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Abstract

The visual system is the most studied sensory pathway, which is partly because visual stimuli have rather intuitive properties.

There are reasons to think that the underlying principle ruling coding, however, is the same for vision and any other type of sensory

signal, namely the code has to satisfy some notion of optimality––understood as minimum redundancy or as maximum transmitted

information. Given the huge variability of natural stimuli, it would seem that attaining an optimal code is almost impossible;

however, regularities and symmetries in the stimuli can be used to simplify the task: symmetries allow predicting one part of a

stimulus from another, that is, they imply a structured type of redundancy. Optimal coding can only be achieved once the intrinsic

symmetries of natural scenes are understood and used to the best performance of the neural encoder. In this paper, we review the

concepts of optimal coding and discuss the known redundancies and symmetries that visual scenes have. We discuss in depth the

only approach which implements the three of them known so far: translational invariance, scale invariance and multiscaling. Not

surprisingly, the resulting code possesses features observed in real visual systems in mammals.

� 2004 Published by Elsevier Ltd.
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1. Introduction

1.1. Need for an efficient representation. Optimization

criteria

The world is an extremely complex system for living

organisms. Living in it requires to solve the problem of

how to represent and process efficiently the stimuli that

are continuously received through the sensory pathways.

This is a formidable task; think for example in the

complexity of the visual world. It is endowed with

properties such as contrast, motion, color and depth
that have to be detected, represented and processed in

order to reach a description which is useful and mean-

ingful for the organism. No doubt that our brain has

found excellent strategies to do this, but how? The first

question that arises is how to deal with the huge amount

of redundancy present in natural signals. It has been
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proposed that the goal of the first stages of the sensory

pathways (e.g. the retina and the very first layers behind)

is to realize an efficient neural representation (or code)

of the environment and that cells achieve this goal by
detecting statistical regularities in the stimuli [3]. The

knowledge of those regularities could then be used to

build an efficient internal representations of the envi-

ronment. For instance, if there are image features that

tend to appear together, a cell responding quasi-opti-

mally to them is rather likely to exist.

To go further with this analysis it is necessary to as-

sume that the properties of real nervous systems result
from the optimization of some cost function which

characterizes the quality of the code. Some time ago [2,3]

it was suggested that information theory [10] could pro-

vide appropriate tools. For example Barlow [3] insists

on the need of building a neural representation that

could be easily used in subsequent processing. This leads

to the idea of factorial code: each output unit should be

statistically independent from any other unit. Hence the
network decorrelates independent features that are

mixed in the input signal. This means that one should

minimize the redundancy in the neural code, a fact that
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can be quantified in terms of an information theoretic
criterion. Another possible requirement is that the sys-

tem should simply maximize the amount of information

that the output conveys about the input signal. This

suggests in a particular way for modelling how the

transfer function of a given sensory neuron is adapted to

the particular environment in which the animal lives

[21]. This idea that the information has to be preserved

has been also developed by Linsker [23] under the name
of infomax principle in a model of the first layers of the

visual system.

The maximization of information transfer (the info-

max principle of Linsker), and its the redundancy

reduction of Barlow are in fact related. The predictions

of these two strategies, redundancy reduction and

maximization of mutual information, appeared to be

very similar and the question arises of under which
conditions they lead to the same predictions. The

equivalence of these two criteria seems plausible and a

first indication in this direction was noticed in an anal-

ysis of a population of McCulloch and Pitts neurons

acting as a neuron encoder [30]. A direct evaluation of

the mutual information and the redundancy in such a

network showed that infomax and redundancy reduction

principles are, for this system, equivalent. The proof of
the equivalence was finally done in [31] where it was

shown that, in the low synaptic noise limit with non-

linear outputs, infomax implies redundancy reduction,

when optimization is done over both the synaptic effi-

cacies and the non-linear transfer functions. As a result,

the optimal neural representation is a factorial code. An

extension of this result to stochastic neurons was done in

[33].
A steepest descent algorithm taking the mutual

information as cost function to find the independent

components of data (that is, to minimize their redun-

dancy) was soon afterwards proposed by Bell and Sej-

nowski [5]. The equivalence of these criteria with yet

another popular principle, maximum likelihood, was

found in [32]. As it was shown in this work, the cost

function provided by the mutual information is identical
to the one derived several years before from a maximum

likelihood approach [37].

These results can be summarized in the following

way:

• The redundancy can be reduced by means of the info-

max principle [31].

• If the goal is to maximize the information, both the
weights and the transfer function should be optimized

[31].

• The redundancy can also be reduced by means of

maximum likelihood [37].

• Maximum likelihood can be used to maximize the

mutual information, once the transfer function is

identified with the cumulative of the prior [32].
1.2. Statistical invariances of natural scenes

Natural images are complex objects, quite random

(the content of one scene is highly variant) but at the

same time quite structured (scenes consist of objects

more or less smoothly illuminated). A complete

description of their statistics would allow a direct

knowledge of the optimal code, but such a description is

far from possible: even a tiny 16 · 16 grid of pixels,
quantized to 8 bits for pixel (256 gray levels) means a

probability space with 2768 events, that is, more than

1.5 · 10231 possibilities. Obtaining even a coarse estima-

tion of the probability distribution is unrealistic, the

number of needed examples exceeding any device

recording capability. It is highly unlikely that the visual

system makes use of such an exhaustive description of

images. In the huge space of possible images, scenes
from the real world just occupy a small fraction of the

whole. This means that they possess regularities and it is

very attractive to think that the visual system makes use

of them to achieve a good representation of the visual

world [3]. According to this view the visual system first

learns the regularities and produces a code well adapted

to the type of images that it uses to see.

What sort of regularities one should look for? One
immediate answer to this question is to look for sym-

metries in natural images. Of course they should be

statistical in character: may be one particular image does

not verify the symmetry, but it will be observed on

average over a large enough set of images. Translational

invariance is the simplest statistical symmetry in images.

It means that there is no center of the universe, no dis-

tinguished point in the visual field. Something which in a
particular scene is at a given location will eventually be

observed in any other location for another different

scene (for instance, trees are not always to the right of

the observer, but they can appear anywhere). Of course

it could happen that the ensemble of images acquired by

the observer is biased in some way (e.g. if the subject of

the study suffers the effect of a scotoma [28] or another

anomaly in vision, or an attentive gaze). We consider no
bias, no attention is happening in this early stage, hence

guaranteeing translational invariance. Image ensembles

used in vision research are nevertheless biased: the most

important bias is reflected in the non-isotropy of images,

as the recording device is normally kept horizontal with

respect to the ground. Such a bias does not affect

translational invariance, as objects happen to appear

also at different heights, due for instance to irregularities
of the terrain.

A more involved but also essential statistical sym-

metry is scale invariance. It implies that any part in a

particular image will eventually happen at a different

relative size in another image (for instance, trees have no

universal, fixed visual size, but their apparent size de-

pends on the random distance to the observer: the clo-



Fig. 1. Left: affine Sierpinski’s gasket. The figure is generated by

recursion, dividing an equilateral triangle in four half-height triangles

and removing the central one. Right: probabilistic Sierpinski’s gasket.

It is generated similarly to the affine one, but at each step the triangle

to be removed is decided at random.
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ser, the larger). Scale invariance means that images are

self-similar in a statistical sense. Self-similar objects are

associated to the usual idea of fractal sets [15]: some-
thing which resembles to any small part of itself (as the

Sierpinski’s gasket shown in Fig. 1, left). In fact, an

exact resemblance of the whole set to its parts is just a

simple way of thinking fractals; a more realistic frame-

work generalizes the concept of deterministic (affine)

resemblance to that of statistical (probabilistic) resem-

blance (as that of the random Sierpinski’s gasket shown

in Fig. 1, right).
Natural images are scale invariant, which implies they

are somehow fractals, in the sense of statistical self-

resemblance. One of the salient features of fractal sets is

power law behavior. Power law means that any statis-

tical variable defined at a scale l (for instance, correla-

tion of contrast for any pair de points a distance l apart)
depends on the scale just as lc, with a certain exponent c.
This exponent is related to the fractal dimension of the
set, in a way which depends on the precise definition of

the considered variable. A well-known power law

behavior of this type is that of the power spectrum of

images [16] Sð~f Þ,

Sð~f Þ � f �2þd ð1Þ

where the exponent d is usually small and depends on

the particular ensemble of images considered. For a

simple fractal system, one of this power law exponents

suffices to define the scale invariance symmetry com-
pletely: it provides the dimension of the fractal (in the

case of the power spectrum, the fractal would have

dimension 2� d). If scale invariance of natural images

were described by just its power spectrum then images

would be simple fractals. This assumption was done

very frequently, specially in older studies of natural

scenes in connection with the early stages of the visual

system [1,16,52]. Also, models of natural images that
attempt to explain the power law in Eq. (1) are usually

simple fractals [40]. Evidence that scale invariance is also

present in the non-gaussian statistics of natural scenes
was observed in different studies [38,39,41,44–46], how-
ever the precise nature of scale invariance of natural

scenes and its role in the development of visual systems

has not been studied until very recently.

Natural images are not simple fractals, as they

present different, not easily related power law expo-

nents. This is because images are multifractals [44–46],

so their scale invariant properties require a more com-

plicated description. Multifractality is a beautiful
structure, revealing important geometrical properties,

but its discussion would exceed the limits of this paper;

the reader is encouraged to read our paper on the

subject in [46].

This geometrical property is related to a third sym-

metry of natural images, multiscaling. The existence of a

new symmetry places stronger constraints in what a

natural scene is, reducing their entropy. When the three
symmetries are included in models of natural scenes

[34,47] and the resulting model is used in combination

with a plausible optimization principle [48,49], edge

detectors are predicted in a rather natural way.

Symmetries of natural scenes have been considered in

some theoretical modelling of simple cells [22], but this

has not always been the case [6] and much of the insight

gained from them is lost when they are not taken into
account properly. In the following sections we will

analyse its statistical meaning in conjunction with mul-

tiscaling; as we will see, this approach will lead us to

extract relevant consequences for coding in the visual

pathway.

1.3. Cells adapt to stimulus statistics

It is beyond the scope of this work to present a de-

tailed account of cell adaptation to stimulus statistics.

Here we just give a few examples of this question. If

vision neurons have adapted to the regularities of nat-

ural scenes this should be evident in nature. There are

indeed numerous examples of this adaptation: a first

example is the orientation selective cells found by Hubel

and Wiesel [20]; but after their discovery many other
examples were found. One suggestive example out of

many possible ones is that birds have horizontal edge

detectors [29], which is probably due to the fact that the

horizon is an important feature for them; in flies,

adaptation of the transfer function to the statistics of

images has been tested in [21], and the question has

deserved further attention more recently [7].

Some forms of adaptation occurring in small time-
scales could also be explained in terms of similar opti-

mization principles as those used to explain adaptation

through evolution [7,9,28,54].

Theoretical predictions for receptive fields have also

been experimentally checked (see e.g. [52]). Experiments

on cats suggest that some kind of optimization is taking

place in LGN [12,43] to obtain a decorrelating code.
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If scale invariance has been perceived as another
regularity it should also be reflected in the properties of

cells in the visual pathway. Although retinal and LGN

cells do not seem to be specialized to detect features at a

fixed scale, simple cells do [24].

The layout of the rest of this paper is as follows. In

the next section we mention our main results on image

statistics and the type of code suggested by them. We

close Section 2 by stating the optimization criterion used
to obtain the optimal filter. In Section 3 we describe the

multiscaling property of natural scenes and show that a

factorial code cannot be obtained by a linear filter. The

optimal filter, an edge detector, is obtained as a conse-

quence of the three symmetries of images in Section 4

and its important properties are described in Section 5.

The self-consistency of the assumptions made to derive

the optimal filter is analysed in the more numerical
Section 6 and our conclusions are presented in the last

section.
2. Towards an efficient code for natural visual stimuli

How can an efficient code for natural scenes be

achieved? If scale invariance is such a prominent feature
of the visual world special attention should be paid to

the role that it plays in the construction of a non-

redundant representation. There have been many sug-

gestions on this regard.

Most of the effort in this direction concerns the scale

invariant properties of the power spectrum of images.

The most frequently invoked optimal criterion in this

case has been decorrelation [1,52]. But this does not
take into account other manifestations of scale invari-

ance. In fact there is evidence that simple cells sample a

visual stimulus by a joint representation of space and

scale, instead of space and spatial frequency. This is

reflected for instance in that the bandwidth is roughly

constant in logarithmic units of the frequency; see for

instance the discussions in [18,25]. The mathematical

equivalent of this is to represent the image as a set of
filters that explore the visual input at different positions

and scales. The filters are obtained as scaled copies of a

primitive one, conveniently placed at different loca-

tions, forming a wavelet family; the image can be

reconstructed recombining the filters (wavelets) and

activities (wavelet projections, also called wavelet

coefficients) [13]. However a single wavelet family does

not usually suffice to provide a complete description;
hence several families, each associated to a mother

wavelet, are generally used.

Wavelet expansions have been extensively used both

in modeling the orientation selective cells and in the

description of natural images, see e.g. [17,22]. However

these and other studies do not address the problem of

understanding the way scale invariance appears in nat-
ural scenes. They do not address either the question of
how the wavelet exponents are related, a fact that can be

explained if multiscaling is included in the description of

natural scenes. Only once this question is ellucidated

should the consequences that scale invariance––together

with translation invariance and multiscaling––has on the

visual system be investigated. This program has been

done in a series of papers [34,44–46,48,51] from where

the following conclusions have been reached:

• Scale invariance is not exhausted by the fact that the

power spectrum of natural scenes is an algebraic

function of the spatial frequency. Once images are

decorrelated they are still very informative about

the scene: edges are still present and make the image

fully recognizable [4,16]. This implies that the higher

order statistics cannot be neglected and, in particular,
that non-gaussian scaling properties are also impor-

tant.

• It turns out that images are extremely irregular: no

matter the scale of observation the contrast has an

intermittent behavior [46].

• Wavelet representations are not intrinsically efficient.

It is well-known that wavelet coefficients have a per-

sistence effect [11,26], a sharp transition in contrast of
given spatial extension will give rise to large wavelet

coefficients at all the scales finer that its size. Hence,

if the activities were proportional to the wavelet coef-

ficients, many cells would fire under the presentation

of such a stimulus. A non-redundant representation

could be obtained by cells that respond to what is

new at the range of scales where it is most sensitive.

In that case, it is not the presence of a change in con-
trast what is represented but the emergence of a new,

finer structure in the image at the scale represented by

the neuron.

• This non-redundant code is not given by the wavelet

coefficients themselves but by a non-linear function of

ratios between coefficients at two different scales. Pos-

sible non-linearities that arise naturally in the prob-

lem are: a power of the ratio of activities and the
log-transfer of the wavelet filter. The first case corre-

sponds to the divisive normalization [8,19], while the

second could describe the saturation of simple cell re-

sponse [24].

• Since in natural scenes the emergence of new details

as the scale becomes finer are rare, the predicted code

is sparse. Sparseness has not to be imposed (as it was

in [36]) in this approach but it arises as a consequence
of the sparseness of edges in natural scenes.

• The second order statistics can be dealt with as it is

done in more classical approaches (e.g. [1]). This is

because all the previous properties are valid regard-

less of the precise behavior of the (scale invariant)

power spectrum. They hold no matter where in the

sensory pathway decorrelation takes place. It is then
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indifferent in this approach if decorrelation occurs
fully in the LGN, as claimed in [12], or in V1, as

has been suggested more recently in [57].

An important ingredient in this analysis is the fol-

lowing optimization criterion for scale invariant prob-

lems [48,49]: the redundancy between the representation

at different scales should be minimized. Indeed, if simple

cells work as feature detectors at different scales, it is
then reasonable to start the search for a factorial code

by asking independence across scales. Once this is

achieved the next step towards attaining an efficient

code is to reduce the spatial correlations within a fixed

scale.

In the following sections we describe how these con-

clusions arise from the analysis of the statistics of local

contrast changes in natural scenes and how the optimi-
zation principle just stated leads to the prediction that

optimal filters are edge detectors.
3. In natural scenes scale invariance appears as multi-

scaling

In scale invariant systems quantities defined on a
scale l have to behave as a power law of the scale, as this

is the only function that does not require the existence of

a privileged scale. In the simplest manifestation of this

property the exponents for each possible quantity are

trivially related. Natural scenes, however, happen to be

an example of a more complex class of scale invariant

problems. For instance, let us consider the moments of a

contrast dependent random variable defined at the scale
l. As we have just said each of those moments should

behave as a power of the scale. In a simple system, the

exponents depend linearly on the order of the moments;

on the contrary, for natural images the corresponding

exponents have a complex, non-linear dependence. In

these problems, understanding scale invariance means to

be able to predict the non-trivial relations between scale

exponents. Natural scenes are an example of these
problems [44,45]. Fortunately they obey multicaling, a

property that makes the computation of the scale

exponents feasible.

To explain the phenomenon of multiscaling better the

first step is to define appropriate wavelet projections. We

will discuss more about wavelets in Section 4; for the

moment let us just say that a wavelet W is a special

function with a number of vanishing moments. Let cð~xÞ
represent the luminosity recorded by the optical device

at the point ~x. We define the wavelet projection of cð~xÞ
on W at the scale l and position~x as

aWðl;~xÞ �
Z

d~y cð~yÞ 1
l2

W
~x�~y

l

 !
ð2Þ
Expressed in a more intuitive way, the wavelet projec-
tion performs a zoom on the details of the function

around ~x only at the scale l. In this way, it should be

able to extract one or another of the different scaling sets

in the system. In a statistical approach the p-moments of

aWðl;~xÞ are considered

hap
Wðl; �Þi � lsp ð3Þ

where the average (angular brackets) in the previous

expression is taken over an ensemble of images and also

over all the points, using translational invariance. Eq.

(3) is known as statistical self-similarity (SS). It has been

verified over large sets of very different natural images

[34,44–47]. For a single fractal system, the SS exponents

follow a linear relation with the order p: sp ¼ ðD�
1Þp þ ð2� DÞ, where D is the dimension of the fractal
set. However, it has been experimentally shown that the

curve sp vs p deviates considerably from a straight line

[44,45]. The SS exponents for natural images correspond

to a more complicated multiscaling hierarchy.

An immediate consequence of multiscaling is that

there exists a stochastic process, relating the wavelet

coefficients at two different scales, which is independent

across scales [44,45]. This can be seen more clearly by
formulating the SS property in Eq. (3) in statistical

terms. In fact that equation is equivalent to the follow-

ing relation

aWðl;~xÞ¼
:
gðl=LÞaWðL;~xÞ ð4Þ

for any pair of scales l < L; the symbol ¼: means that

both sides of the equation are distributed in the same

way. The variable gðl=LÞ has important properties: (1) it

is statistically independent of aWðL;~xÞ and (2) it is an

infinitely divisible process: given three scales L > l0 > l,
it satisfies gl;L¼

:
gl;l0gl0;L. Besides, because of scale

invariance, its distribution only depends on the ratio of

scales l
L. This defines a multiplicative process [35]. Using

the relation (4) one can predict the exponents sp, [44,45],
which are independent of the particular wavelet chosen

[46]. This is because the gðl=LÞ’s characterize an

invariant property of images. It is clear from Eq. (4) that

a linear filter cannot give a factorial code, the indepen-

dent variables are the g’s and some sort of non-linear

operation is needed to extract them. In Section 5 we say

more about how this can be done.
4. Optimal wavelet basis

4.1. Multi-feature wavelet basis

Before implementing the optimization criterion of

independent resolution levels we need to introduce a few
technical aspects on wavelets. In a wavelet expansion the

signal is represented in successive levels of detail, from

the coarsest (larger scales) to the finest details (smaller
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scales), which are obtained by resizing and translating
some functions (wavelets) f/rg

n�1
r¼0 . Apart from position

and size each wavelet is characterized by other proper-

ties which here have been represented generically by the

index r. Each /r is a feature detector of some type. This

is mathematically necessary because, as we will see later,

an extra dimension is required to achieve a complete

description of the image ensemble. Vision serves as a

guide to select the nature of the extra dimension: simple
cells exhibit orientation selectivity [20] and it is then

natural to identify r with an angular variable. However,

for the time being it is not necessary to assign any par-

ticular meaning to it.

We have already seen that natural images have the

properties of translational and scale invariances. We

would like to implement a representation of images such

that both invariances were already contained in it. One
advantage of this is that the coding cost would be re-

duced, and only the particularities of the image would

need to be encoded. Although no linear representation

can possess both invariances, it is possible to build a

representation which is translational invariant for some

discretized translations, and scale invariant for some

discretized changes in scale [22]. The resulting expansion

belongs to the class of discrete wavelet expansions,
which have been extensively used in the context of image

processing and image compression [27].

The simplest way to discretize the scale is to consider

a dyadic wavelet expansion. It is called dyadic because

from one level of resolution to the next the scale is di-

vided by a factor two. The largest scale is fixed as one,

and then the jth scale is 2�j. Assuming that the disper-

sion of the wavelet is of the order of the scale, it is
possible to distinguish up to 2j different blocks along

each spatial dimension (22j blocks in our case, as images

are bi-dimensional). A dyadic wavelet expansion for cð~xÞ
corresponds to the following mathematical expression:

cð~xÞ ¼
Xn�1

r¼0

X1
j¼0

X
~k2ðZ

2j Þ
2

arj~k/rj~kð~xÞ ð5Þ

where the arj~k’s are the wavelet coefficients, the wavelets

are normalized as
R
d~x/2

r ð~xÞ ¼ 1 and

/rj~kð~xÞ � /rð2j~x�~kÞ ð6Þ

Not every collection of functions f/rg can be used to

represent arbitrary signals cð~xÞ, but they should meet

some conditions to reach a compromise between

localization and detail detection (i.e., the space and

frequency dispersions are kept small enough. See [13]

for technical details). For some particular wavelet

families f/rg, there exists an associated dual family
f~/rg expanding a dyadic wavelet basis f~/rj~kg such that

the coefficients arj~k can be retrieved by simple wavelet

projection on ~/rj~k, namely:
arj~k ¼ 22j
Z

d~xcð~xÞ~/rj~kð~xÞ ð7Þ

Eq. (4) now reads

arj~k¼
:
grj~kar;j�1;

~k
2

� � ð8Þ

This relation has a similar interpretation to Eq. (4): the

variables grj~k are independent from the a
r;j�1;½

~k
2
�
and, gi-

ven that for a dyadic expansion the ratio l=L is fixed,

they have the same distribution for all feature types r,
resolution levels j and spatial locations ~k.

4.2. Optimality: independence of the resolution levels

In spite of the many virtues of wavelets not every

wavelet can yield an efficient code. We will make use of a

particular, optimal wavelet to construct an efficient

code. Let us remark that the wavelet expansion in (5) is

able to implement scale and translational invariances,

but not multiscaling. Multiscaling will impose additional

constraints (in this case, over the wavelet coefficients)

leading to a more efficient coding, in terms of indepen-
dent levels of resolution, as we will see.

In [48] we addressed the question of whether the

multiplicative process also holds point-by-point that is,

whether the grj~k’s computed from

grj~k ¼ arj~k=ar;j�1;
~k
2

� � ð9Þ

still define statistically independent variables at different

scales. The answer is that this equality does not hold for
arbitrary wavelets. But now the optimization criteria––

the representation should minimize the redundancy

across scales––can be applied to determine an optimal

wavelet for which it is fulfilled. To be more precise, this

means that one should search for a wavelet such that Eq.

(9) is true. If one succeeds to find such a wavelet then the

efficient image representation will be given not by the

wavelet coefficients themselves but by the variables grj~k.
The requirement that Eq. (9) define a multiplicative

process for any image, feature type, resolution and

location is very strong. In fact, it completely determines

a unique wavelet W, the optimal average wavelet [48],

which is a linear combination of the wavelets f/rg
n�1

r¼0 in

the family.

4.3. The optimal wavelet

Multiscaling is assumed to occur in the form just

described, for each feature detector /r. Let us also

consider a weighted average of these detectors,

W ¼
Xn�1

r¼0

pr/r ð10Þ

for some unknown weights pr such that
Pn�1

r¼0 p
2
r ¼ 1.

Given the contrasts of the N images in the dataset,
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fcið~xÞgNi¼1, the optimal average wavelet W can be ob-
tained from the average contrast Cð~xÞ ¼ 1

N

P
i cið~xÞ

according to the following expression (both the average

contrast and the wavelet are represented in Fourier

space):

bWð~f Þ ¼ bCð~f Þ � gð~f ÞbC ~f
2

 !
ð11Þ

up to a normalization constant. Here gð~f Þ is a purely

geometrical factor. 1 For details of its derivation see

[48].

Eq. (11) gives us a very simple procedure to obtain

the average wavelet from the image dataset: it is given by
the difference between the average contrast at two con-

secutive scales. Although we do not consider here the

learning problem (the network and learning algorithm

that learns the wavelet from visual stimuli), we notice

that a remarkable feature of this expression is that W can

be learnt online: because of the linearity of the equation,

each time that a new image arrives its contribution

(again, given by the difference of the contrast of this new
image at two consecutive scales) is just added to what

has already been learnt throughout all the past experi-

ence.

As expected, the wavelet depends on the particular

visual environment considered. We have mainly studied

van Hateren’s dataset [53]. The function obtained from

a 1000-image training set is shown in Fig. 2. It is an edge

detector and it has appeared as a consequence of the
multiscaling properties of natural scenes [48].

The function W generates the wavelet basis for the

case of a single detector (n ¼ 1). One can wonder if this

is enough to describe natural images. It is not, as it was

discussed in great detail in [51]. A representation with

just one orientation does not allow for a good recon-

struction of the image (see Fig. 5). As soon as we assume

that more orientations are necessary we have to face the
problem of how to obtain the optimal wavelets /r from

the optimal weighted average W. A possible way to do it

is described in the next subsection.

4.4. Multiple orientations

In order to obtain the wavelet family f/rg it is nec-

essary to make further assumptions. The simplest guess
is that they are rotated versions of the same detector, and

that they are all mutually orthogonal. In [51] the theo-

retical derivation to extract /r from W is presented.

There exist in general several possible choices for the first

feature detector /0 (from which all the others are ob-

tained by simple rotation); the simplest is the one which
1 Its complete expression is gð~f Þ ¼ Kð~f Þ
8Kð~f2Þ

, where Kð~f Þ¼ ð1� e�2pif1 Þ�
ð1� e�2pif2 Þ.
resembles the most to W. As an experimental observation
/0 ¼ W with a great accuracy, up to n ¼ 8 different ori-

entations. So, for this image ensemble, it is possible to

take the average detector W as the general feature

detector; we will make use of this in the following.

Before discussing the evidence in favor of the

assumptions made to obtain the optimal detector (see

Section 6) we now present the main implications of the

results.
5. Implications of the efficient representation

Scale invariance leads to a non-linear code: Scale

invariance gives a non-linear efficient representation.

Non-linearities of simple cells are indeed well-known

(see e.g. [8,24]) The efficient code has a first, linear stage
where the orientation is detected. As we have seen, this

linear response is not an efficient code. It corresponds to

the wavelet coefficients and these are very correlated

through scales. The prediction however is that the ratios

of coefficients at different scales are independent [44].

This is a non-linear operation.

The non-linearity as divisive normalization: There is

still much freedom left about how to implement the non-
linearity. If the ratio between coefficients at different

scales are independent, any function of them is also

independent. In particular this can accommodate divisive

normalization, as proposed in [8,19]. Let us notice that

also in this more phenomenological work a first linear

stage where the feature (orientation) is detected is fol-

lowed by the non-linearity. The observation that ratios of

wavelet coefficients decrease statistical dependencies was
also noticed empirically in [55] and its connection with

divisive normalization was studied in [56].

Another possible way to deal with the non-linearity is

to consider a log-transfer after the linear computation;

this alternative would be in agreement with the loga-

rithmic fit of simple cell responses reported in [24].

Spatial correlations: Our criterion of efficiency has

been independence of the representations at different
scales. This does not implies the absence of dependencies

between cells coding features at the same scale. These

dependencies are however of very short range [48,49]. A

systematic study of these correlations (which indeed still

carry a lot of information about the image) has not been

done yet, here we just mention that these correlations

may be processed either before the non-linearity or after

it. The elimination of this type of redundancy could give
rise to, e.g., bar detectors.

Network implementation: The previous discussions

suggest a network architecture that implements the way

the independent representation could be extracted [49].

A very sketchy architecture is shown in Fig. 3.

Relation between multiscaling and the power spectrum:

Given the scale invariance of images their power spec-



Fig. 3. A possible neural architecture to extract independent features as

predicted by the scale invariant properties of images. The image is

captured on the photoreceptor layer and it is then projected forward by

the optimal wavelets to produce ‘‘layer a’’ cells. However the activity

on the second layer is not necessarily given by the linear transforma-

tion since inhibitory interactions between these cells can implement the

non-linearity, e.g., in the form of divisive normalization [8,19]. Alter-

natively, a logarithmic transfer could give independent responses of

cells coding for features at different scales on a third layer. Only this

latter case is shown here.

1000

10000

100000

1e+06

1 10 100 1000

Fig. 4. Orientational average of j bWjð~f Þ in log–log scale and best fit with

a k=f curve, k constant.

Fig. 2. Left: gray level representation of the optimal wavelet W. Middle: horizontal cut. Right: vertical cut.
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trum behaves as in Eq. (1). Are the multiscaling prop-

erties present in the higher order statistics compatible

with the well-known power law behavior of the second

order statistics? To answer this question we first notice

that using the wavelet representation of the contrast, Eq.

(5), to compute the power spectrum we have (for a

translationally invariant ensemble)

Sð~f Þ ¼ hjĉj2ð~f Þi ¼
X1
j¼0

2�2jhg2ij
Xn�1

r¼0

p2r j/̂rj
2ð2�j~f Þ ð12Þ

We now compute the modulus of the Fourier transform

of the optimal wavelet, j bWð~f Þj. Its average over all ori-

entations is represented in Fig. 4 together with a fit to a

1=f law. The agreement of the fit is very good.

It is immediate from Eq. (12) that a wavelet W such

that j bWjð~f Þ � f �1 leads to the correct power spectrum
(the correction exponent d and the weak anisotropy

come out from the uneven weightings pr for the different
orientations in the orientational wavelet expansion).
The power law behavior of the optimal wavelet is

extremely important for the compatibility between sec-

ond order scaling and multiscaling. If j bWj is different

from a power law then from Eq. (12) it follows that

Sð2~f Þ � 2�2hg2iSð~f Þ ð13Þ

According to [46], hg2i ¼ 2�ð2þs2Þ and �1 < s2 < 0. We

thus obtain Sð2~f Þ � 2�4�s2Sð~f Þ and in general

Sða~f Þ � a�4�s2Sð~f Þ, that is, Sð~f Þ � f �4�s2 . Hence any

wavelet such that j bWj 6¼ f �1 would give rise to an

incorrect exponent for the power spectrum.

Representation of images in the optimal basis: Fig. 5

shows the representation with n ¼ 1, 2 and 3 of one
particular image. The optimal number of orientations

seems to be n ¼ 2, although larger number of orienta-

tions could be used to introduce redundancy and sta-

bility in the presence of noise.

Image reconstruction: The scaling property for j bWj
also allows to establish a link between the dyadic rep-

resentation and the reconstruction algorithm proposed

in [50]. In that paper, the authors show that images can
be reconstructed from the values of contrast changes

over the borders (which are identified with the most

singular manifold in the multifractal structure [46]). The



Fig. 5.
P

rj~k arj~kWrj~kð~xÞ for j ¼ 0 (top), j6 2, j6 6 and j6 8 (bottom) for imk00640.imc (from van Hateren’s dataset) with n ¼ 1 (left), 2 (middle) and 3

(right) orientations.
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reconstruction formula is essentially a diffusion of the
values of the contrast along the edges according to a

kernel which behaves as 1=f in Fourier space. As it can

be seen in Fig. 5, the wavelet expansion works much in

the same way: each resized, translated wavelet appearing

in the sum in Eq. (5) is equivalent to a light-spreading

edge element of that size and location, weighted with the

appropriated coefficient arj~k.
6. Consistency requirements

Several assumptions have been made, first to obtain

the optimal average wavelet and after to extract the

oriented edge detectors. Here we summarize the
numerical evidence assessing the consistency of the
model for the considered image ensemble.

The first property that should be checked is the

orthogonality between feature detectors. In fact, a

stronger statement can be proved: for some n’s, the

wavelet basis is self-dual (~/rj~k ¼ /rj~k), that is, it is an

orthogonal wavelet basis. Then the wavelet coefficients

arj~k can be obtained with a good approximation just

projecting on /rj~k. As an empirical measure of how
accurately this property holds, consider the average

orthogonality error defined as

�nj �
X
~k

Z
d~x/0ð~xÞRn/0j~kð~xÞ


 ����� ���� ð14Þ



Table 1

Average orthogonality errors for n ¼ 1, 2 and 3

j 0 1 2 3 4 5 6 7

�1j 1.000 0.106 0.023 0.006 0.004 0.003 0.003 0.002

�2j 0.001 0.013 0.005 0.001 0.001 0.000 0.000 0.000

�3j 0.085 0.028 0.037 0.025 0.013 0.007 0.003 0.002
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where Rn is the rotation operator of angle p=n. 2 The

values of the average error for n ¼ 1, 2 and 3 are given in

Table 1. 3

The average orthogonality error gives thus a measure

of the error committed by assuming that the wavelet

basis is orthogonal. They should be zero for all n and j,
except for n ¼ 1 and j ¼ 0.

For n ¼ 1 (first row in the Table) it provides a mea-
sure of the self-duality of the wavelet. The result is good

except for j ¼ 1, where the error is about 10%. We think

that this value is mainly due to finite size effects in the

image and finite sampling.

We observe that for n ¼ 2 orientations the wavelets

are close to orthogonality; however, for n ¼ 3 there is a

small coupling for several scales j. Note however that it

is just orthogonality among features which is essential in
the derivation (i.e. �n0 ¼ 0 for n > 1), the orthogonality

of the whole wavelet basis being an interesting bonus. It

is thus assumed that orthogonality holds for n ¼ 2 and

that it is just an approximation for n ¼ 3. In order to

obtain the wavelet coefficients arj~k in the experiments we

assume ~/rj~k ¼ /rj~k and apply Eq. (7).

The second hypothesis to be tested is that of inde-

pendence among scales. This was studied in [48,49]. Let
us notice that the hypothesis only requires independence

between grj~k and a
r;j�1;½

~k
2
�
at every scale j, location ~k and

orientation n. In [51] this independence was checked by

measuring the mutual information [10] between grj~k and
a
r;j�1;½

~k
2
�
for a subensemble of 100 images, assuming

translational invariance to increase sampling. The cal-

culated mutual informations were smaller than 10�3 bits

(compared to a maximum of 11 bits) at all scales j and
n ¼ 2.
7. Conclusions

In this paper we have first reviewed the concept of

optimality and its connection with sensory coding.

Optimality can be described according to different cri-
2 The wavelet experimentally obtained is antisymmetric, so it must

be rotated an angle of p=n instead of 2p=n.
3 In the three cases, all the possible overlaps among different scales

and orientations are equivalent to those provided by �1j or �nj due to

the invariance of the inner product under the action of the rotation

operator Rn; for that reason we concentrate on that cases.
teria, among which the main two are redundancy

reduction and infomax. We have seen that, under

appropriate conditions, to reduce the redundancy and to

maximize the information transfer are equivalent, lead-

ing to the same concept of optimality. Then, we have

seen that optimality can only be obtained when the

regularities of the stimuli are well-understood and used

to reduce the redundancies in the code.
We have discussed the known statistical regularities

of natural images as sensory stimuli. We have seen

that there are important statistical symmetries in nat-

ural images: translational invariance, scale invariance

and multiscaling. Translational invariance means

that there is no preferred point in the scenes. Scale

invariance means that objects can appear with any

apparent size. Multiscaling means that objects are
hierarchically structured in different parts (edges, tex-

tures) which are scale-invariant but behave differently

under changes of scale. Each one carries a different

type of redundancy. We have discussed the different

approaches proposed to deal with some of those

symmetries. The main part of the paper deals with

multiscaling treated within the wavelet approach,

which is the only one which takes the three symmetries
into account.

The multiscaling wavelet approach is based on a

wavelet expansion. Wavelet expansions allow us to

represent signals as the combination of acitivities

(wavelet coefficients) extracted using filters (wavelets)

focussing at different scales and at different positions.

Wavelet representations of natural stimuli are optimal

for implementing both translational and scale invari-
ances, but not multiscaling. In the multiscaling wavelet

approach, there exists an optimal wavelet implementing

multiscaling and leading to a minimum redundancy

representation. The code is produced by decomposing

any image in independent levels of resolution. In con-

trast with standard wavelet representations, the emer-

gence of an object or structure as the scale becomes finer

is coded just once, at the scale of first detection. The
effect of increased activity in the wavelet coefficients is

removed from the finer scales.

The optimal wavelet has remarkable properties: edge

detection in a finite number of orientations, indepen-

dency of the power spectrum, extraction of independent

levels of resolution, online learning. Besides, the code is

sparse (without explicitly requiring that property) be-

cause edges are sparse in images. All these properties are
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observed in the first levels of visual processing. The
optimal wavelet is thus a good candidate for modelling

visual information processing in the brain.

The multiscaling wavelet approach is not, however,

the ultimate model for neural visual processing. The

multiscaling wavelet code has still some redundancies

(among orientations and spatial locations) which could

be removed in order to diminish redundancy and im-

prove the code. An opposite concern is that of over-
complete representations. Once a complete, optimal

code were accessible by means of these techniques,

overcomplete representations could be explored, which

would be more likely to describe real biological cod-

ing––in particular some redundancy is required to pro-

cess information in the presence of noise [1,14] and to

insure stability of the representation against translations

of the image [42].
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