of variation of the ISIs (CVI SI ), the Fano fac-
tor of the spike count of the output spike train (FN), and its autocorrelation
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function. It has been shown previously that those statistical quantities can
be obtained for LIF neurons from the adiabatic approach (Moreno-Bote &
Parga, 2006). A generalization of that formalism is possible and will al-
low the description of second-order firing statistics for general IF neurons
driven by arbitrary forms of noise. In addition, it would be desirable to
extend our adiabatic approach to describe the transient response of IF neu-
rons. Analytical expressions for the response of LIF neurons to sinusoidal
stimuli in the limit of small amplitudes and infinitely fast synapses, τs = 0,
are available (Brunel & Hakim, 1999; Lindner & Schimansky-Geier, 2001;
Richardson, 2007), but there are not known solutions valid for all stimulus
frequencies for nonzero τs .

A prime question is which is the effect of synaptic time constants in
neuronal network dynamics. Recent work has shown that the temporal
dynamics of the synapses can play an important role in setting the response
properties of IF neurons working in the high-conductance regime (Shelley
et al., 2002; Moreno-Bote & Parga, 2005; Vogels & Abbott, 2005; Cai et al.,
2005; Apfaltrer et al., 2006; Kumar, Schrader, Aertsen, & Rotter, 2008). We
think that the general theory on synaptic filtering presented here can be of
utility for building mean field theories that use the rate variables as well as
second-order statistics to describe the temporal dynamics of these networks
(see Renart, Moreno-Bote, Wang, & Parga, 2007).

Appendix: Methods

A.1 IF Neurons with Fast and Slow Filters. Here we provide the details
for computing the output firing rate for IF neurons described by rather
general drift functions and noise models (see equation A.1 below). First, we
define the model, then we compute the adiabatic firing rate of an IF neuron
driven by slow input noise, and finally we study the case of both fast and
slow synaptic filters.

A.1.1 General IF Neuron and Noise Models. The voltage of an IF neuron
satisfies the equation

V̇ = −
(V, �z, �τ ), (A.1)

where 
(V, �z, �τ ) is the drift (function) of the voltage, which depends on the
voltage and synaptic synaptic fluctuation variables �z ≡ (z1, . . . , zN) with
time constants �τ ≡ (τ1, . . . , τN). The synaptic fluctuations variables obey

żi = −μi (zi )
τi

+
√

2
τi

σi (zi ) ηi (t), (A.2)
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where the ηi (t)s are independent white noise processes with zero mean
and unit variance. Therefore, the fluctuation variable zi drifts with rate
−μi (zi )/τi and has diffusion coefficient

√
2σi (zi )/

√
τs . A spike is emitted in

the model when the voltage reaches a threshold �, after which it is reset
to H. The synaptic variables are not reset after a spike, since they model
external stochastic inputs that do not depend on the state of the neuron.

The drift function determines the direction and the velocity of the dis-
placement of V when the potential is at V and the synaptic fluctuations
take value �z. Any IF neuron can be written in this form: for example, for an
LIF neuron with a membrane time constant τm and a single linear filter of
timescale τs it is written as (see equations 2.13–2.14)


(V, z, τs) = V/τm − μ − σ√
2τs

z(t), (A.3)

where z obeys equation A.2 with μ(zi ) = zi and σ 2
i (zi ) = 1. Other relevant

drift functions can include the driving forces of synapses and also quadratic
terms in the voltage that generates a sort of action potential (e.g., as in the
QIF neuron). Nonlinear filters are included in the formalism by making the
drift function nonlinear in z.

The noise model in equation A.2 specifies the distribution of z. Its sta-
tionary distribution, whenever it exists, has the form

pi (zi ) = A
|σi (zi )| e− ∫ zi

0 du μi (u)/σ 2
i (u), (A.4)

where A is the normalization constant. This density solves the stationary
FPE for the zi variable

L̃ zi pi (zi ) = 0, (A.5)

where L̃ zi is the linear operator L̃ zi ≡ ∂
∂zi

μi (zi ) + ∂
∂zi

σi (zi ) ∂
∂zi

σi (zi ). To ob-
tain the above FPE, we interpret the diffusion term in equation A.2 in the
Stratonovich sense, that is, the white noise process is understood to arise
from the limit of a continuous stochastic process. Other interpretations, like
the Ito interpretation, can be mapped into the previous one easily. For an
Ornstein-Uhlenbeck process with mean zero and unit variance μi (zi ) = zi

and σ 2
i (zi ) = 1, and from equation A.4, it is easy to check that its steady-state

distribution follows a normal distribution.
Note that the neuron model defined by equations A.1 and A.2 considers

both slow and fast filters. Infinitely fast filters are also included by taking
the limit τi → 0 for some synaptic filters.

A.1.2 The Case of Slow Filtering. Let us first study equations A.1 and A.2
in the limit of long synaptic time constants. Although an approximation
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to the firing rate could be proposed as an expansion in powers of the
inverse of the τi s, this perturbative expansion often does not work (see the
Supporting Information for the proof of the failure of the naive expansion
for the LIF neuron). Instead of attempting to solve the problem in this
perturbative fashion, the problem of finding the firing rate is attacked by
assuming that the drift function in equation A.1 does not depend on �τ while
equations A.2 do so depend. The latter is done by defining a new constant
vector �κ ≡ (κ1, . . . , κN) that substitutes �τ in equation A.1 as

V̇ = −
(V, �z, �κ). (A.6)

As we take the limit of long synaptic time constants, the effect of the noise
variables �z on the membrane potential in equation A.6 remains fixed because
the vector �κ is maintained fixed (as an example, see equation A.3). The new
model defined by equations A.6 and A.2 is equivalent to that defined by
equations A.1 and A.2 when �κ = �τ . Then all we have to do is to calculate
the firing rate for the system defined by equations A.6 and A.2 and at the
end to replace �κ by its true value �τ . (The limit �τ → ∞ with fixed �κ is called
the distinguished limit in singular perturbation theory; see, e.g., Bender &
Orszag, 1978).

However, this trick does not always work. A necessary condition is that
for any fixed �z, the dynamics defined in equation A.6 does not lead V to
−∞ as t → ∞. This implies that the potential function

U(V, �z, �κ) =
∫ V

0
dv 
(v, �z, �κ) (A.7)

increases as V → −∞. In other words, either the voltage of the neuron drifts
upward or settles down to a stationary value for any fixed �z. For simplicity
in our arguments, we will also restrict the generalization a bit more by
assuming that the potential function has at most an (absolute) minimum in
the interval (−∞,�]. This is a reasonable assumption, because the voltage
cannot travel to −∞ and neurons do not usually show intrinsic bistability.
If this is the case, there exists a stationary FPE associated with equations
A.6 and A.2, and it is

[
∂

∂V

(V, �z, �κ) +

∑
i

1
τi

L̃ z,i

]
P(V, �z) = −J (�z, �κ) δ(V − H), (A.8)

where P(V, �z) is the probability density of having the neuron with mem-
brane potential V and receiving a synaptic fluctuation �z. (A restricted ver-
sion of the FPE A.8 has been used by Doering et al. (1987), who considered
a general nonlinear system driven by linearly filtered white noise. Brunel
and Sergi (1998) considered a similar version of FPE, A.8 for a linear system
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driven by linearly filtered white noise in the context of neurons driven
by colored stochastic inputs). The probability density current J (�z, �κ) is the
probability density of current escaping at threshold,

J (�z, �κ) = −
(�, �z, �κ) P(�, �z). (A.9)

Crucially, this self-consistency condition states that once the neuron hits
threshold, it should be reinjected at the reset potential with the same distri-
bution of fluctuations �z that it had when it escaped. If one views the process
described by the FPE A.8 as a population of independent particles diffusing
over the variables V and �z, equation A.9 states that when a particle escapes
(hits threshold), it has to be reinjected at the reset potential with the same �z
that it had when it escaped.

The probability density current J (�z, �κ) cannot be negative because there
cannot be probability entering from above threshold. To determine when
the probability current J (�z, �κ) is positive (i.e., for which �z do the neurons
fire?), we have to determine for which fixed �z a trajectory of V starting
at the reset potential H can travel up to the threshold potential without
being stopped. This condition determines a region over �z, which we call �,
defined more formally as

� ≡ ∀�z / 
(V, �z, �κ) < 0,∀V ∈ [H,�]. (A.10)

The firing rate of the IF neuron can be finally obtained by integrating the
probability current over � as

ν =
∫

�

d�z J (�z, �τ ), (A.11)

where we have replaced �κ by its true (long) value �τ .

Solution of the FPE for long synaptic time constants. The FPE A.3 has to be
solved along with the conditions

i) P(�, �z) = 0 ∀�z /∈ � (A.12)

i i) J (�z, �κ) = −
(�, �z, �κ)P(�, �z) (A.13)

i i i)
∫ �

−∞
dV

∫ ∞

−∞
d�z P(V, �z) = 1 (A.14)

iv) limzi →±∞[−μi (zi ) − σi (zi )
∂

∂zi
σi (zi )] P → 0,

limV→−∞
(V, �z, �κ) P → 0. (A.15)
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We propose an expansion of of the density P(V, z) and the probability
current J (�z, �κ) in powers of τ−1

i as

P(V, �z) = P0(V, �z) +
∑

i

1
τi

P1,i (V, �z) + O(τ−2) ,

J (�z, �κ) = J0(�z, �κ) +
∑

i

1
τi

J1,i (�z, �κ) + O(τ−2), (A.16)

where the vector �κ is assumed to be constant. Condition iv has to be satisfied
order by order in the expansion. Condition iii means that the integral of P0

has to be one and that the integral of any other higher order has to be zero.
Since the zi s are independent (see equations A.2), the marginal distribu-

tion for �z is

p(�z) =
∫ �̂

−∞
dV P(V, �z) =

N∏
i=1

pi (zi ). (A.17)

If the variables �z are independent Ornstein-Uhlenbeck processes, then the
marginal distribution is a normal in N dimensions.

Now the zeroth-order equation of the FPE A.8 is

∂

∂V

(V, �z, �κ)P0(V, �z) = −J0(�z, �κ)δ(V − H). (A.18)

This equation has to be solved for two different cases: when �z belongs to �

and when �z does not belong to it. In the first case, J0(�z, �κ) is positive (the
neuron can fire), and the solution for P0 using condition A.13 is

P0(V, �z) = − J0(�z, �κ)H(V − H)

(V, �z, �κ)

. (A.19)

Using condition A.17, we find that the probability current is

J0(�z, �κ) = p(�z) ν0(�z, �κ), (A.20)

with

ν0(�z, �κ) =
(∫ �

H

−dV

(V, �z, �κ)

)−1

. (A.21)
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Note that ν0(�z, �κ) is the firing rate of the IF when it receives a fixed synaptic
fluctuation �z when the synaptic time constants have value �κ . The firing rate,
equation A.11, up to zeroth-order zero is then

ν =
∫

�

d�z p(�z) ν0(�z, �τ ), (A.22)

where we have replaced �κ by its true value �τ . In the second case, when �z
does not belong to � and then the neuron cannot fire, J0(�z, �κ) = 0. Thus, the
solution of equation A.18 with J0(�z, �κ) = 0 that satisfies condition A.14 is

P0(V, �z) = D0(�z) δ(
(V, �z, �κ))
| ∂
∂V 
(V, �z, �κ)|V=V(�z)

, (A.23)

where V(�z) is the unique solution of 
(V, �z, �κ) = 0. To obtain equation A.23,
it is required that the condition that the function U(V, �z, �κ) defined in
equation A.7 has at most one minimum. Using condition A.17 leads to
D0(�z) = p(�z) ≡ ∏N

i=1 pi (zi ).
The distribution P0(V, �z) is computed by combining equations A.19 and

A.23 and replacing �κ by �τ . The firing rate, equation A.22, and the distribution
of the membrane potential, equations A.19 and A.23, describe completely
the problem at leading order.

Equation A.22 is the adiabatic expression for the firing rate of IF neurons
driven by slow inputs with arbitrary distributions, equation 2.1.

A.1.3 The Case of Slow and Fast Filtering. In this section we consider
the case of a neuron with several slow filters and a single additive fast
filter. Several nonadditive fast filters can also be included in the formalism
without extra complications, and therefore we restrict our discussion to the
simplest case described below.

The membrane potential obeys

V̇ = −
(V, �z, �κ) + σ f ζ (t), (A.24)

where �z is described by equations A.2 and ζ (t) is a normalized white noise
process that represents the noisy contribution of a current passing through
an infinitely fast filter. The strength of the fast noise is determined by the
prefactor σ f . The FPE associated with equations A.24 and A.2 is

[
∂

∂V

(V, �z, �κ) + 1

2
σ 2

f
∂2

∂V2 +
∑

i

1
τi

L̃ zi

]
P(V, �z) = −J (�z, �κ)δ(V − H),

(A.25)
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where the density P and the linear operator L̃ z have the same definitions
as in the FPE A.8. Again, the probability current injected at H has to equal
the probability current escaping at threshold �, and then

J (�z, �κ) =
[
−
(V, �z, �κ) − 1

2
σ 2

f
∂

∂V

]
P(V, �z)|V=�. (A.26)

Note that the probability current now includes a derivative of the probabil-
ity density P evaluated at the voltage firing threshold, a term that was not
present in equation A.9. This fact imposes different boundary conditions
on the density P at threshold. In particular, P(�, �z) has to be zero for all �z,
because P(V, �z) = 0 when V > �, and no discontinuity in the function can
exist at threshold.

The solution should satisfy the conditions

i) P(�, �z) = 0 ∀�z (A.27)

i i) J (�z, �κ) = −1
2
σ 2

f
∂

∂V
P(V, �z)|V=� (A.28)

iv) limzi →±∞

[
−μi (zi ) − σi (zi )

∂

∂zi
σi (zi )

]
P → 0,

limV→−∞

[
−
(V, �z, �κ) − 1

2
σ 2

f
∂

∂V

]
P → 0, (A.29)

while condition iii is the same as condition A.14. Using the same reasoning
as in the case with slow filters only, one can derive an additional constraint,
identical to equation A.17, which states that the marginal distribution is
p(�z) = ∏N

i=1 pi (zi ).
To carry on with our analysis, we propose an expansion of both P and J

in powers of the inverse of the synaptic time constants, as in equations A.16.
The coefficients of the expansion have to satisfy the boundary conditions
defined above. The zeroth order FPE is

[
∂

∂V

(V, �z, �κ) + 1

2
σ 2

f
∂2

∂V2

]
P0(V, �z) = −J0(�z, �κ) δ(V − H). (A.30)

The solution at zeroth order can be found using standard perturbative
techniques (Ricciardi, 1977; Risken, 1989), and it is

P0(V, �z) = 2
σ 2

f

J0(�z, �κ) e
− 2

σ2
f

U(V,�z,�κ)
∫ �

V
dv e

2
σ2

f
U(v,�z,�κ)

H(v − �), (A.31)
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where we have defined the “potential” function U(V, �z, �κ) as in equation
A.7. The probability current J0(�z, �κ) is found by inserting the equation for
P0 into equation A.17,

J0(�z, �κ) = p(�z) ν f ast(�z, �κ), (A.32)

where the function ν f ast(�z, �κ) is defined as

ν f ast(�z, �κ)−1 = 2
σ 2

f

∫ �

−∞
dVe

− 2
σ2

f
U(V,�z,�κ)

∫ �

V
dv e

2
σ2

f
U(v,�z,�κ)

H(v − �)

= 2
σ 2

f

∫ �

H
dx e

2
σ2

f
U(x,�z,�κ)

∫ x

−∞
dy e

− 2
σ2

f
U(y,�z,�κ)

.

Note that ν f ast(�z, �κ) is the output firing rate of an IF neuron driven by
(fast) white noise with deviation σ f and experiencing a drift −
(V, �z, �κ)
as if �z were constant. For the firing rate ν f ast(�z, �κ) to be well defined, the
potential U(V, �z, �κ) has to increase fast enough as V → −∞, so that the

integral
∫ x
−∞ dye

− 2
σ2

f
U(y,�z,�κ)

is finite for all x. Finally, the output firing rate of
the IF neuron with both fast and slow filters can be obtained by integration
over �z of equation A.32 as

ν =
∫

d�z p(�z) ν f ast(�z, �τ ), (A.33)

where the integral extends over the whole space. Note that at this point, we
have replaced �κ by �τ .

Under the condition that the potential function U has at most a minimum,
as also required in the previous section, taking the limit σ f → 0 in equation
A.33 leads to the adiabatic firing rate of an IF neuron with slow filters,
equation A.22.
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Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. (1998). Impact of spon-
taneous synaptic activity on the resting properties of cat neocortical pyramidal
neurons in vivo. J. Neurophysiol., 79(3), 1450–1460.

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. I., et al.
(2008). Spatio-temporal correlations and visual signalling in a complete neuronal
population. Nature, 454(7207), 995–999.

Renart, A., Moreno-Bote, R., Wang, X.-J., & Parga, N. (2007). Mean-driven and
fluctuation-driven persistent activity in recurrent networks. Neural Computation,
19, 1–46.

Ricciardi, L. M. (1977). Diffusion processes and related topics in biology. Berlin: Springer-
Verlag.

Richardson, M. J. E. (2007). Firing-rate response of linear and nonlinear integrate-
and-fire neurons to modulated current-based and conductance-based synaptic
drive. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 76(2 Pt. 1),
021919.

Riehle, A., Grun, S., Diesmann, M., & Aertsen, A. (1997). Spike synchronization and
rate modulation differentially involved in motor cortical function. Science, 278,
1950–1953.

Risken, H. (1989). The Fokker-Planck equation (2nd ed.). Berlin: Springer-Verlag.
Salinas, E., & Sejnowski, T. J. (2002). Integrate-and-fire neurons driven by correlated

stochastic input. Neural Computation, 14, 2111–2155.
Schwalger, T., & Schimansky-Geier, L. (2008). Interspike interval statistics of a leaky

integrate-and-fire neuron driven by gaussian noise with large correlation times.
Physical Review E, 77, 031914.

Shelley, M., McLaughlin, D., Shapley, R., & Wielaard, D. J. (2002). States of high
conductance in a large-scale model of the visual cortex. Journal of Comp. Neuros.,
13, 93–109.

Silver, R. A., Traynelis, S. F., & Cull-Candy, S. G. (1992). Rapid-time-course miniature
and evoked excitatory currents at cerebellar synapses in situ. Nature Lond., 355,
163–166.

Svirskis, G., & Hounsgaard, J. (2003). Influence of membrane properties on spike
synchronization in neurons: Theory and experiments. Network: Comput. Neural
Syst., 14, 747–763.

Svirskis, G., & Rinzel, J. (2000). Influence of temporal correlation of synaptic input
on the rate and variability of firing in neurons. Biophysical Journal, 79, 629–637.

Tchumatchenko, T., Malyshev, A., Geisel, T., Volgushev, M., & Wolf, F. (2010).
Correlations and synchrony in threshold neuron models. Phys. Rev. Lett., 104,
058102.

Umemiya, M., Senda, M., & Murphy, T. H. (1999). Behavior of NMDA and AMPA
receptor-mediated miniature EPSCs of rat cortical neuron synapses identified by
calcium imaging. J. Physiology, 521, 113–122.



1572 R. Moreno-Bote and N. Parga

Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks
of integrate-and-fire neurons. J. Neurosci., 25(46), 10786–10795.

Wang, X.-J. (1999). Synaptic basis of cortical persistent activity: The importance of
NMDA receptors to working memory. J. Neurosci., 19, 958–963.

Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–
6413.

Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). GABA-A receptor-mediated
currents in interneurons and pyramidal cells of rat visual cortex. J. Physiology,
506, 715–730.

Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., et al.
(1999). Importance of AMPA receptors for hippocampal synaptic plasticity but
not for spatial learning. Science, 284, 1805–1811.

Received June 17, 2009; accepted October 19, 2009.



This article has been cited by:

1. Moritz Deger, Moritz Helias, Clemens Boucsein, Stefan Rotter. 2011. Statistical
properties of superimposed stationary spike trains. Journal of Computational
Neuroscience . [CrossRef]

2. Azadeh Alijani, Magnus Richardson. 2011. Rate response of neurons subject
to fast or frozen noise: From stochastic and homogeneous to deterministic and
heterogeneous populations. Physical Review E 84:1. . [CrossRef]

3. Robert Rosenbaum, Fabien Marpeau, Jianfu Ma, Aditya Barua, Krešimir Josi#.
2011. Finite volume and asymptotic methods for stochastic neuron models with
correlated inputs. Journal of Mathematical Biology . [CrossRef]

4. Robert Rosenbaum, Krešimir Josi#. Mechanisms That Modulate the Transfer of
Spiking Correlations. Neural Computation, ahead of print1-45. [Abstract] [PDF]
[PDF Plus]

http://dx.doi.org/10.1007/s10827-011-0362-8
http://dx.doi.org/10.1103/PhysRevE.84.011919
http://dx.doi.org/10.1007/s00285-011-0451-3
http://dx.doi.org/10.1162/NECO_a_00116
http://www.mitpressjournals.org/doi/pdf/10.1162/NECO_a_00116
http://www.mitpressjournals.org/doi/pdfplus/10.1162/NECO_a_00116

