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Abstract. Experimental evidence shows that cortical activity exhibits
correlated variability, often referred to as noise correlations. Reported correlation
coefficients cover a wide range of values, from moderate to very small ones.
There is an evident need of models and mathematical techniques with which to
guide the interpretation of these results. However, the very existence of correlated
variability is responsible for the technical difficulties that have prevented theory
from making enough progress in determining how noise correlations are related to
neuron and network properties. Here we review recent work that we have done to
develop a program to study these issues. Given that noise correlations depend on
the behavioral state, understanding how they are generated is a critical problem
that has to be solved before biophysical models can be used to study behavioral
tasks.
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1. Introduction

The statistical properties of the firing activity of cortical networks depend on the
behavioral state [1]–[4]. For instance, one of the phases of sleep is characterized by slow
wave oscillation (<1 Hz) [5]. These oscillations persist when subjects awaken but remain
quiet, but they disappear as they become active [6, 2]. At this point the cortical activity
is characterized by spikes fired at seemingly random times, producing irregular firing
patterns. This type of cortical activity—the activated state—is rather variable. If an
experiment is repeated several times under the same conditions, the precise firing response
of the neurons is different in each trial [7, 8]. This trial-to-trial variability is often referred
to as ‘noise’, although its origin is not understood well. When two neurons are registered
simultaneously it is noticed that the variability is correlated, however correlations are
smaller in the activated state [2].
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Correlated variability appears in a variety of experiments [9]–[11] and is usually called
noise correlation. Noise correlations vary within a wide range of values, depending on
the experiment and on the behavioral state. Correlation coefficients of the spike-count
(the number of spikes fired by a neuron during a time window of a given size) about
0.1–0.2 have been reported in sensory areas [10, 12], while values about 0.02–0.05 have
been found in prefrontal areas when animals perform simple tasks [13] but also when they
make perceptual decisions [14].

Two recent experiments found even lower values in sensory areas [15, 16]. Comparison
of correlation coefficients obtained in different experiments has to be done cautiously
because data are frequently registered under different conditions and correlations are
defined differently. Correlations between components of the currents afferent to two
neurons (i.e., the excitatory or the inhibitory parts of the current) have larger values [17].
Auto-correlations are also important; Poisson firing implies that the spike-count has a
variance-to-mean ratio (Fano factor) equal to one, contradicting experimental observations
(see, for instance, [8]).

Understanding this rather complex situation requires the development of models and
mathematical techniques that could be used to study how neuron and network features
affect the statistical properties of cortical activity. This has been one of the main objectives
of our work. Regarding noise correlations, we aim to understand how they originate and
propagate in cortical networks and ultimately how they are related to behavior.

From a technical perspective, we would like to find analytical methods to predict
network activity properties such as population-averaged firing rates, Fano factors,
correlation coefficients and auto- and cross-correlation functions. Briefly, the mathematical
approach can be described as follows. One first characterizes input currents by their first-
and second-order statistics. Then moments of the spiking activity of single cells and pairs
of neurons receiving these currents, possibly filtered by synaptic receptors, are computed
analytically. This gives a set of expressions for the firing activity moments that depend on
moments of the current. Since in recurrent networks the afferent current is determined by
the firing rate and spiking correlations of neurons in the network, these expressions form
a set of self-consistency equations, the solution of which gives the model prediction of the
cortical activity.

This program involves solving several problems: (i) predicting the firing rates of
neurons receiving correlated currents [18, 19] evaluating correlation functions [20]; (ii)
estimating the effect of synaptic filtering [21, 22]; (iii) defining the network features
relevant to study noise correlations [15]; (iv) deriving the self-consistency equations for
population-averaged quantities; and (v) developing methods to solve the self-consistency
equations.

In this paper we will describe recent efforts that we have made to deal with these
issues. To be useful, models should be realistic and, at the same time, be simple enough
to be tractable; the choice of the relevant neuron and network features can determine the
success of the approach to predict cortical activity. In the next section we discuss two of
these features: strong synaptic couplings and dense network connectivity. We also define
the activated state, the activity regime where we have focused our research work. The
self-consistent approach used to solve the model is sketched in section 3. These ideas are
applied to a network of binary neurons (section 4) and to a network of spiking neurons
(section 5). After that we discuss how correlations could be related to behavior and give
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an example of how they can be modulated by internal processing (section 6). A discussion
is given in section 7.

2. The recurrent network for cortical activity

Understanding the statistics of the neural activity in recurrent networks is a basic step
that has to be taken before using neural network models to explain behavior. Network
statistics may depend on anatomical features defining the network architecture as well
as on the dynamics of the synaptic and neural components, such as synaptic filters and
membrane properties. Solving the problem may be very complex. To make progress in
the prediction of activity properties and to develop the theoretical techniques required for
the analysis, one should find those features which plausibly are the determinants of the
network behavior and use them in solvable models. Here this approach is reflected in the
way the main features are selected, both at the neuron and network level. We will consider
two simple model neurons, binary [23] and integrate-and-fire neurons [24, 25]. The network
will be taken with a dense connectivity (otherwise current components correlations would
not be present) and with strong synaptic connections (otherwise the activation of a large
pre-synaptic population would be needed to produce a finite response).

In this section we first discuss these two basic requirements for the connectivity and the
strength of the synaptic connections. After that we give a precise notion of asynchronous
activity.

2.1. Strong coupling and densely connected networks

It would be technically convenient that correlations could be neglected in a theory of the
activated (also called asynchronous) state, because in this case only the self-consistency
equation for the population-averaged firing rates are needed and they could be solved
easily.

However two characteristic features of cortical networks, (i) network connectivity is
large (we will say that the network is densely connected) and (ii) synaptic couplings
are strong, induce us to think that correlations should be included in the analysis. The
existence of a network state characterized by weak correlations should be part of the
solution of the model, not of its definition.

Network connectivity in the cortex is appreciable [26] and even weak correlation
coefficients can have a large effect on the neuron firing rate [27, 18]. On the other hand,
synaptic efficacy has to be strong to guarantee that the activation of a fraction of cells is
enough to induce firing of the post-synaptic neurons. These facts greatly complicate the
mathematical analysis of the statistics of the firing activity in recurrent networks. Perhaps
for this reason most theoretical studies have neglected noise correlations by assuming that
neurons are sparsely connected [28, 29, 53].

To define these two notions more precisely, let us consider a network with Np

populations and N cells in each of them. A given neuron is denoted as (αi), where
α = 1, . . . , Np is the population index and i = 1 . . . N . Typically Np is taken equal to
three, and α takes the values E (excitatory population), I (inhibitory population) and X
(external population).

doi:10.1088/1742-5468/2013/03/P03010 4
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The synaptic connection from neuron (βi) to (αj) is denoted as Jαβij . In the models
considered here it is zero for unconnected neurons while for connected neurons it takes
values that depend only on the two populations. Non-zero synapses are strong, i.e. a small
population of O(

√
N) active cells produce an effect O(N0) on a post-synaptic neuron.

This is achieved by scaling the synaptic efficacies as jαβ/
√
N , where jαβ is O(N0) [23].

Denoting the connection probability between populations α and β by pαβ, the probability

of a non-zero value of the synaptic efficacy Jαβij is

P

(
Jαβij =

jαβ√
N

)
= pαβ. (1)

The network is dense because pαβ is O(N0), hence a given neuron is connected, on average,
to O(N) cells.

2.2. The asynchronous state

We are interested in a network regime where, in the absence of stimulation, the population-
averaged correlations are weak. More precisely, we want to see whether large densely
connected networks of strongly coupled neurons can have a regime with population-
averaged correlations behaving as O(1/N). We take this property as the definition of
the asynchronous state [30].

Let us make a remark on the apparent contradiction between the requirements
imposed to the connectivity and the existence of an asynchronous state. An analytical
proof that this is indeed possible was given in [15] for networks of binary neurons. Later,
in section 4, we will review that work and in section 5 we will show how to deal with a
model of spiking neurons. The strategy to address these problems is as follows: one first
assumes that the dense network has an asynchronous steady state. Using this hypothesis
one writes down expressions for the population-averaged firing rates, auto-correlations and
pair-wise correlations (the macroscopic equations). Finally, one shows that these equations
have a solution in which the network is indeed asynchronous, that is, correlations scale as
O(1/N).

3. Self-consistency analysis

In a cortical recurrent network the neurons’ output firing activity contributes to the
synaptic input of their post-synaptic cells. Since the activity of neurons in a homogeneous
population must have the same statistics, its moments must satisfy self-consistency
relationships. The goal is to obtain a set of equations mapping the input population-
averaged values of the relevant dynamical variables of the network to their output values.
To make this notion more explicit let us write the generic form of self-consistency equations
for the first- and second-order statistics. The relevant variables are the steady state
population-averaged firing rate να, the auto-correlation function aα(τ) and the cross-
correlation function rαβ(τ). The self-consistency equations read (α, β = 1, . . . , Np)

να = Gν(νγ, aγ, rγδ) (2)

aα(τ) = Ga(νγ, aγ, rγδ) (3)

rαβ(τ) = Gr(νγ, aγ, rγδ), (4)
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for each population α and pairs of populations α, β. Indices γ and δ in the arguments of
the three functions run over the Np neural populations. The dependence on νγ, aγ and
rγδ is through the input currents to the neurons. In a recurrent network the first- and
second-order moments of the firing activity appear as input and output variables and the
equations should be solved self-consistently.

Finding equations (2)–(4) is not easy, even for simple models such as networks of leaky
integrate-and-fire (LIF) neurons. Even in cases where such equations can be obtained
(e.g. recurrent networks of binary neurons [15] and of LIF neurons with slow synaptic
filtering), extracting the self-consistent solution requires some care.

The problem is easier if pair-wise correlations are neglected. In this case only single
neuron quantities are required. It is even simpler if one assumes a given fixed form for the
auto-correlation function (e.g. Poisson firing) because the problem is reduced to finding
the neuron firing rate in a completely uncorrelated noisy network. This is equivalent to a
problem solved long ago [31] and the self-consistency procedure can then be carried out
on a single equation for each population [28]. The next stage in difficulty is to include
single neuron second-order statistics [32, 33]. This allows to find in a self-consistent way
both the average firing rate and the Fano factor (see section 5.3).

If pair-wise correlations are taken into account, the first thing to do is to derive
mathematical expressions for the firing rate and the auto-correlation function of individual
cells and for the pair-wise cross-correlation functions, when neurons receive noisy
correlated activity. After taking into account the dependence of the currents on the
network firing activity and averaging over neurons (pairs of neurons for cross-correlations),
one obtains the explicit form of equations (2)–(4).

4. Networks of binary neurons

Here we briefly review the work in [15] on the self-consistent equations for a network of
binary neurons.

4.1. Microscopic equations

The dynamics of networks of binary neurons has been described several times [30, 23,
15]. Here we give the main expressions required for the discussion of the self-consistency
problem.

The state of neuron (α, i) is denoted by σαi = 0, 1. The probability that a neuron
changes its state from σαi to 1− σαi is w(σαi ). The state of the whole network at time t is
the vector ~σ = {σαi }. Following Glauber [34], the probability P (~σ, t) that the network is
in state ~σ at time t obeys the master equation

d

dt
P (~σ, t) = −P (~σ, t)

Np,N∑
αi

w(σαi ) +

Np,N∑
αi

P (~σ(i∗), t)w(1− σαi ), (5)

where ~σ(i∗) differs from state ~σ only in the state of neuron (α, i). The transition
probabilities are

w(σαi ) =
1

τα
[σαi −Θ(hαi )]2 (6)
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w(σXi ) =
1

2τX
[1− (2σXi − 1)(2MX

i − 1)], (7)

where Θ is the Heaviside function and MX
i is the mean activity of cell i in the external

population X, a parameter of the model. The afferent current hαi to neuron (αi) is

hαi =

E,I,X∑
β

N∑
j

Jαβij σ
β
j − θαi , (8)

where θαi is a threshold parameter (neuron (αi) is not included in the sum). We are
interested in the steady state first- and second-order firing statistics given by the mean
firing rate mα

i , the temporal variance of the activity aαi and the zero-lag cross-correlation

function rαβij

mα
i = 〈σαi 〉; aαi = 〈(δσαi )2〉; rαβij = 〈δσαi δσαj 〉, (9)

where 〈·〉 denotes averaging over the stochastic process and δy = y−〈y〉. From the master
equation (5) we obtain

mα
i = 〈Θ(hαi )〉 (10)

mX
i = MX

i (11)

(τα + τβ)rαβij = τα〈δσαi δΘ(hβj )〉+ 〈δΘ(hαi )δσβj 〉τβ (12)

(τα + τX)rαXij = 〈δΘ(hαi )δσXj 〉τX . (13)

4.2. Population-averaged firing rates and correlations

Equations (10)–(13) are expressions for the microscopic quantities, that is, for the firing
rates and auto-correlations of individual neurons and for pair-wise correlations. We are
interested in computing the corresponding population-averaged quantities. To obtain them
we have to perform two different averages: over the stochastic process and over neurons in
the same homogeneous population. To compute the first of these averages we notice from
equation (8) that each hαi is the sum of a large number of stochastic variables. Invoking the
central limit theorem, the probability distribution of hαi could be approximated well by a
Gaussian distribution for large networks, provided that those variables are independent
or only weakly correlated [35]. This is the case in the asynchronous regime for which the
average correlations are O(1/N) (note that this is our working hypothesis, which has to be
checked at the end). This means that the averages in the above equations can be obtained
as integrals over correlated Gaussian variables. Consequently, they will be functions of the
steady state values of the mean current and the zero-lag auto- and cross-correlations (µαi ,

cαi and cαβij , respectively),

µαi ≡ lim
t→∞
〈hαi (t)〉; cαi ≡ lim

t→∞
〈(δhαi (t))2〉; cαβij ≡ lim

t→∞
〈δhαi (t)δhβj (t)〉. (14)

To average over neurons in a given population we use a technique, which is standard in
the statistical physics of disordered systems [36], consisting in invoking the self-averaging
property and, instead of averaging over neurons, averaging over different realizations of
the synaptic efficacies, according to equation (1).

doi:10.1088/1742-5468/2013/03/P03010 7
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In summary, the way to proceed is to first use a Gaussian distribution for the synaptic
currents hαi . Once this is done, the microscopic equations appear as integrals over Gaussian
variables. Then, the macroscopic equations for the population-averaged firing rates and
correlations are obtained by averaging the microscopic equations over the distribution
of synaptic efficacies. This gives the following result for the population-averaged cross-
correlations (for further details see [15]).

(τα + τX)rαX =

εJ̃αXaX +
1

ε

∑
γ=E,I

J̃αγrγX

 τX (15)

(τα + τβ)rαβ = εJ̃αβaβτβ +
1

ε

 ∑
γ=E,I

J̃αγrγβ + J̃αXrXβ

 τβ + α←→ β. (16)

Here ε = 1/
√
N was taken as a small parameter. We have defined the notation J̃αβ =

(∂mα/∂µα)Jαβ, where Jαβ ≡ pjαβ is O(ε0) (in equation (1) we have taken pαβ = p).
Importantly, we have also used equations (8) and (14) to express the right hand side
of these equations in terms of the population-averaged firing rate mα, temporal variance
of the spiking activity aα, and cross-correlation rαβ

mα =
1

N

N∑
i

mα
i (17)

aα =
1

N

N∑
i

aαi (18)

rαβ =
1

N2

N∑
i,j

rαβij . (19)

Likewise, averaging the current moments in equation (14) we obtain the quantities µα,
cα and cαβ. Using equation (8), the population-averaged current covariance between the
total currents afferent to neurons in populations α and β can be expressed in terms of the
spike statistics

cαβ =

E,I,X∑
γ

JαγaγJ
t
γβ +

1

ε2

E,I,X∑
γλ

JαγrγλJ
t
λβ. (20)

The covariances between the components γ and λ of the currents afferent to neurons in
populations α and β are

cαβγλ = δγλJαγaγJ
t
λβ +

1

ε2
JαγrγλJ

t
λβ. (21)

Then, the total current covariance is decomposed in terms of the covariances between its
excitatory, inhibitory and external components as

cαβ = cαβEE + cαβII + cαβXX + 2(cαβEI + cαβEX + cαβIX). (22)

doi:10.1088/1742-5468/2013/03/P03010 8
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Notice that the terms in equations (20) and (21) containing aγ are contributions from
shared inputs while the terms containing rγλ come from correlations between pre-synaptic
inputs.

4.3. Correlation balance relationships in binary networks

A perturbation analysis in ε yields, to leading order, the solution of the self-consistent
equations (15) and (16)

rEX = ε2AEaX +O(ε3) (23)

rIX = ε2AIaX +O(ε3) (24)

rEE = ε2(A2
EaX − a

(0)
E ) +O(ε3) (25)

rII = ε2(A2
IaX − a

(0)
I ) +O(ε3) (26)

rEI = ε2AEAIaX +O(ε3), (27)

where a
(0)
E and a

(0)
I are the O(ε0) temporal variances of the spiking activity and

AE =
JEIJIX − JIIJEX
JEEJII − JEIJIE

; AI =
JIEJEX − JEEJIX
JEEJII − JEIJIE

. (28)

These equations explicitly show that correlations in the binary network are indeed small,
in spite of the dense connectivity and strong couplings. In fact they are O(ε2), in agreement
with the initial assumption about correlations in the activated state (section 2.2). This
result can be explained in terms of a dynamical phenomenon [15]. In short, they are the
consequence of a mechanism consisting in the tracking of fluctuations in the population-
averaged activities. The inhibitory firing rate mI(t) tracks the excitatory one mE(t) and
both track the external firing activity mX(t). At large N both mE(t) and mI(t) are
proportional to mX(t). We will refer to the result given in equations (23)–(27) by saying
that in a recurrent network population-averaged correlations are balanced.

The covariance between the total currents afferent to a pair of neurons, equation (20),
is also small. Indeed, one can show that the correlation balance equations imply that
total current covariances are O(ε). This comes about from cancellations between recurrent
feedback and contributions from the external input. This is easily checked by replacing
the O(ε2) correlation coefficients (equations (23)–(27)), AE and AI (equation (28)) in the
expression of the population-averaged total current covariance (equation (20)).

In contrast, the current component covariances, equation (21), are O(ε0). This is a
crucial difference between sparse and dense networks, since for sparse networks correlations
between current components are defined to be zero. The sparse and dense regimes also
differ in their prediction on the width of the distribution of spiking correlation coefficients,
which in densely connected networks is O(ε); since their mean is O(ε2), this implies that
negatively correlated pairs appear in about the same number as positively correlated
ones [15].

We can also discriminate between correlation coefficients of pairs of neurons with a
direct recurrent connection and pairs with only indirect connections. The effect of a direct
connection is O(ε), which is small when compared with the net effect of shared inputs or
with the net effect of firing correlations between inputs, which are both O(ε0). However,
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because of the cancellation between these two contributions, correlations are affected by
the presence of a direct connection (Supplementary online material in [15]).

Networks of inhibitory neurons are described in the same way, arriving to balance
equations for the correlation coefficients rII and rIX similar to equations (23)–(27):

rIX = ε2A′IaX +O(ε3) (29)

rII = ε2(A′2I aX − a
(0)
I ) +O(ε3), (30)

where A′I = −JIX/JII . The population-averaged covariance between the total currents
afferent to inhibitory neurons in the recurrent network is related to the spiking activity
moments by

cII =

I,X∑
γ

JIγaγJ
t
γI +

1

ε2

I,X∑
γλ

JIγrγλJ
t
λI . (31)

Again, replacing here the O(ε2) correlation coefficients given by equations (29)–(30) we
obtain cII ∼ O(ε). Writing the total current covariance in terms of the covariances between
its external and recurrent components

cII = cIIII + cIIXX + 2cIIIX , (32)

we notice that, similarly to what happens with the total current covariance in the network
with excitatory and inhibitory populations (equation (22)), the O(ε) behavior of cII comes
from cancellations between recurrent feedback and contributions from the external input.

5. Networks of LIF neurons

5.1. LIF neurons

The equation for the membrane potential of a leaky integrate-and-fire neuron (αi) is

τm
d

dt
V α
i (t) = −V α

i (t) + τmI
α
i (t), (33)

where τm is an effective membrane time constant and Iαi (t) is the synaptic current. In this
model a spike is emitted when V α

i reaches a threshold value θ. Then the potential is reset
to a value H. We set the resting potential at 0 mV. In the network, each neuron obeys
an equation like the one above. Iαi (t) contains the contribution of the spikes produced by
the cells pre-synaptic to neuron (αi), filtered with a characteristic synaptic time constant
τs

τs
d

dt
Iαi (t) = −Iαi (t) +

∑
(γj,k)

Jαγij δ(t− t
γ
j,k), (34)

here tγj,k is the arrival time of the kth spike from pre-synaptic neuron (γj).
Since the number of input spikes is large and the effect of one spike on a post-synaptic

neuron is small we can replace the point process by a Gaussian one [31]. The filter equation
becomes

τs
d

dt
Iαi (t) = −Iαi (t) + µα + σαη

α
i (t) (35)
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where µα is the mean current, σ2
α/2τs is the current variance and ηαi is a Gaussian noise

with unit variance.
Later, in section 5.5, we will need the firing rate of a LIF neuron receiving a

deterministic constant current I0. This is

ν
α(0)
i (I0) =

1

τm

[
ln

(
τmI0 −H
τmI0 − θ

)]−1

(36)

for I0 > θ/τm and zero otherwise.

5.2. Spiking first- and second-order statistics

We denote the spike train produced by neuron (αi) as

ραi (t) =
∑
k

δ(t− tαi,k) (37)

where tαi,k(t) indicates the time when the neuron emitted its kth spike. The firing rate of
this neuron is given by

ναi (t) =

〈∑
k

δ(t− tαi,k)
〉
, (38)

and the firing auto- and cross-correlation functions are

Cα
i (t1, t2) =

〈(∑
k

δ(t1 − tαi,k)− ναi

)(∑
l

δ(t2 − tαi,l)− ναi

)〉
(39)

Cαβ
ij (t1, t2) =

〈(∑
k

δ(t1 − tαik)− ναi

)(∑
l

δ(t2 − tβjl)− ν
β
j

)〉
. (40)

The auto-correlation function Cα
i (t1, t2) gives the excess joint probability with respect

to independent events that the neuron fires at times t1 and t2. Similarly Cαβ
ij (t1, t2) is

the excess joint probability with respect to independent spiking that neurons (αi) and
(βj) fire at times t1 and t2. Although these are covariances, here we will refer to them as
correlations. We are interested in a steady state of the network activity. When this regime
is reached the firing rate becomes independent of time and the correlation functions depend
only on the time difference. We then define the steady state auto- and cross-correlation
functions

aαi (τ) ≡ lim
t→∞

Cα
i (t, t+ τ) (41)

rαβij (τ) ≡ lim
t→∞

Cαβ
ij (t, t+ τ). (42)

We aim to study population-averaged moments of the firing activity, which we define
as

να =
1

Nα

Nα∑
i

ναi (43)
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aα(τ) =
1

Nα

Nα∑
i

aαi (τ) (44)

rαβ(τ) =
1

NαNβ

Nα,Nβ∑
i,j

rαβij (τ) (45)

(Nα and Nβ are large). Finally, current auto- and cross-correlation functions (covariances)
are defined as

cαi (t1, t2) = 〈δIαi (t1)δI
α
i (t2)〉 (46)

cαβij (t1, t2) = 〈δIαi (t1) δI
β
j (t2)〉, (47)

and their steady state population-averaged values are cα(τ) and cαβ(τ).

5.3. Single neuron self-consistency analysis of recurrent LIF networks

In the simplified situation in which pair-wise correlations are neglected, the self-
consistency problem contains only the equations for the firing rate and auto-correlations.
In this case the neuron’s firing is not Poissonian and the Fano factor is not necessarily
equal to one. These temporal correlations in the spike trains emitted by the neurons are
seen by the post-synaptic cells as correlated input currents.

The effect of input correlations on the firing rate has been studied in [18, 19]. Although
the current consists of spikes, if the number of action potentials is large and the effect
of individual events is small, then the point process can be replaced by a continuous
Gaussian process; this is the diffusion approximation [31]. Clearly, in this approximation
only the first- and second-order moments of the current affect the neurons’ firing rates.
The basic result is that spiking correlations contribute to firing through an additional
term to the current variance. The output firing rate has the same functional form as in
the uncorrelated case (studied in [31]), but with the white noise variance replaced by an
effective variance (for details see [19]).

We studied this self-consistency problem in [32, 33]. Apart from the mathematical
formulation that we have just sketched, we were interested in explaining why in working
memory tasks cortical activity is rather irregular both before a first stimulus is presented
and during the delay period [37, 38]. Models typically fail to explain the irregularity during
the delay period (experiments show that it is larger than during the fixation period). The
reason for this failure is that even if models succeed in describing the activity during the
pre-stimulation period as a regime dominated by current fluctuations, they erroneously
predict that during the delay period the network is in a mean-driven regime. This yields
regular firing activity.

The model in [33] proposed that local inhibition (inhibition selective to the
stimulus) should be included together with selective excitation, both forming selective
microcolumns. Since local inhibition can balance selective excitation, application of a
stimulus puts the network in a fluctuation-driven regime that persists during the delay
period. Experimental evidence about the existence of selective inhibition [39] makes
plausible the idea that selective inhibition could be a solution to the problem.

The model proposed in [33] succeeds in finding a higher irregularity during the memory
period. However it does not avoid another drawback, common to most working memory
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models (see e.g. [40]). If the potentiation parameter (the coupling between neurons in
the same selective population) is too weak the network lacks bistability, whereas if it is
too strong the network jumps to the persistent activity state spontaneously. The range
of values of the potentiation parameter for which bistability is robust is too narrow and
setting its value requires some degree of tuning.

There have been other attempts to deal with this problem. It is possible that other
biophysical mechanisms, such as short-term synaptic plasticity [41, 42], contribute to the
increase in the irregularity of the regime of persistent activity. Another proposal includes
a Hopfield memory structure besides the random excitatory connections, but still obtains
low coefficients of variations [43]. However, the question of whether the higher irregularity
of the persistent state can be explained in terms of purely static synaptic properties
still remains open. It has recently been observed that inhibitory spike timing-dependent
plasticity increased the irregularity in a memory model [44], but this issue has not been
studied in multi-stable networks.

5.4. LIF neurons with a slow synaptic filter

In section 5.3 we have discussed a self-consistent analysis neglecting pair-wise correlations.
Several technical issues prevent us, for the moment, from finding a general self-consistent
solution for all values of the model parameters. The large connectivity, and the presence
of correlated current components and of synaptic filtering are the main factors responsible
for these difficulties.

However the full input–output mapping in equations (2)–(4) can be obtained when
there is at least one slow synaptic filter. This is a realistic condition, the cortical state we
are describing is characterized by a high conductance [45], which implies a short effective
membrane time constant (i.e., τm ∼ 5 ms), as has been observed in vivo [46]. On the other
hand, GABAA receptors have a characteristic time of about 10 ms [47, 48]. Hence, there is
at least one receptor type with a characteristic time-scale longer than the integration time
of the membrane. Since we are considering a version of the LIF model based on currents,
this condition is implemented by choosing a synaptic characteristic time longer than the
effective membrane time constant (τs > τm).

5.5. Self-consistency equations for recurrent LIF networks

Here we write down the set of self-consistent equations for networks of LIF with one slow
filter. We start by presenting the equations for the firing rate and auto-correlation function
of a LIF neuron [18, 21, 49, 20, 33, 19, 22] and the spiking activity cross-correlation
function of a pair of LIF neurons [20], when neurons receive correlated noise1.

If the neural dynamics is faster than the synaptic characteristic time (τs) then, during
a time interval T shorter than τs the afferent current (I(t)) will be reasonably constant.

Therefore, at that time-scale neuron (αi) will fire with a constant rate ν
α(0)
i (I) (given in

equation (36)). If the current distribution in the steady state P (I) is known, then the
probability density that the neuron emits a spike can be computed by averaging the firing

1 The firing rate of conductance-based LIF neurons with short effective membrane time constant was obtained
in [49].
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rate produced by a current frozen at the value I, ν
α(0)
i (I), with P (I) [21, 22]

ναi =

∫
dI P (I)ν

α(0)
i (I). (48)

Since in the diffusion approximation the current distribution is a Gaussian, we only need
to know the mean and variance of I(t).

The steady state auto-correlation function, aαi (τ), between the spiking activity of
neuron (αi) at time t1 and the same neuron at time t2 can be approximated in a similar
way [20]

aαi (τ) ≡ lim
t1→∞

Cα
i (t1, t1 + τ) =

∫
dI1 dI2 Pa(I1, I2; τ)ν

α(0)
i (I1)ν

α(0)
i (I2), (49)

where Pa(I1, I2; τ) is the joint probability that the afferent current to neuron (αi) at the
times t1 and t2 = t1 + τ are, respectively, I1 and I2. It depends on the means µαi and the
auto-correlations cαi (τ) of the currents.

Finally, the steady state cross-correlation function rαβij (τ) between the spiking activity
of neuron (αi) at time t1 and neuron (βj) at t2 = t1 + τ is, in the same approximation,

rαβij (τ) ≡ lim
t1→∞

Cαβ
ij (t1, t1 + τ) =

∫
dI1 dI2 Pc(I1, I2; τ)ν

α(0)
i (I1)ν

β(0)
j (I2). (50)

Pc(I1; I2; τ) is the joint current probability density of having an input current I1 to neuron
(αi) at time t1 and an input current I2 to neuron (βj) at t2. This equation can be
understood as follows. The first neuron receives a current I1 at time t1, while the second
receives the current I2 at time t2. Since current fluctuations are slow, at those times the

neurons fire with probabilities ν
α(0)
i (I1) and ν

β(0)
j (I2), respectively. Equation (50) simply

states that the two-point correlation function of the output spike trains is the average
of the product of the instantaneous firing rates of the two neurons evaluated at times
t1 and t2. This average of instantaneous firing rates over synaptic currents approximates
the average over stochastic realizations of the spikes in equation (40). Pc depends on the

current cross-correlation function cαβij (τ).

In these expressions the effect of input correlations on ναi , aαi (τ) and rαβij (τ) is taken

into account by the dependence of ν
α(0)
i on the effective current variance and by the

dependence of Pa and Pc on current correlations coefficients [18, 20, 19, 22, 33].
The self-consistency equations are obtained by expressing the current moments

in terms of the moments of the spiking activity ναi , aαi (τ) and rαβij (τ). The
relationship between population-averaged current and firing activity moments is similar
to equation (20), although now there appear convolutions due to synaptic filtering. The
current correlation still has two terms, one coming from the contribution of shared inputs—
containing the spiking auto-correlation—and the other reflecting the presence of pair-wise
correlations in the network.

In the above presentation we assumed that the total current came from a single, slow
synaptic channel. In general there are several synaptic types and some of them can be fast.
However the above equations can be generalized provided that there is at least one slow
filter [21, 22]. The presence of a fast channel only affects the form of the firing response

to a constant current, ν
α(0)
i (I). If the fast channel is characterized by a variance σf , then
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the effective constant current has the form I = µ + σfz, where z is a Gaussian current

fluctuation and ν
α(0)
i (I) is given by an expression derived in [31].

5.6. Correlation balance relationships in LIF networks

An analysis of the self-consistency equations (48)–(50) shows the existence of balance
relationships for correlations in the LIF network [50]. Simulations for the case in which
the synaptic characteristic times of excitatory and inhibitory currents are the same confirm
that spiking correlations coefficients scale as 1/N [51]. However one can expect that the
cancellation of current correlations do not take place under some conditions; for instance,
inhibitory tracking of excitatory fluctuations becomes more difficult as the difference
between the inhibitory and excitatory synaptic time constants increases. This is seen
in the simulated model and in a recent study of the effect of GABAB receptors on the
slow oscillations in rodent cortical slices [52].

5.7. Other approaches to deal with self-consistent solutions of networks of spiking neurons

Recently there have been other efforts to describe the activity of networks of spiking
neurons self-consistently [53]–[56]. As we have described in previous sections, we have
studied a network of spiking neurons by assuming that neurons interact strongly,
equation (1), and are densely connected. Another possibility is to assume neural
interactions are very weak. For example, in [53] a neuron is connected to Nc→∞ neurons
and J ∼ O(1/Nc) (or, equivalently, Nc � 1 is kept fixed but J → 0). In this case the
network is, at leading order, decorrelated by construction; for instance

Cαα
ij (t1, t2) = δijδ(t1 − t2)ναi (t1). (51)

Correlations can only appear as finite size corrections. To obtain them, Toyoizumi et al
wrote up a master equation for the probability of a given state of the network and
from it they derived a set of self-consistent equations. The solution of these equations
yields finite size corrections to cross-correlations behaving as 1/Nc. However, the strongly
and the weakly interacting regimes give quite different predictions. To explain the large
correlations between the current components using a weakly coupled network requires the
adjustment of Nc. In contrast, in the strongly coupled regime these are always finite. These
two regimes also differ in their prediction about the presence of negatively correlated
neuron pairs. In the strongly coupled regime there are almost as many negatively as
positively correlated neuron pairs because the width of the distribution of correlation
coefficients is O(N−1/2).

Another way to deal with the self-consistency problem is to consider a large but
finite size network and set the model parameters at their physiological values. Finding a
solution requires the use of some approximation. This has been done in [54]–[56] to study
networks of LIF neurons using the linear response approximation. Their results confirmed
the existence of cancellations, responsible for decorrelation. The work in [54, 55] addressed
the issue of how different connectivity motifs contribute to spiking correlations: when the
model parameters are kept finite and fixed, not only direct common inputs and direct
connections between a pair of neurons but also more complex motifs with unidirectional
chains and indirect common inputs contribute to the correlation.
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The self-consistency problem is still the subject of very active research. The work
in [15] made the interesting proposal that the activity of cortical networks could be
described as a strong coupling and densely connected regime, obtaining observable
predictions on neural correlations. The properties of this regime have not been yet fully
explored and the emergence of a time-scale related to tracking has still to be clarified.
It is not clear that linear systems can do it. On the other hand, linearization makes the
problem tractable and within certain limits (see e.g. [54] for a discussion on limitations of
this approach) it can provide useful information on correlations in neural networks.

6. Noise correlations and behavior

We have seen that a cortical state characterized by irregular and very weakly correlated
firing can emerge in spite of the existence of strong and dense connections [15, 51,
50]. However population-averaged correlation values larger than those predicted by these
networks have been observed. If recurrent networks have very small current correlations,
how do the observed correlations originate?

In fact, it has been argued that correlated activity is needed to explain experimental
results in perceptual decision-making tasks [57]. In these experiments the activity of
individual neurons contains information about the subject’s decision [58, 59]. In the
absence of correlations one would conclude that decisions are processed by rather small
neural populations. But this is unlikely because neurons with activity correlated to
behavior are found easily. The alternative explanation is that decision making is processed
by larger and correlated neural populations [57].

Motivated by these issues we have recently studied [14] noise correlations between
pairs of neurons recorded simultaneously while monkeys performed a decision-making
task consisting in detecting a somatosensory stimulus [60, 59]. The subject reported his
decision by pushing one of two buttons after a delay period. The stimulus was present
in only fifty per cent of the trials and when it was applied its amplitude could be below
or above the subject’s detection threshold. Importantly, the stimulation time was chosen
randomly. The uncertainty present in this task makes it very difficult for the subject to
know whether, in a given trial, the stimulus has been applied or not.

We found that noise correlations (and firing rates) are modulated through all stages
of the task, in a way that depends on the reported decision. The answer to the question
of whether correlations can be small is affirmative. Correlation coefficients become on
the order of 0.05 towards the end of the delay period, when supposedly the decision has
already been taken, and also—in some trials—during the pre-stimulation period. On the
other hand, they can become larger (on the order of 0.2–0.3) during other stages of the
task, e.g. during the stimulation period and, most remarkably, during the pre-stimulation
period, at the time when the conditions of the experiments make it possible to infer that
the stimulus could have been applied. Data analysis and modeling work are consistent with
the hypothesis that the registered prefrontal areas can have rather small noise correlations,
however these correlations can be modulated by an internally generated signal, common
to a population of neurons in the decision pool. Changes in neuronal excitability, due
to the signal, increase correlation coefficients above the baseline value ∼0.05. This signal
fluctuates slowly and greatly influences the decision reported by the subject.
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7. Discussion

The analysis of noise correlations can be an important approach to study how the brain
processes information. They are modulated by behavior [1]–[4] and in perceptual decision-
making tasks they fluctuate according to the subject’s decision [14]. Understanding
how information processing in the brain is related to correlated variability requires the
development of models and analytical tools. These could allow us to explore systematically
how neuron and network properties affect correlations.

Here we have reviewed our work on the design of mathematical techniques to study
network activity. We have first found the response of single neurons and of pairs of neurons
to correlated input currents [18, 20, 22]. Then we have used these results to write self-
consistency equations from which a solution for firing rates and correlations can be derived.
An important ingredient in the theory is the fact that network connectivity has to be
dense [15].

We have described how, under some conditions, a recurrent network can cancel
correlations induced by common inputs. This is an unexpected result which is difficult
to infer given the complexity of neural phenomena. The next stage is to investigate
how correlations are produced. There are many possible factors which can contribute to
correlated variability. The existence of a variety of temporal scales in the cortical network
can spoil the tracking mechanism responsible for the cancellation of correlations [51].
Besides, correlations could originate from changes of excitability in the neural population
produced by trial-to-trial fluctuating signals. Yet another issue one would like to know is
how the cancellation of correlations affects macroscopic signals.

Future work should address these and other questions; to make progress, analytical
methods should still be improved and extended to deal with more realistic systems.
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