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Spike correlations between neurons are ubiquitous in the cortex, but their
role is not understood. Here we describe the firing response of a leaky
integrate-and-fire neuron (LIF) when it receives a temporarily correlated
input generated by presynaptic correlated neuronal populations. Input
correlations are characterized in terms of the firing rates, Fano factors,
correlation coefficients, and correlation timescale of the neurons driving
the target neuron. We show that the sum of the presynaptic spike trains
cannot be well described by a Poisson process. In fact, the total input
current has a nontrivial two-point correlation function described by two
main parameters: the correlation timescale (how precise the input cor-
relations are in time) and the correlation magnitude (how strong they
are). Therefore, the total current generated by the input spike trains is
not well described by a white noise gaussian process. Instead, we model
the total current as a colored gaussian process with the same mean and
two-point correlation function, leading to the formulation of the prob-
lem in terms of a Fokker-Planck equation. Solutions of the output firing
rate are found in the limit of short and long correlation timescales. The
solutions described here expand and improve on our previous results
(Moreno, de la Rocha, Renart, & Parga, 2002) by presenting new analyti-
cal expressions for the output firing rate for general IF neurons, extending
the validity of the results for arbitrarily large correlation magnitude, and
by describing the differential effect of correlations on the mean-driven or
noise-dominated firing regimes. Also the details of this novel formalism
are given here for the first time. We employ numerical simulations to

∗Rubén Moreno-Bote is currently at the Center for Neural Science, New York Univer-
sity, New York, NY 10003, U.S.A.

†Alfonso Renart is currently at the Center for Molecular and Behavioral Neuroscience,
Rutgers, State University of New Jersey, Newark, NJ 07102, U.S.A.

Neural Computation 20, 1651–1705 (2008) C© 2008 Massachusetts Institute of Technology



1652 R. Moreno-Bote, A. Renart, and N. Parga

confirm the analytical solutions and study the firing response to sudden
changes in the input correlations. We expect this formalism to be useful
for the study of correlations in neuronal networks and their role in neural
processing and information transmission.

1 Introduction

A major problem in neuroscience is understanding the way neurons com-
municate with each other. Because neurons in the cortex are densely con-
nected and share common inputs (White, 1989; Braitenberg & Schüz, 1991),
some degree of correlation between their discharges is unavoidable. In-
deed, correlations in the spiking activity of neurons are routinely observed
throughout the cortex (Zohary, Shadlen, & Newsome, 1994; deCharms &
Merzenich, 1996; Lee, Port, Kruse1, & Georgopoulos, 1998; Usrey & Reid,
1999; Bair, Zohary, & Newsome, 2001; for a review see Salinas & Sejnowski,
2001 and Averbeck & Lee, 2004). Correlations could have an important
functional role, as the temporal synchronization of neuronal activity has
been shown to correlate with particular states of behaving animals (Vaadia
et al., 1995; Riehle, Grun, Diesmann, & Aertsen, 1997; Fries, Roelfsema, En-
gel, König, & Singer, 1997; Steinmetz et al., 2000; Fries, Reynolds, Rorie,
& Desimone, 2001). From a more traditional point of view, correlations
have been considered as a coding dimension independent of the firing
rate (deCharms & Merzenich, 1996; Wehr & Laurent, 1999; Laurent, 2001).
However, it remains controversial whether correlated activity has a role in
coding, or whether its main role is as a gating mechanism of the flow of infor-
mation in cortical circuits (Salinas & Sejnowski, 2001; Averbeck & Lee, 2004).

Before the functional role of correlations can be addressed, a primary
question to solve is how correlations affect the firing properties of neurons.
Previous work in this direction has revealed that neurons can be very sen-
sitive even to weak correlations in their inputs (Burkitt & Clark, 1999; Feng
& Brown, 2000; Salinas & Sejnowski, 2000). However, in most of these stud-
ies, only zero time lag correlated inputs (perfect synchronization) has been
used. This means that when one spike arrives at one presynaptic terminal,
another spike is more likely to be found at the same time in another pre-
synaptic terminal. This perfect synchrony is not expected to be exhibited by
real neuronal systems, given their finite temporal precision. Instead, syn-
chrony with a nonzero time precision τc seems to be the realistic case, with
τc ∼ 15 ms in monkey primary auditory cortex (deCharms & Merzenich,
1996), τc ∼ 5 ms in primary visual cortex of strabismic cats (Fries et al.,
1997) (in this case the cross-correlogram is accompanied by an oscillatory
pattern), τc with very broad values ranging from less than 15 ms to more
than 200 ms mediating interactions between areas V1 and V2 in monkeys
(Nowak, Munk, James, Girard, & Bullier, 1999), or τc ∼ 10 ms in the monkey
visual area MT (Bair et al., 2001). In this case, if a spike arrives at time t = 0
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at a presynaptic terminal, another spike is more, or less, likely than the
chance level determined by the firing rate to arrive within a time τc around
t = 0 at another (or the same) terminal.

We have shown previously (Moreno, de la Rocha, Renart, & Parga, 2002)
that the total current to a neuron generated by exponentially correlated
afferent spike trains can be described (among other parameters) by the
correlation time, τc , and the correlation magnitude, α (see definitions in
section 3). Each parameter carries important information about the charac-
teristics of the input correlations (either temporal or intensity information).
Intuitively, a short correlation time τc means that afferent spikes synchro-
nize within short time windows of size τc . Decreasing τc will enhance the
temporal precision of correlations. The correlation magnitude, α, roughly
represents how many spikes are expected above chance in a time window
τc given that there was a spike centered in that time window. Therefore, it is
a measure of the intensity of the correlations. For uncorrelated spike trains,
α = 0, while for positively correlated spike trains, α > 0, and for negatively
correlated, α < 0. As we will show, the correlation time and magnitude
can also be related to the autocorrelograms (ACGs) and cross-correlograms
(CCGs) of recorded spike trains. The correlation time measures the typical
width of the CCG, while the correlation magnitude is proportional to the
area under the CCG curve.

Both τc and α can affect the neuron’s firing response in complicated
ways. Separating their effects was crucial in our previous work (Moreno
et al., 2002), where the effects of changing the timescale and the magnitude
of the input correlations could be studied independently. In particular, one
of the main qualitative results was that if α is kept constant, neurons are
sensitive to input correlations only when the correlation time is shorter than
the membrane time constant.1

The main problem studied in this article is schematized in Figure 1 and
can be summarized as follows. What is the effect of the magnitude and
the timescale of the input spike correlations on the neuron firing response?
We answer this question by addressing consecutively several subproblems.
First, after presenting the model in section 2, we describe in section 3 the
statistical properties of the afferent spike trains that drive a leaky integrate-
and-fire (LIF) neuron. The spike trains are characterized in terms of their
firing rates, Fano factors, correlation coefficients, and correlation timescale
and are assumed to have exponential auto- and cross-correlations. Corre-
lated and uncorrelated Poisson spike trains are just special cases of these.
The total current generated by the sum of the spike trains is described up

1This mechanism is consistent with coincidence detection (Abeles, 1982; Bernander,
Douglas, Martin, & Koch, 1991; Softky & Koch, 1993; Softky, 1994). Note, however, that
these authors consider input spike coincidence detection in the submillisecond range,
while our results more generally concern the effect of correlation timescale of any size on
a neuron with any membrane time constant.
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Figure 1: Illustration of the problem studied in this article (a fully detailed de-
scription is given in the text). A set of afferent presynaptic spike trains impinges
on an integrate-and-fire neuron. Each individual spike train has exponentially
shaped autocorrelations, describing the joint probability density of having two
spikes separated by a particular time lag (a delta function should be included
at zero time lag because the train is made of point events; see text). A fraction
of the trains also have exponential cross-correlations, describing nonindepen-
dent firing of some of the presynaptic neurons. The total current generated by
the presynaptic bombardment is replaced by a gaussian process with the same
mean and two-point correlation function as those generated by the superpo-
sition of all presynaptic spike trains. The goal is to characterize the spiking
response properties of the LIF neuron as a function of the global magnitude and
timescale of the input correlations.

to second-order statistics (the two-point correlation function) and shows
exponential correlations (see section 3.2). Second, to solve the difficulties
presented by the non-Markovian character of the input statistics, we seek to
transform this input into a colored gaussian input with the same mean and
two-point correlation function as those generated by the original current.
Two different Markovian stochastic processes that generate this colored
gaussian input are found in section 4. Then we obtain the Fokker-Plank
equations (FPEs) associated with each of these two processes and the volt-
age of the neuron (see sections 4.1 and 4.2). Third, the output firing rate is
obtained by solving the FPEs in the limits of short and long values of the
correlation timescale compared to the membrane time constant of the neu-
ron (see section 5). At this point we give a brief summary of the analytical
expressions and their ranges of validity in section 6 and Table 1. An interpo-
lation is then employed to join the two limits, and the analytical results are
compared with numerical simulations in section 7.1. Finally, in section 7.2,
we also show that neurons can track fast changes in input correlations. In
section 8, we summarize the main results and discuss possible applications.
Several computational details are provided in the appendixes.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.03-07-497&iName=master.img-000.png&w=311&h=115
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Some of these results have been previously published in a brief format
(Moreno et al., 2002). In this article, we extend the analytical techniques,
obtain new results, and present a more pedagogical version of our work
to facilitate the use of the mathematical expressions as well as the under-
standing of their derivation. In particular, a more general expression for the
output firing rate is found in the presence of exponentially correlated input
spike trains that is valid for long τc and for all positive α (see section 5.2).
If the limit of small α is taken, this new expression becomes that found in
Moreno et al. (2002) in the case of long τc , and therefore generalizes and
extends the latter for large correlation magnitudes. The effect of input cor-
relations in the mean-driven and noise-dominated input regimes is found
to be different, and those peculiarities are discussed in section 7.1.

2 Model

We consider an LIF neuron with membrane potential V(t) and membrane
time constant τm. In the absence of input, the voltage decays exponentially
toward the resting potential (here V = 0). In the presence of the synaptic
current, I (t), the membrane potential evolves according to

V̇(t) = − V(t)
τm

+ I (t) . (2.1)

In the model, a spike is generated whenever the membrane potential V(t)
reaches a threshold value �. Following the spike, the potential is reset to
a value H, from where, after an absolute refractory period τre f , the neuron
can start integrating the synaptic current again.

We work in the limit of infinitely fast synaptic time constants, in which
individual synaptic currents are represented by delta functions. Thus, the
afferent current I (t) is

I (t) = J E

NE∑
i=1

∑
k

δ
(
t − tk

i

) − J I

NI∑
j=1

∑
l

δ
(
t − tl

j

)
, (2.2)

where tk(l)
i( j) represents the arrival time of the kth (lth) spike from the ith

excitatory ( j th inhibitory) presynaptic neuron, and NE(I ) and J E(I ) represent,
respectively, the number of inputs and the size of the postsynaptic potentials
from the excitatory (inhibitory) afferent populations.

We are interested in the case of stationary input statistics, so that the
input firing rates do not depend on time (but see our simulation results for
the case on nonstationary statistics in section 7.2). Therefore, assuming that
the excitatory and inhibitory presynaptic neurons fire at rates νE and νI ,
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respectively, the mean current
〈
I (t)

〉
is computed as

µ = 〈I (t)〉 = NE J E νE − NI J I νI . (2.3)

This result is independent of the statistics of the afferent spike trains. For
example, the mean current generated by correlated or independent Poisson
spike trains is exactly the same, provided that the processes are stationary
and described by the same firing rates. However, the second-order statistics
of the current will be very sensitive to the second-order statistical properties
of the individual spike trains (e.g., their pair-wise correlations). In the next
section, we determine the two-point correlation function in terms of the
statistical properties of the presynaptic spike trains.

3 Second-Order Statistical Properties of the Current

3.1 Autocorrelograms. This section is devoted to the description of the
second-order statistical properties of each individual spike train impinging
on the LIF neuron. In the next section, we consider the second-order statis-
tical properties of pairs of those spike trains. Here, we first define the Fano
factor of the spike count of each input train. Then we introduce the auto-
correlation function in the case of an exponentially correlated spike train.
Finally, we show that the parameters defining the exponential autocorrela-
tion function can be expressed in terms of the firing rate, Fano factor, and
correlation time of the spike train.

Most theoretical models have considered afferent spike trains (see
equation 2.2) as stochastic Poisson processes (see, e.g., Ricciardi, 1977;
Tuckwell, 1988; Brunel & Sergi, 1998; Feng & Brown, 2000; Nykamp &
Tranchina, 2001; LaCamera, Rauch, Luscher, Senn, & Fusi, 2004; Richardson
& Gerstner, 2005). In this work, we relax this assumption. The Fano factor is
often used to quantify the reliability of neuronal discharge. The Fano factor
of the spike count in a time window T is defined as the ratio between the
variance of the spike count and the mean number of spikes in that time
window, that is,

FN(T) = σ 2
N(T)

〈N(T)〉 = 〈(N(T) − 〈N(T)〉)2〉
〈N(T)〉 , (3.1)

where N(T) is the number of spikes counted in the time window T in
each trial and brackets denote an average over trials. Note that in practice,
the mean and variance can also be computed using a single long spike
train (with stationary firing rate) obtained in a single trial, where now
the average is obtained using nonoverlapping consecutive time windows
instead of several trials. In either case, typically the time window T is
taken to be large, so that at least tens of spikes are observed on average. A
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Poisson spike train has a Fano factor equal to one. However, Fano factors
calculated from spike trains obtained from electrophysiological recordings
in vivo usually exceed one, laying in the interval FN ∼ 1 − 1.5 throughout
the cerebral cortex (Dean, 1981; Softky & Koch, 1993; Albright, 1993; Shadlen
& Newsome, 1998; Compte et al., 2003), which is inconsistent with the
Poisson hypothesis (see also Amarasingham, Chen, German, Harrison, &
Sheinberg, 2006).

Another important second-order statistical property of individual spike
trains is the joint probability density of having spikes belonging to that same
spike train at two times, t and t′, denoted P(t, t′). In fact, from it one can
derive any other second-order statistical quantity, such as the Fano factor
(see below). For a Poisson spike train with rate ν, P(t, t′) is a delta function
at zero-time lag and flat otherwise, as

PPoisson(t, t′) = νδ(t − t′) + ν2 . (3.2)

The delta function at t = t′ serves to define P(t, t′) at all times; trivially, the
probability density of having a spike at time t and a spike at time t′ = t is
just the delta multiplied by the spike rate in that train, νδ(t − t′); in other
words, the presence of one spike is informative of the presence of a spike
at that time (the same spike). For nonzero time lags (t �= t′), this probability
is the product of the probability densities of having spikes at two different
times, that is, ν2. For a general spike train, we define the autocorrelation
function as the quantity

C(t, t′) = P(t, t′) − ν2, (3.3)

that is, the joint probability density of having spikes at times t and t′, from
which the probability of finding them by chance (i.e., the rate to the square)
is subtracted.

While Poisson trains have an autocorrelation with a single delta function
at time lag zero and zero otherwise (i.e., CPoisson(t, t′) = νδ(t − t′)), autocor-
relograms obtained from electrophysiological recordings show a decaying
peak at nonzero time lags (disregarding refractory effects), sometimes to-
gether with a damped oscillatory pattern. A centered decaying peak in an
autocorrelogram means that spikes tend to occur close together in time,
forming groups of several spikes. Experimental autocorrelograms with a
single peak and without oscillations can be fitted to an exponential func-
tion (e.g., Bair et al., 2001). We therefore consider stochastic spike trains
with exponential autocorrelations with timescale τc ,

C p(t, t′) ≡
〈(∑

k

δ
(
t − tk

i

) − νp

)(∑
k ′

δ
(
t′ − tk ′

i

) − νp

)〉
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=
〈∑

k,k ′
δ
(
t − tk

i

)
δ
(
t′ − tk ′

i

)〉 − ν2
p

= νpδ(t − t′) + νp

(
Fp − 1

2τc

)
e− |t−t′ |

τc , (3.4)

as illustrated in Figure 2B. Since we assume that the input statistics are sta-
tionary, the input firing rates are time independent and the autocorrelation
function depends on only time through the quantity |t − t′|. Here p = E, I ;
νp and Fp are the firing rate and the Fano factor of the spike count (for
infinitely long time windows) of the individual trains coming from pop-
ulation p.2 The connected two-point correlation function defined above is
the joint probability density of finding one spike at time t and another at t′

within the same spike train, from where the probability of observing them
by chance, ν2

p, is subtracted. Note that this function has two contributions:
a delta function at zero time lag, coming from the fact that spikes are point
events, and an exponential dependence measuring the excess probability of
finding a spike at t′ when it is known that there is another spike at t. While
normally spikes in the same train are positively correlated (FN > 1), the au-
tocorrelogram in equation 3.4 also describes uncorrelated (FN = 1, Poisson)
and negatively correlated spikes (FN < 1). With the parameterization we
have chosen, fixing the Fano factor and changing the correlation time does
not keep fixed the amplitude of the exponential term in equation 3.4. How-
ever, this choice allows us to fix the variance of the spike count in a long
time window for each individual spike train while varying the timescale
of its correlations. To make this clearer, consider the total number of presy-
naptic spikes arriving from the spike train i of the population p during a
time window T , which is written as

N(T) =
∫ T

0
dt

∑
k

δ
(
t − tk

i

)
. (3.5)

Notice that since the arrival times tk
i are random in such a way that the

train has the autocorrelation of equation 3.4, the number N(T) is a random
variable. Its mean value is

〈Np(T)〉 =
〈∫ T

0
dt

∑
k

δ
(
t − tk

i

)〉 = νpT, (3.6)

2For renewal spike trains, the Fano factors in equation 3.4 are related to the coefficients
of variation of their interspike intervals, CVp , as Fp = CV2

p . Note nevertheless that our
formalism does not require that afferent spike trains are renewal.
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Figure 2: (A) An individual afferent spike train from population p could show
correlations between two times, t and t′: the probability of finding a spike at
one of those times depends on the existence of a spike at the other time. (B) This
temporal correlation is described by the autocorrelation function, Cp(t − t′),
assumed to have an exponential shape. The firing rate, νp , Fano factor, Fp ,
and correlation time, τc , enter in the definition of the shape and size of the
exponential as described in the plot. The delta function present at zero time
is proportional to νp and participates in the total area of the autocorrelogram.
(C) When the spike count of the spike train is integrated over a time window
T , the variance of the count divided by T goes exponentially from νp to FN,pνp .
For small time windows, the count variance converges to that of a Poisson
spike train, which is equal to νpT . However, for longer time windows than the
correlation time τc , the count variance scales as FN,pνp , indicating that the effect
of temporal correlations is then fully visible.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.03-07-497&iName=master.img-001.png&w=223&h=315
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and its variance can be calculated using the autocorrelation defined in
equation 3.4 as (Renart, Moreno-Bote, Wang, & Parga, 2007)

σ 2
N,p(T) =

〈∫ T

0
dt

∫ T

0
dt′ ∑

k,k ′
δ
(
t − tk

i

)
δ
(
t′ − tk ′

i

)〉 − 〈Np(T)〉2

=
∫ T

0
dt

∫ T

0
dt C p(t, t′)

= νpT + νp(Fp − 1)(T − τc(1 − e−T/τc )). (3.7)

Therefore, the variance of the spike count grows linearly with T for long
windows T 	 τc , where it takes the value

σ 2
N,p(T) = FpνpT (3.8)

(see Figure 2C). Thus, fixing only the Fano factor in the autocorrelation
function keeps fixed the variance in the spike count for long T , as this vari-
ance is independent of τc . Changing τc does not alter the total spike count
fluctuations, only the temporal precision in which they occur. Notice that
the inclusion of the Fano factor in the autocorrelation function, equation 3.4,
is consistent with its definition for long T in equation 3.1. Notice also from
equation 3.7, that the variance of the spike count is νpT for short T 
 τc , and
therefore the afferent spike train looks like a Poisson spike train when it is
sampled during brief time windows. However, as soon as T is comparable
to the correlation time, the variance of the spike count starts to take into
account the temporal correlations in the spike train, and when T becomes
very large, all effects are included, and the variance is FpνpT , equation 3.8
(see Figure 2). We will show that for the LIF neuron we are considering,
whether the input is seen as having significant temporal correlations de-
pends on how the timescale of these correlations compares to the neuron’s
membrane time constant.

3.2 Cross-Correlograms. We have also considered the possibility that
spikes in different trains are correlated. When the activity of two neigh-
boring neurons is recorded, the cross-correlogram computed from their
discharges can sometimes present a single peak with or without damped
oscillations (e.g. Perkel, Gerstein, & Moore, 1967; Aersten, Gerstein, Habib,
& Palm, 1989; deCharms & Merzenich, 1996). A prominent peak at zero
time lag means that the two neurons tend to fire synchronously; if a dip is
observed, when one neuron fires, the other is more likely to be silent. Very of-
ten the cross-correlograms can be approximated by an exponential function
(e.g., deCharms & Merzenich, 1996; Bair et al., 2001). The cross-correlogram
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is therefore modeled here as an exponential,

C pq (t, t′) ≡
〈(∑

kp

δ
(

t − tkp

i

)
− νp

)(∑
kq

δ
(

t′ − tkp

j

)
− νq

)〉

=
〈∑

kp,kq

δ
(

t − tkp

i

)
δ
(

t′ − tkq

j

)〉
− νpνq

= √
νpνq

(
ρpq

√
Fp Fq

2τc

)
e− |t−t′ |

τc , (3.9)

where C pq (t, t′) is the two-point correlation function between the trains
(i, j) in populations p and q (p, q = E, I ). This cross-correlation function
is illustrated in Figure 3B. As in the case of the autocorrelation defined in
equation 3.4, the two-point correlation function expresses the probability
density of finding a spike of a train in population p at time t along with
a spike of a train in population q at time t′, from which the probability
density of finding them by chance, νpνq , is subtracted. The magnitude of
the cross-correlations is determined by the correlation coefficients ρpq of the
spike counts (see its definition in equation 3.11). For the sake of simplicity,
we take all the correlations in the problem to have the same time constant τc .

To better understand the effects of cross-correlations on the input statis-
tics, we calculate the covariance between the count of spikes emitted by
the neuron i from population p and the count of spikes emitted by the
neuron j from population q as an integral of the cross-correlation function,
equation 3.9, as

〈(Np(T) − 〈Np(T)〉)(Nq (T) − 〈Nq (T)〉)〉 = 〈Np(T)Nq (T)〉 − νpνq T2

=
〈∫ T

0
dt

∫ T

0
dt′ ∑

kp,kq

δ
(

t − tkp

i

)
δ
(

t′ − tkq

j

)〉
− νpνq T2

=
∫ T

0
dt

∫ T

0
dt′ C pq (t − t′)

= √
νpνq (ρpq

√
Fp Fq )(T − τc(1 − e−T/τc )). (3.10)

This covariance measures the correlation in the spike count fluctuations
during a time T from two presynaptic spike trains. Notice that for T much
shorter than the correlation time, this covariance is zero, that is, the spike
counts of the two neurons become independent. This is true because for
short T , the spike trains look like uncorrelated Poisson trains. However, for
time windows that are longer than the correlation time, the covariance is
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Figure 3: (A) The probability of having a spike at time t in an afferent spike
train belonging to population p could depend on the existence of having a
spike at time t′ on another spike train from population q . (B). This correlation is
described by the cross-correlation function, Cpq (t − t′), assumed to have expo-
nential shape. The firing rates, Fano factors, correlation coefficient of the spike
counts, ρpq , and correlation time, τc , determine the shape of the exponential, as
illustrated in the figure. (C) When the spike counts of the spike trains in the top
panel are integrated over a time window T , their covariance divided by T in-
creases exponentially from zero to a finite value proportional to the correlation
coefficient (here we define N′(T) = N(T) − 〈N(T)〉). For short time windows,
the covariance is zero, and therefore it resembles that of two independent spike
trains. However, for time windows longer than τc , correlations are fully visible,
and the covariance is nonzero.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.03-07-497&iName=master.img-002.png&w=209&h=360
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nonzero and approaches a linear behavior. This covariance as a function of
the integration window is represented in Figure 3C.

The correlation coefficient is defined as the ratio of the covariance and
the product of the deviations in the spike counts of both neurons, as

ρpq = 〈(Np(T) − 〈Np(T)〉)(Nq (T) − 〈Nq (T)〉)〉
σNp (T)σNq (T)

(3.11)

for long T . Notice from equation 3.10 that the inclusion of the correla-
tion coefficient in the cross-correlation, equation 3.9, is consistent with the
above definition. Changing the correlation time in the cross-correlation,
equation 3.9, changes its amplitude but not the correlation coefficient be-
tween the two spike trains. The Fano factors appear in equation 3.9 because
the time integral of the cross-correlation has to be zero if one of the trains
does not have spike count fluctuations (FN = 0).

3.3 Writing the Statistical Properties of the Total Current. The two-
point correlation function of the total afferent current, equation 2.2, is de-
fined as

Ccurrent(t, t′) ≡ 〈(I (t) − 〈I (t)〉)(I (t′) − 〈I (t′)〉)〉, (3.12)

where the mean current 〈I (t)〉 is calculated as in equation 2.3. The correlation
function should take into account both the auto- and cross-correlations of
the spike trains in the E and I populations given in equations 3.4 and 3.9.
In Figure 4 we depict a diagram with the correlations present in the E and
I neurons, whose spikes trains impinge on the same target neuron. There
are NE excitatory neurons firing at rate νE and NI inhibitory neurons with
rate νI . We assume that only a fraction fE E ( f I I ) of the NE (NI ) excitatory
(inhibitory) neurons are correlated with other neurons within the same
population, with a correlation coefficient ρE E (ρI I ). Also only a fraction fE I

of the excitatory neurons are correlated with a fraction fE I of the inhibitory
neurons, with a correlation coefficient ρE I = ρI E .

Then the correlation function of the current, equation 3.12, contains sev-
eral contributions:

Ccurrent(t, t′) = J 2
E NE CE (t − t′) + J 2

I NI CI (t − t′)

+ J 2
E fEE NE ( fE E NE − 1) CE E (t − t′)

+ J 2
I f I I NI ( f I I NI − 1) CII (t − t′)

− 2 J E J I fEI fIE NE NI CEI (t − t′). (3.13)

In this expression, the two first terms come from the autocorrelations of
the spike trains in the E and I populations. The third and fourth terms
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Figure 4: Diagram of correlations in excitatory (E) and inhibitory (I ) neuronal
populations presynaptic to the same target neuron. The presynaptic E and I
populations make NE and NI contacts, respectively, with the target neuron. A
fraction fE E(I I ) of these NE(I ) excitatory (inhibitory) neurons are correlated with
each other with a correlation coefficient ρE E(I I ). Also there are E − I correlations,
with a fraction fE I participating from the E population and a fraction f I E from
the I population, for which the correlation coefficient is ρE I (=ρI E ). Since all E
neurons in the fraction fE I are correlated with any given I neuron in the fraction
f I E , these E neurons necessarily have E − E correlations. Therefore, they are
considered here to be a group within the fraction fE E , as shown in the figure.
The same applies for the I neurons.

take into account the cross-correlation between spike trains in the same
E or I population. They are positive because both E and I inputs con-
tribute positively to enhance fluctuations. The last term incorporates the
cross-correlation between spike trains, one from the E population and the
other from the I neuronal population, and it is negative. Indeed, positive
correlations between E and I neurons always reduce synaptic fluctuations
because the arrival of an excitatory spike can be cancelled out by the arrival
of another inhibitory spike, and this happens with higher-than-chance prob-
ability. Therefore, the effect of correlations within E or I neurons is always
to increase Ccurrent(t, t′) in the direction of their cross-correlation functions,
CE E (t − t′) and CI I (t − t′), whereas the effect of correlations between E
and I spike trains is always to lower the current correlation function in an
amount proportional to CE I (t − t′).

Using the choices given in equations 3.4 and 3.9, the two-point correla-
tion function of the total input current to the neuron can be written as

Ccurrent (t, t′) = σ 2
w

[
δ(t − t′) + α

2τc
e− |t−t′ |

τc

]
, (3.14)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.03-07-497&iName=master.img-003.png&w=144&h=141
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where we call σ 2
w the white noise variance, and α the correlation magnitude.

They are expressed in terms of the model parameters as

σ 2
w = J 2

E NE νE + J 2
I NI νI

α σ 2
w = J 2

E νE [(FE − 1) + fE E ( fE E NE − 1) FE ρE E ]

+ J 2
I NI νI [(FI − 1) + f I I ( f I I NI − 1) FI ρI I ]

− 2 J E J I fE I f I E NE NI
√

νE νI

√
FE FI ρE I . (3.15)

We define the total variance of the current, σ 2
e f f , as the sum of the white

noise variance and the variance generated by correlations, ασ 2
w, that is,

σ 2
e f f = σ 2

w(1 + α). (3.16)

The sign of the correlation magnitude determines the sign of the corre-
lations. If α > 0, the current has positive correlations, while if α < 0, the
current has negative correlations. The minimum physically possible value
for the correlation magnitude is α = −1.3 If α = 0, the current is uncorre-
lated. Notice that σ 2

e f f is very sensitive to the fractions of correlated input
trains, as these fractions are multiplied by the number of connections from
each population to the square, which typically are of the order of 103 − 104.
Also, from equation 3.15, it is possible to see that increasing the correlations
between excitatory or inhibitory neurons (either increasing ρE E or ρI I )
enhances the total variance, whereas correlations between excitatory-
inhibitory pairs (ρE I ) always decrease it (Salinas & Sejnowski, 2000).

The parameters τc and α that appear in the definition of the correlation
function of the current, equation 3.14, fully characterize both the tempo-
ral range and the intensity of the correlations relative to the white noise
variance σ 2

w. Although it is important to understand the effect of these two
parameters on the neuronal firing response separately, previous studies
have not studied this problem. For instance, in Feng and Brown (2000),
only the case τc = 0 is considered, which precludes the characterization

3For large enough T (T 	 τc ), the variance of the integrated current, or accumulated
charge Q(t) = ∫ T

0 dtI (t), is calculated as

Var[Q(T)] =
∫ T

0
dt

∫ T

0
dt′ Ccurrent(t, t′) = σ 2

e f f T.

Therefore, the variance of the current is just the proportionality factor σ 2
e f f . Notice that

since the variance of the current is nonnegative, the correlation magnitude has a lower
bound at α = −1. Lower values are not physically possible because the variance of a
real-valued stochastic variable cannot be negative.
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of the temporal scale of the correlations. On the other hand, Salinas and
Sejnowski (2000) have changed simultaneously the values of τc and α in
their simulations.

3.4 The Sum of a Large Number of Independent Non-Poisson Spike
Trains Is Not Poisson. One point deserves clarification at this moment. It
refers to the way many simultaneous spike trains add up. The sum of many
independent spike trains has been commonly approximated as a Poisson
process (e.g., Daley & Vere-Jones, 1988; Amit & Brunel, 1997a). Although
this is in some cases a good approximation, it is worth emphasizing that
the sum of many independent point processes is not, in general, Poisson.
Indeed, the conditions for the sum process to be truly Poisson are rather
restricted (see, e.g., Daley & Vere-Jones, 1988). In particular, one of the
conditions implies that on any time interval, only one event can be ob-
served from each individual point process. However, this is expected to
be a good approximation only for time windows much shorter than the
typical interspike interval of each neuron. In general, a neuron will receive
one, two, or more spikes from the same presynaptic neuron before it fires,
not just at most one spike, as the Poisson approximation strictly requires.

As expected from the rules of probability, adding up many independent
spike trains results in a global spike train with an autocorrelation function
with exactly the same functional form as those of the individual trains (note,
however, that higher-order properties are not necessarily conserved, that
is, the sum of many renewal processes may not be renewal). In particular,
when N independent spike trains with an autocorrelation C(t, t′) are added,
the summed train has an autocorrelation N × C(t, t′) (Moreno et al., 2002;
see also equation 3.13 with CE E(I I,E I ) = 0 and J E(I ) = 1). We further noted
that even in the diffusion limit (N → ∞), when the individual firing rates
ν are renormalized by ν/N to yield a finite two-point correlation function,
the autocorrelation function of the total input has exactly the same shape
as the autocorrelation function of the individual spike trains. Later works
have also used this property (Renart et al., 2007; Lindner, 2006; Cateau &
Reyes, 2006; Doiron, Rinzel, & Reyes, 2006), which is relevant to describe
the temporal aspects of correlations in networks of spiking neurons.

Here we exemplify the above result using the expression for the cor-
relation function of the current, equations, 3.14 and 3.15. It is easy to see
that the total current will show temporal correlations beyond the trivial
delta function at zero time lag whenever α is different from zero and τc

is not infinity. If the afferent spike trains are independent (ρ = 0) but they
have exponential autocorrelations, like those in equation 3.4, then α will
be different from zero (see equation 3.15). This will happen for any choice
of the number of connections and synaptic strengths (different from zero).
Therefore, no matter which choices of the parameters are taken, the correla-
tion function of the total current can never correspond to a Poisson process
with a larger rate, since an input Poisson process will produce a correlation
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function equal to Ccurrent(t, t′) = σ 2
wδ(t − t′). The above argument does not

depend on the condition that the correlations are exponential, but rather the
same conclusion can be achieved from equation 3.13 using any plausible
autocorrelation function CE (t, t′) and CI (t, t′) different from a delta function
(i.e., different from the autocorrelation function of a Poisson process).

3.5 When the Current Can Be Approximated by a Gaussian Current.
We have described the statistical properties of the total current, I (t), gen-
erated by correlated spike trains. However, the firing response of a neuron
receiving that current is not yet completely determined by the mean and
two-point correlation function of the current alone, equations 3.14 and 3.15.
These quantities describe the statistical properties of a stationary current
up to second order, but higher-order statistics in the input could also play
a role in shaping the firing response of the neuron. However, if the current
I (t) can be approximated by a gaussian process, then the current would
be fully described by its mean and two-point correlation function. In fact,
gaussianity naturally holds when the neuron is receiving a large barrage of
uncorrelated spikes per second, each one inducing a membrane depolariza-
tion J very small compared to the distance between the threshold and reset
potentials, J /(� − H) 
 1 (Ricciardi, 1977). When inputs are correlated, the
net effect of correlations is to increase effectively the size of the unitary de-
polarization (for positive correlations), since two or more spikes are more
likely to occur together in time. We have estimated this renormalization in
the size of J and determine that for the gaussian approximation to be valid
with correlated input spike trains, the condition

J F
(� − H)

(1 + f Nρ) 
 1 (3.17)

should hold. This is a heuristic formula, and it is explained qualitatively as
follows. The worst condition in the presence of correlations occurs when
the correlation time τc is zero, that is, when there is some chance that two
or more spikes arrive at the same time, increasing the effective size of each
spike and worsening the gaussian approximation. One can estimate the
mean number of spikes arriving together to be F (1 + f Nρ), which grows
with the variability of the spike trains, the number of correlated pairs, and
their correlation coefficient. As long as this number multiplied by J is small
compared to � − H, equation 3.17, the gaussian approximation is expected
to be appropriate. This indicates that if either F , fN , or ρ increases too
much, the gaussian limit will be broken. When condition 3.17 is largely
broken, as in Kuhn, Aertsen, and Rotter (2003), the gaussian approximation
is no longer valid. In particular, in the limit of large N, it should hold that
ρ ∼ 1/ f N, so the correlation coefficients cannot remain finite as the size
of the population of neurons with significant cross-correlations increases.
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If condition 3.17 is satisfied, the input current in our problem can be de-
scribed as a gaussian stochastic current fully defined in terms of the mean
µ = J E NEνE − J I NI νI , the variance σ 2

w, the correlation magnitude (α) and
correlation time (τc), as expressed in equation 3.14.

3.6 Choosing the Connectivity and Correlation Parameters. Because
we are dealing with a model with many free parameters (see equation 3.15),
here we fix most of them or make choices within a range of realistic values. A
single neuron receives typically NE ∼ 5000 − 60000 excitatory connections
from other neurons (Cragg, 1967; DeFelipe & Fariñas, 1992). This accounts
for 80% of the total number of synapses; the remaining 20% corresponds
to inhibitory synapses (Abeles, 1991). The dynamical range of cortical neu-
rons lies in the interval ν ∼ 0 − 200 Hz (Albright, 1993), although lower
rates are much more probable than higher ones (Rolls & Treves, 1998).
Synaptic strengths are between J = 0.1 − 1 mV (Amit & Brunel, 1997a; see
the references there). Assuming a threshold of 20 mV above the resting
potential of the neuron, these unitary events represent a fraction in the
range J ∼ 5 10−3 − 10−2 of the total path to be traveled from rest to firing
threshold.

Fano factors of the spike count lying in the interval 1 to 1.5 reveal
higher irregularity in the neuronal discharges from that expected from
Poisson trains (Dean, 1981; Softky & Koch, 1993; Shadlen & Newsome,
1998; Albright, 1993; Stevens & Zador, 1998; Compte et al., 2003).

The timescale of correlations varies from a few to several hundred mil-
liseconds, τc ∼ 1 − 100 ms (Ts’o, Gilbert, & Wiesel, 1986; Gochin, Miller,
Gross, & Gerstein, 1991). For instance, in deCharms and Merzenich (1996)
the correlated activity of pairs of neurons in primary auditory cortex in cats
was recorded. The mean half-width at half-height of the cross-correlograms
peaks computed from these pairs was ∼10 ms, which corresponds to a cor-
relation timescale τc = 10 ms/ln2 ∼ 15 ms.

Zohary et al. (1994) have reported correlation coefficients of ρ = 0.12
between neighboring cells in the middle temporal visual area (MT, or V5).
If any pair of neurons in a group of thousand units were correlated with
such a magnitude and projected to a same target neuron, the magnitude of
the input fluctuations would be unrealistically large (see equation 3.15). In
fact, the value ρ = 0.12 holds only for units within local circuits, because
it is known that more distant neurons display much smaller correlation
coefficients (Lee et al., 1998). Although a “mean” correlation coefficient
could have been considered,4 we have taken into account the hetero-
geneity of pairwise correlations observed in the cortex by assuming that
only a fraction f pq of neurons between populations p and q are indeed

4A mean correlation coefficient can be obtained by averaging the ρ of each pair of
neurons: 〈ρ〉 = ∫

f (ρ)dρ.
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correlated with the same correlation coefficient ρpq . This fraction could rep-
resent the portion of presynaptic neurons located in the surroundings of
the target neuron, and thus embedded in the same local circuits as this
neuron, or a far neuronal population displaying correlations between its
units and projecting to the same target neuron. To bound the effects of
input correlations, we assume that around 1% of the presynaptic neurons
can be correlated. Such a small value of f pq still produces a large effect
on the correlation magnitude (see equation 3.15), as will also be clear in
section 7.2.

The values of µ, σ 2
w, and α therefore lie within rather broad intervals.

As an example of the typical values they can take, if a neuron receives
NE = 104 excitatory connections, NI = 2 103 inhibitory connections, with
synaptic strengths J E = 5 10−3 and J I = 2 10−2 (in units of the threshold),
and they are firing at νE = νI = 5 Hz, then µ = 50 Hz and σ 2

w = 5.3 Hz.
Assuming that there are correlations only between pairs of neurons in the
E population (ρE I = ρI I = 0), being fE E = 0.1 the fraction of those that are
correlated, then α = 0.85 if FE = FI = 1.5 and the correlation coefficient is
ρE E = 0.01, or α = 4 if ρE E = 0.1. When we present results from numerical
simulations, the parameter values considered will be of the order of the
ones mentioned above.

4 Two Ways of Transforming the Non-Markovian Problem into
a Markovian One

As we explained in section 1, we aim at calculating the output firing rate
of an LIF neuron receiving a correlated input as described in the previous
sections. The main technical problem in studying the response properties
of a neuron driven by correlated inputs analytically is that the stochastic
process defined by equation 2.1 with a current having correlations as in
equation 3.14 is non-Markovian, that is, the time derivative of the membrane
potential at each time depends on the past history of the afferent current,
not only on its present value. This fact complicates the solution of the
problem. However, the process defined in equations 2.1 and 3.14 can be
expressed in a Markovian way by generating the current I (t) with the
help of an Ornstein-Uhlenbeck process (Moreno et al., 2002). The stochastic
current I (t) generated in this way displays exactly the same exponential
correlations as equation 3.14. This duplicates the number of variables but
puts the problem in a suitable form (see equations 4.1 and 4.2 and 4.11
and 4.12 below). We have found two different ways of representing the
correlated gaussian current I (t) satisfying equation 3.14. They differ only
in the values of α for which they hold. While one of them is more general
because α can take any physical value (including both positive and negative
correlations), the other is simpler, although it can be used only for α > 0
(positive correlations).



1670 R. Moreno-Bote, A. Renart, and N. Parga

4.1 The First Representation for the Dynamics of I(t). The first rep-
resentation of the current I (t) that we discuss here generates both positive
(α > 0) and negative (α < 0) correlations. It has the form

I (t) = µ + σwη(t) + σw

β√
2τc

z(t) (4.1)

ż(t) = − z
τc

+
√

2
τc

η(t), (4.2)

where η(t) is a white noise random process with mean zero and unit vari-
ance (i.e., 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′)), β = √

1 + α − 1, and z(t) is an
auxiliary colored random process that obeys the Ornstein-Uhlenbeck pro-
cess, equation 4.2, with the same white noise η(t) (see, e.g., Risken, 1989).

It is easy to check that the current defined in equations 4.1 and 4.2
generates a gaussian waveform with mean 〈I (t)〉 = µ and exponential cor-
relations as in equation 3.14. Defining i(t) = (I (t) − µ)/σw, we have

〈i(t) i(t′)〉=
〈[

η(t) + β√
2τc

z(t)
] [

η(t′) + β√
2τc

z(t′)
]〉

= δ(t − t′) + β√
2τc

〈η(t)z(t′)〉 + β√
2τc

〈η(t′)z(t)〉+ β2

2τc
〈z(t)z(t′)〉.

(4.3)

Assuming that t′ > t without loss of generality (because 〈i(t) i(t′)〉 is sym-
metric in the steady state), the third term on the right side of equation 4.3
vanishes. The second and fourth terms are calculated using the solution of
the stochastic equation, equation 4.2,

z(t) =
√

2
τc

e−t/τc

∫ t

0
ds es/τc η(s), (4.4)

with the initial condition z(0) = 0. We find that in the stationary state (t, t′ →
∞, t′ − t = constant > 0),

〈η(t)z(t′)〉 =
√

2
τc

e−(t′−t)/τc

〈z(t)z(t′)〉 = e−(t′−t)/τc .

When we use these identities, the correlation function of the current I (t)
defined in equations 4.1 and 4.2, denoted Ccurrent(t, t′), can be written as

Ccurrent(t, t′) ≡ 〈(I (t) − µ)(I (t′) − µ)〉

= σ 2
w

[
δ(t − t′) + β(2 + β)

2τc
e− |t−t′ |

τc

]
, (4.5)
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from where one sees that the correlation magnitude α is related to the
new parameter β by α = β(2 + β), an equation that has two indepen-
dent solutions, β = ±√

1 + α − 1, both equally valid. We have chosen
β = √

1 + α − 1. Remember that α has a lower bound in −1, which is ob-
tained with β = −1. For each solution there is a one-to-one mapping from
α ∈ [−1,+∞) to β, and thus all physically realizable positive and negative
correlations are included in this formalism.

The joint process defined by equations 2.1, 4.1, and 4.2 is Markovian
and driven by white noise. Thus, the problem of finding the output firing
rate can be formulated according to its associated stationary Fokker-Planck
equation (FPE) (Risken, 1989). The system of equations 2.1, 4.1, and 4.2 can
be simplified by the linear transformation,

V = µτm + σw

√
τm

2
x, (4.6)

to obtain the set of stochastic equations:

ẋ(t) = − x(t)
τm

+
√

2
τm

η(t) + β√
τmτc

z(t)

ż(t) = − z
τc

+
√

2
τc

η(t).

The FPE associated with these two equations is derived in detail in
appendix B and is given by

[
Lx + Lz

k2 + 2
k

∂

∂x

(
∂

∂z
− βz

2

)]
Pβ (x, z) = −τmδ(x −

√
2Ĥ)Jβ (z),

(4.7)

where the differential operator Lu is defined as Lu = ∂
∂u u + ∂2

∂2u , and k ≡√
τc/τm. Besides, Ĥ = H−µτm

σw
√

τm
and �̂ = �−µτm

σw
√

τm
. The true reset and threshold

values in the new variable x are
√

2Ĥ and
√

2�̂, respectively. The func-
tion Pβ (x, z) is the steady-state probability density of having the neuron in
the state (x, z). Since the problem cannot be solved exactly as in the one-
dimensional diffusion case (see, e.g., Ricciardi, 1977; Risken, 1989), we have
used a perturbative expansion of the FPE in powers of k−1 = √

τm/τc .
A key quantity is the escape probability density flux at fixed z, Jβ (z).

Associated to the FPE, equation 4.7, there is a probability density vector
flux �Jβ (x, z) defined at each point on the plane (x, z) (Risken, 1989, p. 133).
It measures the direction and the intensity of the probability density flux at
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each point (x, z). For our FPE, it has the expression

�Jβ (x, z) = 1
τm

[
− ∂

∂x
− x − 1

k

(
∂

∂z
− βz

)
,

− 1
k2

(
∂

∂z
+ z

)
− 1

k
∂

∂x

]
Pβ (x, z). (4.8)

The probability density flux satisfies the so-called continuity equation,

�∇.�Jβ (x, z) + τmδ(x −
√

2Ĥ)Jβ (z) = 0, (4.9)

where �∇ = [ ∂
∂x , ∂

∂z ] is the divergence operator. Equation 4.9 is equivalent to
the FPE, equation 4.7, and expresses the conservation of the total probability
over time. The escape probability density flux Jβ (z) is just the x-component
of the probability density flux, equation 4.8, evaluated at threshold:

Jβ (z) = 1
τm

(
− ∂

∂x
− x − 1

k

(
∂

∂z
− βz

))
Pβ (x, z)|x=√

2�̂. (4.10)

The escape probability density flux appears in equation 4.7 as a source
term representing the reset effect: whenever the potential V reaches the
threshold �, it is reset to the value H with the same z distribution that it
had when it escaped. This holds because the particular value of z at the
moment of the generation of each spike has to be conserved for the next
interspike interval since, as opposed to V, z is not reset after an action po-
tential. Crucially, this self-consistency condition complicates the solution of
the FPE, equation 4.7. The escape probability density flux in equation 4.10 is
exact if τre f = 0 (or approximately if τc 	 τre f , because in this case, the vari-
able z has slow dynamics and therefore its probability distribution at a time
τre f after the emission of an output spike is very similar to its distribution
at the moment of the spike).

Let us notice that this first representation of I (t) can be used not only
for analytical calculations but also for the numerical generation of expo-
nentially correlated currents, as it is shown in Figure 5, where we show
the exponential two-point correlation function of a current I (t) generated
numerically by equations 4.1 and 4.2 and that predicted by equation 4.5.
Additionally, in section 7, this representation will be employed in the nu-
merical analysis of the response of LIF neuron to negative and positive
correlations.

4.2 The Second Representation for the Dynamics of I(t). An
afferent current I (t) with nonnegative exponential correlations obeying
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Figure 5: Normalized correlation functions of the current I (t) numerically gen-
erated by simulating the process defined in equations 4.1 and 4.2. The normal-
ized correlation function of the current is defined as Ĉcurrent(s) = Ccurrent(s)/σ 2

w −
δ(s), where Ccurrent(s) is defined in equation 4.5. The variable s is the time lag
s = t − t′. With this normalization, the correlation function has units of Hz. For
positive correlations (left), we took β = 2, which yields a correlation magnitude
α = 8; τc = 15 ms. For negative correlations (right) we took β = −0.5, which
corresponds to α = −0.75; here τc = 5 ms. In both cases, numerical results are
compared with the exponential functions predicted by equation 4.5 (nonfluctu-
ating curves).

equation 3.14 can also be generated by the set of equations

I (t) = µ + σwη(t) + σw

√
α

2τc
y(t) (4.11)

ẏ(t) = − y
τc

+
√

2
τc

ζ (t). (4.12)

Here η(t) and ζ (t) are two independent white noise processes with mean
zero and unit variance. The two-point correlation of I (t) can be calculated
as in equation 4.3, with the exceptions that β in equation 4.3 is replaced
by

√
α and the two white noises are not correlated. Then only the terms

analogous to the first and fourth terms in equation 4.3 are nonzero. Because
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√
α is a real number, the correlation magnitude α has to be positive in this

representation.
From the set of equations 2.1, 4.11, and 4.12 making the linear transfor-

mation defined in equation 4.6, we obtain the FPE (the derivation is similar
to the one presented in appendix B):

[
Lx + L y

k2 −
√

αy
k

∂

∂x

]
Pα(x, y) = −τmδ(x −

√
2Ĥ)Jα(y). (4.13)

The linear differential operator Lu has been defined as in section 4.1, and
again k ≡ √

τc/τm. As in the previous representation, the escape probability
density flux Jα(y) acts as a source term injecting current at the reset potential
at the same rate and with the same distribution in y as when it escaped (here
we have to assume that τre f = 0, or τc 	 τre f = 0). It represents the proba-
bility current in the direction of x evaluated at threshold. The probability
density vector flux for this FPE is

�Jα(x, y) = 1
τm

[
− ∂

∂x
− x −

√
αy
k

, − 1
k2

(
∂

∂y
+ y

)]
Pα(x, y). (4.14)

Its continuity equation is

�∇.�Jα(x, y) + τmδ(x −
√

2Ĥ)Jα(y) = 0, (4.15)

equivalent to the FPE, equation 4.13, and the escape probability density flux
is defined as

Jα(y) = 1
τm

(
− ∂

∂x
− x −

√
αy
k

)
Pα(x, y)|x=√

2�̂. (4.16)

The FPE, equation 4.13, will be useful for finding a perturbative solution to
the first passage time problem in powers of k = √

τc/τm, that is, for short, τc .
We have found this representation especially useful for this purpose, since
this limit is harder to obtain from the first representation.

4.3 Conditions over the Probability Density Distribution and
Probability Density Flux. For both representations of exponential correla-
tions, the probability density and the escape probability density flux must
be determined such that they obey the set of conditions:

1. Normalization of the probability density,

τre f νout +
∫ √

2�̂

−∞
dx

∫ ∞

−∞
dw Pr (x, w) = 1 (4.17)
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2. Threshold vanishing condition,

Pr (
√

2�̂, w) = 0 (4.18)

3. The output firing rate is given by

νout =
∫ ∞

−∞
dw Jr (w). (4.19)

4. The escape probability density flux has the form

Jr (w) = − 1
τm

∂

∂x
Pr (x, w)|x=√

2�̂ (4.20)

where r = α, β is the representation label, and w stands for both z and y.
Condition 4.17 is a normalization condition stating that with probability

τre f νout , the neuron is in the refractory period. Condition 4.18 states that at
the firing threshold, the probability density has to be zero (notice that the
density can be defined to be zero above threshold, so this condition is a con-
tinuity condition at the threshold boundary). This is so because otherwise,
the flux in equation 4.20, which includes a derivative evaluated at thresh-
old, would be infinity. The output firing rate of the neuron, νout , is obtained
by integrating the escape probability density flux over w, condition 4.19.
To write down Jr (w) in condition 4.20, we have used condition 4.18 ap-
plied to equations 4.10 and 4.16. Notice that precisely because of condition
4.18, the escape probability density flux, equation 4.20, has exactly the same
expression in both representations.

While solving the FPEs in both representations, it is usually easier to
employ the exact condition,

∫ √
2�̂

−∞
dx Pr (x, w) = (1 − νoutτre f )

e−w2/2

√
2π

, (4.21)

which is directly obtained from the equations for z or y (see equations 4.2
and 4.12, respectively) and the condition that there is a fraction νoutτre f

of neurons in the refractory state. Equation 4.21 states that the marginal
distribution of w is a normal distribution, as it corresponds to the stationary
distribution of an Ornstein-Uhlenbeck process (see equations 4.2 and 4.12).
Notice that it is consistent with equation 4.17.

5 Output Firing Rate for Long and Short τ c

The next step is to compute the output firing rate using the FPEs. We
found it feasible to evaluate it from the first representation, equation 4.7,
for long correlation times (τc 	 τm) and from the second representation,
equation 4.13, for both short and long correlation times. In the two cases,
we propose a perturbative expansion of the solution Pr (x, w) in powers
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of a representative temporal scale parameter (a convenient power of k ≡√
τc/τm).

5.1 Long τ c Limit Using the First Representation. In this limit, we
expand both the probability density and the escape probability density flux
as a series in powers of k−1 = √

τm/τc ,

Pβ (x, z) = h0(x, z) + k−1h1(x, z) + k−2h2(x, z) + O(k−3) (5.1)

Jβ (z) = J0,β (z) + k−1 J1,β (z) + k−2 J2,β (z) + O(k−3). (5.2)

Each term J i,β in this expansion must satisfy condition 4.20,

J i,β (z) = − 1
τm

∂

∂x
hi (x, z)|x=√

2�̂. (5.3)

Let us proceed to the calculation by replacing the expansions 5.1 and 5.2
into the FPE, equation 4.7. This substitution generates a set of equations for
Pi,β that can be solved consistently with conditions 4.17 to 4.19. The main
steps of the procedure are given in appendix C.

The resulting escape probability density flux Jβ (z) is found to be, up to
O(k−2),

Jβ (z) = e−z2/2

√
2π


ν0 +

√
τ 3

m

τc

(2 + β)ν2
0 (R(�̂) − R(Ĥ))

1 − ν0τre f
z

+ α

τc
C + αC

β2τc(1 − ν0τre f )
(z2 − 1)

]
,

C ≡ τ 2
mν2

0

[
τmν0(R(�̂) − R(Ĥ))2

1 − ν0τre f
− �̂R(�̂) − Ĥ R(Ĥ)√

2

]
.

Here R(t) = √
π
2 et2

(1 + erf(t)), where erf(t) = 2√
π

∫ t
0 du e−u2

is the error
function. The rate ν0 is just the firing rate of a LIF neuron driven by a
white noise input with variance σ 2

w (Ricciardi, 1977),

ν−1
0 = τre f + √

πτm

∫ �̂

Ĥ
dt et2

(1 + erf(t)). (5.4)

Notice that C is independent of τc .
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We then use condition 4.19 to find the output firing rate valid for long τc

and fixed α,

νout = ν0 + α

τc
C . (5.5)

Several important conclusions can be extracted from this simple ex-
pression. First, the effect of correlations is linear on α for long τc . That is,
doubling α doubles the firing rate above the rate without correlations, ν0.
Notice also that α can be positive or negative, so for negative correlations,
the effect on the rate is the opposite of that for positive correlations. Sec-
ond, the firing rate of an LIF neuron with exponentially correlated input
approaches the firing rate in the absence of input correlations as the corre-
lation time increases. This happens because as the correlation time becomes
longer than the membrane time constant (τc 	 τm), the neuron filters out
the fluctuations provoked by input correlations. As a consequence, in the
long τc limit and for finite correlation magnitude, the correlated input to
the neuron can be approximated by a white noise process. Therefore, in this
limit, the observation of only the output firing rate of the neuron does not
allow distinguishing a correlated input from one generated by the sum of
many Poisson point processes in the diffusion limit. This result is important,
as it determines when inputs with complex correlation structure (i.e., with
several correlation timescales) can be approximated by white noise.

5.2 Long τ c Limit using the Second Representation. In this section we
calculate the firing rate in the long τc limit using the FPE, equation 4.13.
Although the FPE in equation 4.13 is more restrictive than the FPE in
equation 4.7 (it describes only positive correlations, α > 0), it is analyzed
here because it is much simpler and can also be solved in the limit in which
α/τc is constant, that is, for arbitrarily large α. In fact, the FPE, equation 4.7,
has been studied in the limit in which α/τc approaches zero as τc rises,
because the correlation magnitude was constant in that case. The real ad-
vantage of using the second representation is that the predicted firing rate
is valid for larger values of α, compared to formula 5.5.

We start from the FPE, equation 4.13, and assume that the factor
√

α/k
is constant (k ≡ √

τc/τm). We thus define

γ =
√

α

k
. (5.6)

Inserting this parameter in equation 4.13, we obtain

[
Lx − γ y

∂

∂x
+ L y

k2

]
Pα(x, y) = −τmδ(x −

√
2Ĥ)Jα(y), (5.7)
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where Jα(y) reads as in equation 4.20. The solution of the FPE, equation 5.7,
along with conditions 4.17 to 4.21 in the long τc limit is found by expanding
Pα(x, y) and the escape probability density flux Jα(y) in powers of k−2 while
keeping γ fixed as

Pα(x, y) = r0(x, y) + k−2r1(x, y) + O(k−4)

Jα(y) = Jα,0(y) + k−2 Jα,1(y) + O(k−4). (5.8)

To obtain the coefficients ri (x, y) and Jα,i (y) we proceed as in section 5.1. In
particular, conditions 4.17 to 4.20 are imposed order by order. The main steps
of the calculation are given in appendix D. The results are here summarized
up to order k0. The density Pα(x, y) up to O(k0) is

Pα(x, y) = τm Jα(y) e− (x−γ y)2

2

∫ √
2�̂

x
du e

(u−γ y)2

2 H(u −
√

2Ĥ), (5.9)

(H(t) = 1 if t > 0 and it is zero otherwise), where the escape probability
density flux Jα(y) up to the same order is

Jα(y) = 1√
2πτm

e− y2
2

[∫ √
2�̂−γ y

√
2Ĥ−γ y

du e
u2
2

∫ u

−∞
dve− v2

2

]−1

. (5.10)

The output firing rate at leading order is obtained by integrating Jα(y) over
y as

νout = 1√
2πτm

∫ ∞

−∞
dy e− y2

2

[∫ √
2�̂−γ y

√
2Ĥ−γ y

due
u2
2

∫ u

−∞
dve− v2

2

]−1

. (5.11)

Notice that this formula has been derived for τre f = 0. Notice also that only
the leading order k0 has been calculated. This order, however, gives a firing
rate that is much more accurate than the firing rate obtained using the first
representation in the same limit, equation 5.5. This is true because the firing
rate in equation 5.11 depends on γ , which is a function of the parameters
α and k (γ ≡ √

α/k). If the zeroth-order firing rate in equation 5.11 is ex-
panded in powers of k−1 for fixed α, the same firing rate in equation 5.5
is found when correlations are positive. (In particular, if α = 0, then γ = 0
and νout equals ν0, that is, the well-known expression for the firing rate
of an LIF neuron driven by white noise; Ricciardi, 1977.) This means that
equation 5.11 is exact up to O(k−2), and therefore the corrections to the firing
rate arising from the terms O(k−2) in the expansion 5.8 should vanish. This
is indeed the case, as shown in appendix D. In addition, the higher-order
corrections found in the expansion of equation 5.11 improve the prediction
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provided by equation 5.5, especially when α is very large or when α/τc is
kept constant (i.e., γ constant) in the long τc limit.

The firing rate in equation 5.11 has a very simple interpretation. Since
y is slow compared to the voltage dynamics (τc > τm), the firing rate of an
LIF neuron receiving correlated noise can be calculated by multiplying the
firing rate of the LIF neuron receiving a frozen current proportional to y
(plus mean µ and white noise with amplitude σw; this corresponds to the
function into the square brackets, divided by τm; Ricciardi, 1977)5 and the
probability density of having the value y, which in this case is a normal dis-
tribution because y obeys an Ornstein-Uhlenbeck process, equation 4.12.
This expression, obtained here to describe the effect of exponentially corre-
lated inputs, has also been used to describe the effects of synaptic filtering
with both fast and slow linear synapses on the output firing rate of an LIF
neuron (Moreno-Bote & Parga, 2004).

One important feature of the firing rate in the long τc limit, equation 5.11,
is that it does not change as γ is kept fixed, that is, as the ratio α/τc is
kept constant. This means that to obtain the same output firing rate for a
longer correlation time, one has to increase proportionally the correlation
magnitude so that the loss of temporal precision is counterbalanced by
an increase in the excess of synchronous afferent spikes. This suggests
a proportionality law that could be tested experimentally using in vitro
current injections in which both the magnitude and the temporal precision
can be controlled independently (using, e.g., equation 4.2). Furthermore, for
nonexponential correlation functions (e.g., oscillatory), it might be possible
to define an effective correlation magnitude and an effective correlation
time so that the output firing rate of the neuron will not depend on them
individually but on their ratio.

5.3 Short τ c Limit Using the Second Representation. In the regime of
short τc , the FPE, equation 4.13, is employed to find the output firing rate.
Although the set of equations 2.1, 4.11, and 4.12 generates only positive
exponential correlations, we use them because its associated FPE can be
solved perturbatively in powers of k = √

τc/τm and
√

α. We have found the
FPE, equation 4.7, including both positive and negative correlations too in-
volved to be studied in the small k limit. Although the firing rate computed
in this limit from the FPE 4.13 is derived only for positive correlations,
when the same formula is employed for negative correlations, one finds
an excellent agreement with the numerical results. This fact suggests that
the analytical continuation of our formula to negative correlations (α < 0)
could match the true expression for that case.

5Note that the function within the brackets can be expressed in terms of the error
function, similar to equation 5.4.
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Even when using the FPE, equation 4.13, valid for positive correlations,
the short τc expansion is not easy to obtain. This is because of the self-
consistency condition, equation 4.20, which is hard to deal with. However,
if the correlation time τc is short compared to the refractory time τre f (τre f 	
τc), the escape probability density flux can be written as (Doering, Hagan,
& Levermore, 1987)

Jα(y) = νout
e−y2/2

√
2π

, (5.12)

which solves automatically conditions 4.19 and 4.20. This approximation is
good because after a spike, the variable y approaches its gaussian stationary
distribution in a time τc , which we are taking shorter than τre f .

We now look for a solution of the FPE 4.13 of the form

Pα(x, y) = f0(x, y) + k f1(x, y) + O(k2), (5.13)

and at the same time we expand the escape probability density flux Jα in
powers of k or, equivalently, the unknown output firing rate as

νout = νe f f + kν1 + O(k2). (5.14)

It can be shown that the solution f1(x, y) obtained from the perturba-
tive expansion does not satisfy the vanishing boundary condition 4.18 (see
appendix E). To address this problem, we extend the formalism described
in Doering et al. (1987) to solve the short τc limit. As in Doering et al. (1987),
our problem does not have a perturbative solution for short τc , and it is nec-
essary to solve a boundary layer problem. Details of these calculations are
given in appendix E. Briefly, the solution Ptotal

α (x, y) is obtained as the sum
of the perturbative and an additional solution, valid close to the threshold,
that we call boundary solution f b

1 (x, y):

Ptotal
α (x, y) = f0(x, y) + k[ f1(x, y) + f b

1 (x, y)] + O(k2). (5.15)

It is now possible to satisfy condition 4.18 up to order k. Finally, the firing
rate up to order k can be calculated using condition 4.17, resulting in

νout = νeff (α) − α
√

τcτmν2
0 R(�̂) , (5.16)

where ν0 is defined as in equation 5.4 and

ν−1
e f f (α) = τre f + √

πτm

∫ �̂e f f

Ĥe f f

dt et2
(1 + erf(t)). (5.17)
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Table 1: Analytical Expressions for the Output Firing Rate of an LIF Neuron
Receiving Exponentially Correlated Inputs with Magnitude α and Correlation
Timescale τc for the Two Representations of the Current in Both the Short and
Long τc Limits.

First Representation Second Representation

Short τc Not found νout = νeff (α) − α
√

τcτmν2
0 R(�̂), equation 5.16

Valid for small and positive α, and
exact for all positive α when τc = 0

Long τc νout = ν0 + α
τc

C, νout = 1√
2πτm

∫ ∞
−∞ dy e− y2

2

equation 5.5
Valid for small α,
positive and negative

[∫ √
2�̂−γ y√

2Ĥ−γ y
due

u2
2

∫ u
−∞ dve− v2

2

]−1

,

with γ = √
ατm/τc , equation 5.11

Valid for all (even large) positive α

The effective reset and threshold potentials are defined as �̂e f f = �−µτm
σe f f

√
τm

and Ĥe f f = H−µτm
σe f f

√
τm

. An important implication of equation 5.16 is that
when τc = 0, the output rate is νe f f (α), equivalent to that of an LIF neu-
ron receiving an uncorrelated input (white noise) with an effective signal
variance,

σ 2
eff = σ 2

w(1 + α). (5.18)

In this case, the solution is exact for all α. When τc �= 0, it is correct only for
small values of both k and α > 0. This expression indicates that when the
correlation time is zero, the effect of the input correlations is to increase the
white noise variance by a factor equal to 1 + α.

A general expression for the firing rate of any IF neuron is presented in
appendix F. Again, for τc = 0, the firing rate is that of the IF neuron with
input white noise but with a renormalized variance as in equation 5.18.
From this maximum firing rate at optimal synchronization, the firing rate
decreases as −√

τc for fixed α (see equation F.4, analogous to equation 5.16
for a LIF neuron), showing that this large sensitivity to variations in the
correlation time of the inputs is a general property of IF neurons.

6 Summary of the Analytical Results

The analytical results, obtained in the first and second representations of
the current, and in the short and long τc limits, along with the conditions
on which they are valid, are summarized in Table 1.

The second representation allows calculating the firing rate for both short
and long τc , while the first representation allows the calculation of the firing
rate only for long τc . In Moreno et al. (2002) we used the second representa-
tion to obtain the firing rate for short τc , and therefore the expression shown
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here is the same at that found there. On the other hand, using the second
representation for long τc , here we have been able to find a new expression
for the firing rate, equation 5.11, which can be applied for arbitrarily large
α, while that found in Moreno et al. (2002) using the first representation,
equation 5.5, could be applied only for small α. The expressions valid for
long τc , equations 5.5 and 5.11, are in fact equivalent when the limit α → 0 is
taken (see appendix D). Note, however, that equation 5.5 can be employed
for negative α, while equation 5.11 can be used only for positive α.

7 The Effect of Correlations on the Firing Response
of Spiking Neurons

In this section we take advantage of the machinery developed in the pre-
vious sections. First, the prediction of the firing rate as a function of the
timescale and magnitude of input correlations is used to study the role of
synchrony on the stationary firing response of an LIF neuron. Second, we
study the firing response to modifications of the correlation magnitude.
Numerical solutions of the voltage and noise equations to generate expo-
nentially correlated noise are employed in this case.

7.1 Stationary Firing Response. Although we have calculated the out-
put firing rate in both the limit τc 
 τm and τc 	 τm, before the effect of τc

and α on the firing rate is described, we develop an interpolation procedure
that allows us to use a single expression for all values of τc . The interpo-
lating curves have been determined by setting the firing rate in the short
correlation time range (τc < τm) as

νout = νe f f + A1
√

τc + A2 τc, (7.1)

where A1 and A2 are unknown functions of α and of the neuron and input
parameters, while in the long correlation time limit (τc > τm), the expression
given in equation 5.5,

νout = ν0 + αC/τc, (7.2)

was used. The functions A1 and A2 are determined by interpolating these
two expressions with conditions of continuity and differentiability at a
convenient interpolation point τc,inter ∼ τm. Although we have calculated
analytically the function A1 (see equation 5.16) for small α, this procedure
takes into account higher-order corrections that match more accurately the
observed data for larger values of α as those used in some of our simulations
(see below). Therefore, equations 7.1 and 7.2 provide an analytical formula
for the output firing rate of an LIF neuron receiving exponentially correlated
input valid for all τc .
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We have performed numerical simulations of an LIF neuron driven
by gaussian exponentially correlated input using equations 2.1, 4.1, and
4.2. We use them to check the analytical results given in equations 5.5,
5.11, and 5.16 and validate the interpolation made between the regimes
of short and long τc , provided by equations 7.1 and 7.2. When posi-
tive correlations are considered (α > 0), the interpolation procedure is
robust against changes in µ and σ 2

w. Crucially, the interpolating point
τc,inter ∼ τm does not vary too much, so that it can be maintained ap-
proximately fixed for all input parameters. For negative correlations, we
have found it more convenient to add to the expansion in equation 7.2
an extra term: νout = ν0 + α C/τc + B1/τ

2
c . This expression is then made to

match at τc,inter ∼ τm, the short τc regime given by the equation νout = νe f f +
B2

√
τc .

This interpolation is compared with simulation results in Figure 6, pro-
viding good fit. The firing rate increases as τc decreases (at fixed positive α).
This corresponds to the intuitive result that positive correlations between
the presynaptic events produce a larger enhancement in the output firing
rate as the temporal window over which they occur decreases. On the other
hand, when negative correlations are present in the input, the effect of τc is
reversed: the firing rate increases as τc increases. Negative correlations pro-
duce a deficit in current fluctuations that reduces the firing rate. This deficit
is not noticeable if τc is very long compared with τm. These results show
that correlations with fixed magnitude α have different effects on a target
neuron depending on the value of their correlation timescale. Correlations
are not perceived by neurons if the temporal precision they occur at is larger
than the membrane time constant of those neurons. As it can be appreciated
in Figure 6, when τc is of the order of 40 ms (twice longer than τm), the
output firing rate of the neuron approaches the firing rate obtained by an
input without correlations (α = 0, dashed-dotted line). Only if τc < τm = 20
ms is the presence of correlations noticeable. As noted above, this implies
that from the point of view of the output firing rate, correlations in the input
can be neglected (a white noise input description is appropriate) when τc

is significantly longer than τm (note, however, that there is not an absolute
value of τc for which correlations can be neglected; rather, this value will
increase with α).

In Figure 7 we use the predictions of equations 5.5 and 5.11 valid for long
τc . Here, large values of correlation magnitude, α, are used. The predictions
are compared with simulations of neurons in the subthreshold (left) and
the suprathreshold (right) regimes. The subthreshold and suprathreshold
regimes are defined by µτm < � and µτm > �, respectively, and they cor-
respond to the fluctuation and drift-dominated regimes. The prediction by
equation 5.11 is very good even for intermediate τc ∼ τm in both regimes.
In contrast, the firing rate for long τc given in equation 5.5 provides poorer
fits (dotted line in the left panel) in the subthreshold regime and even
poorer in the suprathreshold regime when very large values of α are used
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Figure 6: Theoretical predictions (lines) and simulation results (points) for the
output firing rate of an LIF neuron driven by exponentially correlated inputs as
a function of the correlation timescale. Here we use equation 7.1 for short τc and
equation 7.2 for long τc , along with a continuous and smooth interpolation be-
tween the two limits (the interpolation is made at an intermediate τc,inter ∼ τm).
The rate decreases when the input correlations are positive (α > 0, upper curve)
and increases when correlations are negative (α < 0, lower curve). When there
are no correlations (α = 0), the neuron fires at a rate of 10 Hz (dashed-dotted
line). Maximum rate differences relative to the rate with no input correlations
are attained when τc = 0, that is, when the input correlation is exquisitely pre-
cise. Differences are substantial whenever the correlation time is shorter than
the membrane time constant of the neuron (τm = 20 ms for this case; shaded
region). When the correlation time becomes longer than τm, relative changes are
much smaller, and the neuron becomes less sensitive to the input correlations.
Correlation magnitudes are α = 8 (upper curve) and α = −0.75 (lower curve),
and interpolations between the short and long τc theoretical predictions were
performed at the interpolating time τc,inter = 40 ms and 20 ms, respectively.
Other parameters are τre f = 0 ms, � = 1 (in arbitrary units), H = 0, µ = 42 s−1,
σ 2

w = 2 s−1. Although the short τc expansion requires τre f �= 0, the simulation
shows that this prediction is good even for zero τre f .

(not shown). This is because the second prediction of the firing rate was
obtained for fixed α.

The figure also shows that the effect of correlations is quite different for
a neuron receiving subthreshold or suprathreshold inputs. For subthresh-
old inputs, positive correlations always increase the firing rate relative to
the case without correlations, and the firing rate decreases as the timescale
of correlations becomes broader. However, for suprathreshold inputs, a
different qualitative behavior is observed, at least for small white noise
variances. Positive correlations with long enough τc give an output firing

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2008.03-07-497&iName=master.img-004.jpg&w=160&h=151
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Figure 7: Theoretical predictions and simulation results for the firing rate of
an LIF neuron as function of the correlation timescale for the sub- (left) and
the suprathreshold regimes (right). Here we use equations 5.5 and 5.11, valid
for long τc . For the subthreshold regime, the effect of increasing the correlation
time is always to decrease the rate. However, for the suprathreshold regime
and when the input noise is small, the effect is the opposite for long τc . As
the input noise increases, this effect disappears, and the curve becomes as in
the subthreshold regime (data not shown). The theoretical predictions (full
lines) are obtained using the firing rate given in equation 5.11 without any
interpolation, and the discrete points are the simulation results with the same
parameters as in the theoretical curves. Parameters for the subthreshold regime
are µ = 0 Hz, σ 2

w = 50.5 Hz, and α = 4 (top full line and squares), α = 1 (bottom
full line and circles), and α = 0 (straight line). The dotted line has the same
parameters as the top full line, but it has been obtained from the expression of
the rate in equation 5.5. Notice that the prediction from equation 5.11, strictly
valid only for long τc , is also good even when τc ∼ τm, and it is better than that
provided by equation 5.5 for all τc . Parameters for the suprathreshold regime
are µ = 100.7 Hz, σ 2

w = 0.05 Hz, and a very large correlation strength α = 36
(bottom line and triangles), a moderate correlation strength α = 9 (intermediate
line and diamonds), and α = 0 (straight line). The other parameters are as in
Figure 6, except for τm = 10 ms.

rate smaller than the basal rate without correlations, although this effect
is very small (notice the large values of α that have been used). A mini-
mum firing rate is attained when the correlation timescale is longer than
the membrane time constant of the neuron, and the exact value of τc at
which the minimum occurs is roughly predicted by the analytical formula,
5.11. When the white noise variances become larger, this counterintuitive
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effect of correlations disappears, and the profile is much more simi-
lar to the subthreshold case, but with much smaller correlation-induced
changes.

Overall, this analysis shows that neurons are more sensitive to correla-
tions in the subthreshold than in the suprathreshold regime, which is not
surprising, since in the first regime, spiking is driven by input fluctuations
and correlations enhance them (Moreno et al., 2002; Salinas & Sejnowski,
2001).

7.2 Transient Firing Response. Another important question is how fast
a neuron can respond to pure changes in the correlation magnitude α, that is,
when both the afferent mean current and white noise variance σ 2

w are fixed.
In our work (Moreno et al., 2002), we have shown that changes in correlation
magnitude can be transmitted very fast by the firing rate of spiking neurons
even when the timescale of those correlations is quite large. Those firing
responses are also compared here with the response to sudden jumps in
mean input current.

Let us write the instantaneous firing rate for the time-dependent FPE, in
either the first or second representation, as (see equation 4.20)

νout(t) = −σ 2
w(t)
2

∂

∂V

∫ ∞

−∞
dwP(V, w, t)|V=�. (7.3)

For clarity, we have come back to the physical quantity V and use its
distribution P(V, w, t) (w = z, y). A similar equation for the instantaneous
firing rate of a one-dimensional FPE has been used by Silberberg, Bethge,
Markram, Pawelzik, & Tsodyks (2004) to predict that any instantaneous
modification in the white noise variance, σ 2

w(t), produces an immediate
change in the output firing rate of the neuron. Besides, as we have shown
before, the exact form of equation 7.3 for τc = 0 corresponds to a neuron
receiving (uncorrelated) input white noise with effective variance σ 2

e f f =
σ 2

w(1 + α), equation 3.16. This gives (Moreno et al., 2002)

νout(t) = −σ 2
e f f (t)

2
∂

∂V

∫
dwP(V, w, t)|V=�. (7.4)

Now it is clear that any change in α will produce an immediate change
in νout(t), because the distribution P(V, t) = ∫

dwP(V, w, t) can experience
only a smooth change (notice that the trajectories generated by the equations
for V—e.g, see equations 2.1, 4.1, and 4.2—are continuous under changes in
α). This means that when τc = 0, changes in the correlation magnitude (α)
will be felt immediately by the firing response of the neuron. By analyticity
arguments, the response under changes in α will be also fast for nonzero τc .
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Figure 8: Averaged transient firing responses of an LIF neuron to changes in
the input statistics. Below t = 0 the input is white noise (α = 0) with µ = 16 s−1

and σ 2
w = 0.81 s−1. Upper curve: instantaneous response when σ 2

w is increased
up to σ 2

w = 3.8 s−1. Second (third) curve: quick response to correlation changes,
with τc = 5 ms (100 ms) and α = 6.8 (52.3). Bottom curve: slow response when
µ is changed from µ = 16 .9 s−1to µ = 19.9 s−1 and σ 2

w is kept constant. These
values were chosen so that the evoked firing rates in the final steady state
are roughly the same (∼ 8 Hz, straight line). Inset: Time when the firing rate
response for the first time reaches the value of the final stationary rate as a
function of τc . When the correlation timescale is very short, tcross is very small,
and it saturates for long τc . Neuron parameters are τm = 50 ms, τre f = 0, � = 1,
and H = 0 (dimensionless).

These predictions have been tested with numerical simulations, whose
results are shown in Figure 8. Initially the input statistics is white noise,
and some time later, either the mean current µ (bottom curve), or the white
noise variance σw (upper curve), or the correlation amplitude α (two in-
termediate curves) is changed independently. Changing the mean current
abruptly produces only a slow response with a timescale on the order of the
membrane time constant. However, in the absence of correlations, the firing
rate changes instantaneously under a sudden modification in the variance
of the injected current (σ 2

w). In agreement with our prediction, for short τc ,
the response is also very quick when the correlation changes from α = 0
to a positive value. To quantify how fast the response is, we computed
the time tcross at which the instantaneous rate reaches for the first time the
value of the final stationary firing rate. The inset in Figure 8 shows that as
a function of τc , tcross initially grows, but it soon saturates at about 3 ms,
even when τc is several hundred milliseconds long. Thus, the correlation
time is not a limiting factor for fast transmission of information contained



1688 R. Moreno-Bote, A. Renart, and N. Parga

in correlation changes. This result shows that information carried by corre-
lated input patterns can be transmitted with a timescale that is not limited
by the membrane time constant, which is not the case for signals embed-
ded in the mean input current (Moreno et al., 2002). Rudolph and Destexhe
(2001) show that correlation changes can be followed very rapidly by a
spiking neuron. Because they consider the case of perfect synchrony, τc = 0,
their conclusions are similar to those of Silberberg et al. (2004), because the
case τc = 0 corresponds to a simple renormalization of the current variance
(σ 2

w), as we have explained before (see equation 3.16).
These results show that fast information transmission in cortex using

spike correlations is theoretically possible. As we have shown, changing
the mean afferent current produces slow responses if the neuron is in the
subthreshold regime, because the mean current has to be integrated in a
timescale τm. However, because of their fast transmission rate, correlation
modulations can be an ideal candidate for transmitting information rapidly.
The fact that changes in µ do not evoke rapid responses does not mean
that rate codes are inefficient for transmitting information rapidly. Rather,
changes in the firing rate of “noisy” input spike trains (as in a Poisson train)
involve changes in both µ and fluctuations σw (Ricciardi, 1977) and indeed
also in α (see their definitions in equations 3.15). Such white noise variance
and correlation magnitude modulations can be transmitted very fast, while
the mean current modulations produce a slower response. Therefore, an
increase in the firing rate of an irregularly spiking presynaptic population
will produce an output rate change that contains information in at least two
different timescales (one fast and another slow).

8 Discussion

In this article, we have provided and thoroughly analyzed a theoretical
framework to understand how temporal correlations affect the output firing
response of neurons. The main qualitative results we found are:

� The neuron’s output rate is very sensitive to precisely synchronized
inputs with τc < τm.

� The response decreases (increases) with the timescale τc for pos-
itive (negative) correlations and increases (decreases) with their
magnitude α.

� The neuron response to sudden changes in the size of the correlations
is very fast regardless of the magnitude of the change and on the
correlation time.

An important question is how our results can be incorporated into the
modeling of neural networks. Temporal and spatial correlations are pre-
sumably relevant to correctly describe the dynamics of realistic recurrent
neuronal networks. Recently, we (Renart et al., 2007) proposed an extended
mean field approach to determine the firing rate and spiking variability of



Theory of Input Spike Correlations and Their Effect on Neurons 1689

a large network of LIF neurons. In classical mean field theory, the neurons
in the network are assumed to fire in a Poisson and independent manner
(Amit & Brunel, 1997b; Renart, Brunel, & Wang, 2003), so that the only free
dynamical parameter in the dynamics of an homogeneous population of
neurons is its population firing rate. Our extension goes beyond the classi-
cal mean field theory by adding as a free parameter the spiking variability
of the network, that is, the coefficient of variation of the interspike intervals,
CV. Then the firing rate as well as the variability of the network can be stud-
ied without the assumption that the spike trains are Poisson, corresponding
to the case CV = 1. In particular, stationary states with CV > 1 would cor-
respond to states of high spiking variability, while stationary states of the
network with CV < 1 would correspond to more regular spiking regimes
of the neuronal dynamics. The formalism presented in Renart et al. (2007)
is based on the result that when the correlation time of the spike trains is
short enough (τc 
 τm), then the input variability can be expressed as (see
equations 5.18 and 3.15; Moreno et al., 2002)

σ 2
e f f = J 2

E NE CV2
E νE + J 2

I NI CV2
I νI , (8.1)

assuming that there are no cross-correlations (ρ = 0). Since the output firing
rate and the output CV of an integrate-and-fire neuron can be calculated
exactly when the input is white noise (Ricciardi, 1977), then a mapping
between the input rates and CV, and the output rates and CV, can be
constructed as

νout = fν(νin, CVin)

CVout = fCV(νin, CVin), (8.2)

where the functions fν and fCV are the expressions for the output firing
rate and CV of the IF neuron receiving white noise input. These equations
define an input-output mapping of the neuronal dynamics with indepen-
dent variables ν and CV. Therefore, under the conditions described above,
a mean field theory for the dynamics of the mean and variability of the
spiking response can be formulated. Doiron et al. (2006) have also recently
used our renormalization technique of the input variance, as defined in
equations 8.1 and 8.2, to describe the transmission of the activity of non-
leaky IF neuron in feedforward networks. As we have said above, Renart
et al. (2007) have addressed the problem of self-consistency in firing rate
and CV in recurrent networks of LIF neurons. Other work has also studied
this problem using different approaches to find self-consistent equations
for the spiking variability of the network (Lerchner et al., 2006).

However, further extensions of our mean field theory (Renart, Moreno,
de la Rocha, Rolls, & Parga, 2001; Moreno et al., 2002; Renart et al., 2007)
are required to consider in a self-consistent way the second-order statistics
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of the neuronal activity in spiking recurrent networks. A first step has
been made in Moreno-Bote and Parga (2006), where the auto- and cross-
correlation functions of the output response of a pair of spiking neurons
receiving independent as well as common sources of noise have been analyt-
ically determined.6 The self-consistent treatment of spike cross-correlation
functions (i.e., the input and output cross-correlation functions should also
match each other) to describe more realistic recurrent neuronal networks
seems to be an unavoidable step to understand how neurons’ interactions
give rise to network behaviors. The problem can be formally stated as fol-
lows: find the set of mean field equations mapping the input values of the
relevant dynamical variables of the network (firing rate, FN and ρ) to their
output values:

νout = fν(νin, FN,in, ρin)

FN ,out = fFN (νin, FN,in, ρin)

ρout = fρ(νin, FN,in, ρin).

This set of equations is now available at least for an LIF neuron receiving
colored noise (Moreno-Bote & Parga, 2006).

In this work, we have considered decaying (exponential) correlations,
while in cortex, damped oscillatory cross-correlograms are also observed
(see, e.g., Vaadia et al., 1995; Riehle et al., 1997; Fries et al., 1997). This
problem could be addressed by introducing a stochastic current that obeys
a second-order equation driven by white noise: the well-known damped
oscillator. A current generated in this way can have a cross-correlogram with
exponentially decaying oscillations, with frequency and damping value
controlled by the parameters of the equation. Although this problem is
relevant, we do not study it here, since the new system would involve
solving a more complicated FPE, now with three independent variables.

Here we have not studied neuron models with conductance-based
synapses either. However, an analogous expression for the firing rate at long
τc can be obtained if the noise enters multiplicatively instead of additively.
(Although we do not present the derivation here, the FPE for neuron mod-
els with conductance-based synapses can be solved using the techniques
in appendix D.) Qualitatively, the effect of the correlation magnitude and
correlation timescale in conductance-based models is not different from
their effects in current-based models. Note, however, that in the first case,
correlations are strongly effective only when τc is shorter than the effective
membrane time constant of the neuron, which now depends on the total
conductance (see, e.g., Moreno-Bote & Parga, 2005).

6For different approximations of this computation see Lindner, Doiron, and Longtin
(2005) and Masuda (2006).
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We have modeled input spike trains as delta functions (point processes)
without any further temporal synaptic filtering. This means that the cross-
correlation function of the total input current displays a delta function at
zero time lag, as shown in equation 3.14. When the input spike trains are
filtered by synapses with a finite synaptic time constant τs , they generate
a train of exponential-like current waveforms into the neuron. The delta
function in the correlation function, equation 3.14, then becomes an expo-
nential with the same time constant as that of the synaptic filter, τs (see,
e.g., Brunel & Sergi, 1998; Moreno-Bote & Parga, 2004). At the same time,
the exponential term in the correlation function results after filtering in
two additional exponentials, with time constants τc and τs , respectively.
Then the result of (linearly) filtering correlated input spike trains is an in-
put current whose correlation function has two kinds of exponentials, each
with a different time constant (τc and τs). Particular cases of this interesting
problem (e.g., when the two timescales are disparate) could be addressed
analytically by using the techniques developed to study simultaneous fast
and slow synaptic filtering (Moreno-Bote & Parga, 2004).

Two differences are expected when synaptic filters are present in the
model. First, synapses filter out fluctuations in the input whose timescale
is shorter than τs and convert them into fluctuations with timescale τs .
Fluctuations that are slower than τs will pass the synapses. Therefore, fast
fluctuations produced by precise input synchronization (i.e., short τc ≤ τm)
will not be seen by the neuron: effectively, the sharp synchronization of
timescale τc is converted into a coarser synchronization with timescale τs .
Then we expect that for τc < τs , the firing rate will depend very little on τc

in that range. However, when τc > τs , the rate versus τc curve will decay
fast until τc crosses τm, after which the effect of input correlation on the rate
will be small, similar to Figure 6. Second, filters introduce a delay in the
transient firing response to sudden increases of input synchrony. We have
run simulations with fast filters (τs ≤ 5 ms) and found that the response
was still fast and was delayed by the time constant of the synapses.

In future work, it would be desirable to develop a complete the-
ory that describes the firing statistics of integrate-and-fire neurons with
conductance-based synapses and finite synaptic timescales driven by cor-
related spike trains. The effect of input correlations in this more complex
system could be evaluated by extending and combining the techniques de-
veloped in this and in Moreno et al. (2002), Moreno-Bote & Parga (2004,
2005, 2006), and Renart et al. (2007).

Appendix A: Numerical Procedures

The equations for the voltage of the integrate-and-fire neuron and the corre-
lated gaussian noise are numerically solved using a simple Euler integration
procedure, along with a Monte Carlo method. This procedure gives an ex-
cellent estimate of the output firing rate (time dependent or independent),
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which can be compared to the theoretical predictions. As an example, the
dynamics of the voltage of a LIF neuron in equation 2.1 with the current
I (t) defined in equations 4.1 and 4.2 is integrated using a small time step
(δt = 5 10−4ms 
 τm) as

V(t + δt) = V(t) − V(t)
τm

δt + I (t)δt, (A.1)

I (t) = µ + σw

ω(t)√
δt

+ σw

β√
2τc

z(t), (A.2)

z(t + δt) = z(t) − z
τc

δt +
√

2
τc

ω(t)
√

δt, (A.3)

with the reset condition V = H after a spike is generated (when V ≥ �). The
initial value of the noise variable z is that at the time of the previous spike,
z is not reset after each spike. The variable ω(t) is a random variable taking
values +1 and −1 with equal probability 1/2 at each time step δt, and being
drawn independently from time step to time step. Therefore, 〈ω(t)〉 = 0,
〈ω2(t)〉 = 1 and 〈ω(t)ω(t′)〉 = 0, where t �= t′. This means that the quantity
ω(t)/

√
δt, which appears in the expression for the current I (t) above, is

an approximation to the delta function, since 〈ω(t)/
√

δt〉 = 0, 〈ω2(t)/δt〉 =
1/δt, and 〈ω(t)ω(t′)/δt〉 = 0. The procedure described above is robust and
converges to the true stationary process as δt decreases. The Monte Carlo
simulations were run using Fortran90 custom code. Special care has to be
taken in choosing an appropriate random generator for ω(t).

Appendix B: Derivation of the FPEs

FPE 4.7 is here derived for the set of equations

ẋ(t) = − x(t)
τm

+
√

2
τm

η(t) + β√
τmτc

z(t)

ż(t) = − z
τc

+
√

2
τc

η(t), (B.1)

corresponding to the first representation of the current. FPE 4.13 associated
with the second representation of the current can be obtained using the
same rules described in this section. More formal derivations of similar
FPEs can be found in Ricciardi (1977) and Risken (1989).

The system defined by equations B.1 is fully described by the probability
density function Pβ (x, z, t). This function expresses the probability density
of having the neuron in the state (x, z) at time t. The FPE is an equation that
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precisely describes the dynamics (i.e., time evolution) of such a density. A
first step toward the derivation of the FPE consists in discretizing the time
in the dynamics, as in appendix A. This leads to

x(t + δt) = x(t) − x(t)
τm

δt +
√

2
τm

ω(t)
√

δt + β√
τmτc

z(t)δt

z(t + δt) = z(t) − z
τc

δt +
√

2
τc

ω(t)
√

δt, (B.2)

where δt represents an infinitesimal time increment, and ω(t) is a random
variable taking values +1 and −1 with probability p(w = ±1) = 1/2 and
drawn independently at every infinitesimal time step. The terms in equa-
tions B.2 proportional to

√
δt are approximations of the delta functions in

equations B.1 integrated during the infinitesimal time increment.
To determine the FPE associated with equations B.1, one has to relate the

density at time t + δt, Pβ (x, z, t + δt), with the density at a previous time t,
Pβ (x′, z′, t). First, we realize that the probability that we find a neuron in
an infinitesimal square δx′δz′ around state (x′, z′) at time t has probability
Pβ (x′, z′, t)δx′δz′. Second, the state square centered at (x′, z′) with surface
δx′δz′ will be projected at the successive time t + δt into another square
centered at (x, z) with surface δxδz close to the previous one, obeying the
rules defined in equations B.2. Therefore, by conservation of the probability,
we have that

Pβ (x, z, t + δt) δxδz =
∑

w=±1

p(w) Pβ (x′(w), z′(w), t) δx′δz′, (B.3)

where

x′(w) = x + x
τm

δt −
√

2
τm

ω
√

δt − β√
τmτc

zδt

z′(w) = z + z
τc

δt −
√

2
τc

ω
√

δt.

Notice that the states (x′(w), z′(w)) (w = ±1) defined above are the only ones
from where one can arrive at the state (x, z) after an infinitesimal amount
of time δt. In addition, the box around state (x′, z′) is compressed to the box
around the final state (x, z) by a factor δxδy = (1 − δt/τm)(1 − δt/τc)δx′δy′,
given by the decaying term in equations B.1.

After expanding the densities in equation B.3 in powers of
√

δt, we find
that all terms that are order

√
δt are equal to zero (since 〈ω〉 = 0), while
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the terms order δt do not vanish (either they do not depend on ω, or they
are proportional to ω2, and therefore 〈ω2〉 = 1). After equaling the terms at
O(δt), one obtains the FPE

τm
∂

∂t
Pβ (x, z, t) =

[
Lx + Lz

k2 + 2
k

∂

∂x

(
∂

∂z
− βz

2

)]
Pβ (x, z, t). (B.4)

In the time-independent case, ∂
∂t Pβ (x, z, t) = 0. However, to establish a

stationary probability density function that does not depend on time, the
probability density flux escaping at threshold (probability density flux in
the direction of the variable x calculated at threshold) should be reinjected
into the reset voltage. This enforces conservation of the total probability,
that is,

∫ ∫
dxdzρ(x, z, t) = 1 at all times, and leads to the self-consistent

stationary FPE 4.7.

Appendix C: Long τ c Expansion Using the First Representation

Here we detail the main steps for calculating the firing rate in equation 5.5.
Introducing the expansions 5.1 and 5.2 in equation 4.7, we obtain

Lxhn + Lzhn−2 + 2
∂

∂x

(
∂

∂z
− βz

2

)
hn−1 + τmδ(x −

√
2Ĥ)Jβ,n−1(z) = 0

(C.1)

(hn ≡ 0 for n < 0). The solution to these equations is obtained order by order
in such a manner that conditions 4.17 and 4.20 are satisfied. After solving
them up to order k2 using conditions 4.18 and 4.20 and the fact that the hn’s
have to be normalizable, we obtain that

h0(x, z) = k0(x)Jβ,0(z),

h1(x, z) = k0(x)Jβ,1(z) + k1(x)
(

2
∂

∂z
− βz

)
Jβ,0(z),

h2(x, z) = k0(x)Jβ,2(z) + k1(x)
(

2
∂

∂z
− βz

)
Jβ,1(z)

+ k2(x)
(

2
∂

∂z
− βz

)2

Jβ,0(z), (C.2)

where the functions ki are

k0(x) = τme− x2
2

∫ √
2�̂

x
dye

y2
2 H(y −

√
2Ĥ),
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k1(x) = e− x2
2

∫ √
2�̂

x
dye

y2
2 k0(y),

k2(x) = e− x2
2

∫ √
2�̂

x
dye

y2
2 k1(y).

The coefficients J i,β (z) in equation C.2 still have to be calculated. This is done
by integrating first the hn’s over x from −∞ to

√
2�̂ and using condition

(4.21). After using condition 4.19, we find

J0(z) = ν0 Z0(z),

J1(z) = (2 + β)ν0
∫ √

2�̂

−∞ dxk1(x)∫ √
2�̂

−∞ dxk0(x)
z Z0(z),

J2(z) =
[

α

τm
C + αC

β2τm(1 − ν0τre f )
(z2 − 1)

]
Z0(z),

C = τmν2
0


( ∫ √

2�̂

−∞ dxk1(x)
)2

∫ √
2�̂

−∞ dxk0(x)
−

∫ √
2�̂

−∞
dxk2(x)


 , (C.3)

where Z0(z) = e−z2/2/
√

2π . Finally, integrating again J i,β (z) over z gives the
contributions to the output firing rate in equation 5.5. In the next section,
we calculate the integrals appearing in parameter C in equation C.3.

C.1 Integrals. Here we present only some intermediate steps and the
final results for the integrals appearing in C , equation C.3. The last two in-
tegrals can be expressed in terms of the function R(t) = √

π
2 et2

(1 + erf(t)) =
et2 ∫ √

2t
−∞ ds e−s2/2 as

1.

∫ √
2�̂

−∞
dxk0(x)

= τm

∫ √
2�̂

−∞
dxe− x2

2

∫ √
2�̂

x
dye

y2
2 H(y −

√
2Ĥ) = 1 − ν0τm

ν0
.

2.

∫ √
2�̂

−∞
dxk1(x) =

∫ √
2�̂

−∞
dxe− x2

2

∫ √
2�̂

x
dye

y2
2 k0(x)

= τm

∫ √
2�̂

√
2Ĥ

dye
y2
2

∫ y

−∞
dxe− x2

2 (y − x) = τm(R(�̂) − R(Ĥ)).
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3.

∫ √
2�̂

−∞
dxk2(x) =

∫ √
2�̂

√
2Ĥ

τm

2
dye

y2
2

∫ y

−∞
dxe− x2

2 (y − x)2

= τm

(
�̂√

2
R(�̂) − Ĥ√

2
R(Ĥ)

)
.

Appendix D: Long τ c Expansion Using the Second Representation

In this section we derive the output firing rate formula 5.11 using the FPE
4.13. Here, we take the ratio γ ≡ √

α/k to be a parameter independent of k,
that is, it is fixed. This will allow us to study the case of large α in the long
τc limit. From the FPEs 4.13 and 5.7, we develop a systematic expansion of
the probability distribution Pα(x, y) and the escape probability density flux
Jα(y) in powers of k−2 (see the expansion in equation 5.8), in which γ is
considered a fixed parameter independent of k. Inserting the expansion in
equation 5.8 into the FPE 5.7 produces

[
Lx − γ y

∂

∂x

]
rn + L yrn−1 + τmδ(x −

√
2Ĥ)Jα,n(y) = 0, (D.1)

where rn ≡ 0 if n < 0. For simplicity, the set of conditions 4.17 to 4.21 is used
here when τre f = 0. Solving the zeroth order in equation D.1 with conditions
4.18 and 4.20 gives

rα,0(x, y) = τm Jα,0(y) e− (x−γ y)2

2

∫ √
2�̂

x
du e

(u−γ y)2

2 H(u −
√

2Ĥ), (D.2)

where the escape probability density flux Jα,0(y) has yet to be determined.
This is done by using condition 4.21 with τre f = 0 at zeroth order to obtain

Jα,0(y) = 1√
2πτm

e− y2
2

[∫ √
2�̂−γ y

√
2Ĥ−γ y

due
u2
2

∫ u

−∞
dve− v2

2

]−1

. (D.3)

Repeating the same steps as above, the nth (n > 0) order escape probability
density flux is found to be

Jα,n+1(y) =
[∫ √

2�̂−γ y

√
2Ĥ−γ y

due
u2
2

∫ u

−∞
dve− v2

2

]−1

∫ √
2�̂

−∞
dxe

−(x−γ y)2

2

∫ √
2�̂

x
dve

(v−γ y)2

2 L y

∫ u

−∞
dvrn(v, y), (D.4)
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and the density rn is computed as

rn(x, z) = e
−(x−γ y)2

2

∫ √
2�̂

x
dve

(v−γ y)2

2 L y

∫ u

−∞
dvrn−1(v, y)

+ τm Jα,n(y) e− (x−γ y)2

2

∫ √
2�̂

x
du e

(u−γ y)2

2 H(u −
√

2Ĥ).

The zeroth-order rate is obtained by integrating over y the zeroth-order
escape probability density flux in equation D.3. This gives the firing rate
in equation 5.11. For fixed α, the parameter γ decreases as τc grows. In
this limit, we could expand the zeroth-order firing rate in powers of γ .
The firing rate obtained from this expansion has a dominant order k−2

(O(γ 2)). However, other contributions to the total firing rate at order k−2

could also come from the nonzeroth-order firing rate from the expansion
5.8. In particular, the first order (n = 1) rate in the expansion 5.8 is order
k−2. However, it is possible to see that an expansion in powers of γ in the
term with n = 1 in equation D.4 also leads to an extra dominant order k−2,
and that multiplied by k−2 yields finally a correction to the firing rate bigger
than O(k−2). This finally proves that the leading correction to the firing rate
for fixed α when τc approaches infinity is order k−2, and it is given by the
expansion of the zeroth-order rate 5.11. Naturally this expansion matches
the output firing rate formula 5.5 for positive correlation magnitudes.

Appendix E: Short τ c Expansion Using the Second Representation

E.1 The Free Solution. We introduce an expansion of the form 5.13 and
5.14 into FPE 4.13 and find the set of equations:

L y f0 = 0, (E.1)

L y f1 = √
αyf0, (E.2)

L y f2 = −Lx f0 + √
αyf1 − τmδ(x −

√
2Ĥ)νe f f Z0(y), (E.3)

L y f3 = −Lx f1 + √
αyf2 − τmδ(x −

√
2Ĥ)ν1 Z0(y), (E.4)

where Z0(y) = e−y2/2/
√

2π . After solving equation E.1, we find that the only
normalizable solution is

f0(x, y) = g0(x)Z0(y), (E.5)
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where g0 has yet to be determined. The equation at order k gives the
expression for f1:

f1(x, y) =
[

g1(x) − √
αy

∂

∂x
g0(x)

]
Z0(y). (E.6)

Again, g1 is unknown. The equation at second order satisfies

L y f2(x, y) = −αyg1(x)Z0(y)

−
[

Lxg0(x) + α
∂2

∂x2 g0(x) − τmδ(x −
√

2Ĥ)νe f f

]
Z0(y).

(E.7)

Using that the integral
∫

dyL y f2(x, y) has to equal zero in order for f2 to be
integrable, we can integrate equation E.7 over y and obtain the condition

[
∂

∂x
x + (1 + α)

∂2

∂2x

]
g0(x) + τmνe f f δ(x −

√
2Ĥ) = 0. (E.8)

This equation is the same as that obtained when solving the FPE for a LIF
neuron driven by white noise input (Ricciardi, 1977), but where the variance
of the noise has been renormalized by a factor 1 + α. This equation is solved
exactly for all α using condition 4.18,

g0(x) = τmνe f f

1 + α
e− x2

2(1+α)

∫ √
2�̂

x
dye

y2
2(1+α) H(y −

√
2Ĥ). (E.9)

The firing rate νe f f (the zeroth order in the expansion in powers of k) is
obtained by applying condition 4.17 to f0 in equation E.5.

Similarly, while solving equation E.4, a condition over g1 is obtained,
from where g1 is determined, except for an unknown constant D:

g1(x) = De− x2
2(1+α) + τmν1

1 + α
e− x2

2(1+α)

∫ √
2�̂

x
dye

y2
2(1+α) H(y −

√
2Ĥ). (E.10)

The constant D is needed to match the boundary condition at threshold,
equation 4.18.

Now it is crucial to realize that the first-order solution f1 does not satisfy
the boundary condition at threshold 4.18 for any value of D. Thus, we have
to add a boundary solution f b

1 so that the total solution, equation 5.15,
satisfies it up to order k. This boundary solution, found in the next section,
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serves to fix the value for D as

D = α νe f f τm e
�̂2

(1+α) . (E.11)

Using the normalization condition 4.17 on the term order k in the expansion
of Pα(x, y), equation 5.15, leads to the firing rate at order k in equation 5.16.7

In that equation, we have approximated νe f f by ν0, and also all α appearing
in equation E.10 have been made equal to zero. These two approximations
are justified because expanding νe f f and equation E.10 in powers of α gives
corrections to the firing rate at order k that are higher than O(α).

E.2 The Boundary Solution. Here we find the boundary solution, f b
1 ,

for FPE 4.13 valid close to threshold and for small k. The FPE in this limit
takes the form

[
∂2

∂r2 − √
αy

∂

∂r
+ ∂2

∂y2 − y
∂

∂y
+ O(k, k2)

]
u(r, y) = 0. (E.12)

We have replaced f b
1 (x, y) = u(r, y)Z0(y) and have made the linear transfor-

mation r = (x − √
2�̂)/k. A complete basis for this linear differential opera-

tor is not known, but if
√

α = 0, a complete basis for an integrable function of
r ∈ [−∞, 0], y ∈ [−∞,∞] is given by the set of functions e

√
nr Hn(y/

√
2) for

all n > 0, where Hn are the Hermite polynomials.8 We insert into equation
E.12 a solution u of the form u = u0 + √

αu1 + αu2 + O(α3/2) to obtain

[
∂2

∂r2 + ∂2

∂y2 − y
∂

∂y

]
ui+1(r, y) = y

∂

∂r
ui (r, y). (E.13)

The solution f b
1 has to be added to the perturbative solution f1, equation

E.6, to match the boundary condition 4.18, that is,

De− �̂2
1+α − √

αy
∂

∂x
g0

∣∣∣∣
x=√

2�̂

+ u(0, y) = 0. (E.14)

7Notice below that
∫ ∫

u(r, z) = O(k), and for this reason we can neglect its contribution
to the rate at order k.

8The Hermite polynomials satisfy the equation

(
∂2

∂y2 − y
∂

∂y

)
Hn

(
y√
2

)
= −n Hn

(
y√
2

)
.

The first three polynomials H0(y) = 1, H1(y) = 2y, and H2(y) = 4y2 − 2 are used in our
calculations.
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Defining d = De− �̂2
1+α and expanding it in powers of

√
α as d = d0 + √

αd1 +
αd2 + O(α3/2), as well as the others terms in equation E.14, we obtain the
set of conditions

d0 + u0(0, y) = 0,

d1 + νe f f τm y + u1(0, y) = 0,

d2 + u2(0, y) = 0.

Now we express each order ui as a linear combination of the func-
tions e

√
nr Hn(y/

√
2), plus a particular solution as ui (r, y) = ∑∞

1 An,i e
√

nr Hn

(y/
√

2) + ui,part(r, y). We find

u0 = 0, d0 = 0

u1 = −νe f f τm yer , d1 = 0

u2 = −νe f f τm[y2 − 1]e
√

2r + νe f f τm[y2 − 2]er , d2 = νe f f τm.

With these solutions, we finally found the value of D up to order α,
equation E.11.

Appendix F: Short τc Limit for a Generic IF Neuron

In this section we extend the formalism described in appendix E to calcu-
late the firing rate of a generic IF neuron receiving a gaussian exponentially
correlated input in the short τc limit (Moreno & Parga, 2002). A generic IF
neuron can be defined by the leak function, f (V), that determines how the
voltage behaves in the absence of any input. In this model, the depolariza-
tion membrane potential V(t) evolves from the reset voltage H according
to the stochastic equation,

V̇(t) = − f (V) + I (t), (F.1)

where I (t) is the synaptic current with exponentially temporal correlations
as in equation 3.14. When the gaussian current is expressed using the second
representation, as it is defined in section 4.2, the FPE associated with this
model neuron is


 ∂

∂V

(
f (V) − µ + σ 2

w

2
∂

∂V

)
+ 1

τc

∂

∂y

(
y + ∂

∂y

)
−

√
2σ 2

wα

τc

∂

∂V




P = −δ(V − H)J (y). (F.2)
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Using the same procedure as in appendix E, we find that the output firing
rate of such a generic neuron is

νout = νe f f + ν1
√

τc (F.3)

where

ν−1
e f f = τre f + 2

σ 2
e f f

∫ �

H
due

2
σ2

e f f

∫ u
�

dr ( f (r )−µ)
∫ u

−∞
dve

− 2
σ2

e f f

∫ v

�
dr ( f (r )−µ)

ν1 = −
√

2αν2
0

σw

∫ �

−∞
dve

− 2
σ2
w

∫ v

�
dr ( f (r )−µ)

, (F.4)

which is valid whenever the above integrals are defined. This general for-
mula, which has been previously found in our work (Moreno & Parga,
2002), shows that the

√
τc decay of the firing rate is universal for IF models

with hard threshold. Using this general formula, it is possible to obtain the
firing rate in the short τc limit given by equation 5.16 for an LIF neuron.

Using a different procedure, we have been able to calculate exactly the
firing rate of a nonleaky IF neuron ( f (V) = 0) with exponential correlations
without the need of the boundary solution to fit the boundary condition at
threshold. This formula is valid for all τc and for small α. We still require
the condition τc 
 τre f . This exact formula, however, allows us to check the
technical procedure described above, and it naturally gives the same result.
This firing rate is expressed as

νout = νe f f − αν2
0

[
1 − e (γ−λ)(�−H)

]
µ(γ + λ)

+ O(α2), (F.5)

where γ = µ

σ 2
w

, λ =
√

γ 2 + 2
σ 2

wτc
and νe f f is defined below, equation F.6. An

expansion of equation F.5 for small τc leads to the same universal
√

τc decay
law, and the coefficients are identical to those produced by equations F.4.

ν−1
e f f = τre f + � − H

µ

ν1 =−αν2
0σw√
2µ

. (F.6)
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