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Spike trains from cortical neurons show a high degree of irregularity,
with coefficients of variation (CV) of their interspike interval (ISI) dis-
tribution close to or higher than one. It has been suggested that this
irregularity might be a reflection of a particular dynamical state of the lo-
cal cortical circuit in which excitation and inhibition balance each other.
In this “balanced” state, the mean current to the neurons is below thresh-
old, and firing is driven by current fluctuations, resulting in irregular
Poisson-like spike trains. Recent data show that the degree of irregular-
ity in neuronal spike trains recorded during the delay period of working
memory experiments is the same for both low-activity states of a few Hz
and for elevated, persistent activity states of a few tens of Hz. Since the
difference between these persistent activity states cannot be due to exter-
nal factors coming from sensory inputs, this suggests that the underlying
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network dynamics might support coexisting balanced states at different
firing rates. We use mean field techniques to study the possible existence
of multiple balanced steady states in recurrent networks of current-based
leaky integrate-and-fire (LIF) neurons. To assess the degree of balance of
a steady state, we extend existing mean-field theories so that not only the
firing rate, but also the coefficient of variation of the interspike interval
distribution of the neurons, are determined self-consistently. Depending
on the connectivity parameters of the network, we find bistable solutions
of different types. If the local recurrent connectivity is mainly excitatory,
the two stable steady states differ mainly in the mean current to the neu-
rons. In this case, the mean drive in the elevated persistent activity state
is suprathreshold and typically characterized by low spiking irregular-
ity. If the local recurrent excitatory and inhibitory drives are both large
and nearly balanced, or even dominated by inhibition, two stable states
coexist, both with subthreshold current drive. In this case, the spiking
variability in both the resting state and the mnemonic persistent state is
large, but the balance condition implies parameter fine-tuning. Since the
degree of required fine-tuning increases with network size and, on the
other hand, the size of the fluctuations in the afferent current to the cells
increases for small networks, overall we find that fluctuation-driven per-
sistent activity in the very simplified type of models we analyze is not a
robust phenomenon. Possible implications of considering more realistic
models are discussed.

1 Introduction

The spike trains of cortical neurons recorded in vivo are irregular and con-
sistent, to a first approximation, to a Poisson process, possessing a roughly
exponential interspike interval (ISI) distribution (except at very short in-
tervals) and a coefficient variation (CV) of the ISI close to one (Softky &
Koch, 1993). The possible implications of this fact on the basic principles of
cortical organization have been the motivation for a large number of studies
during the past 10 years (Softky & Koch, 1993; Shadlen & Newsome, 1994,
1998; Tsodyks & Sejnowski, 1995; van Vreeswijk & Sompolinsky, 1996, 1998;
Zador & Stevens, 1998; Harsch & Robinson, 2000). An important idea that
was analyzed by some of these studies was that a way out of the apparent
inconsistency between the cortical neuron working as an integrator over
the timescale of a relatively long time constant of the order of 10 to 20 ms of
a very large number of inputs, and its irregular spiking, was to have similar
amounts of excitatory and inhibitory drive. In this way, the mean drive to
the cell was subthreshold, and spikes were the result of fluctuations, which
occur irregularly, thus leading to a high CV (Gerstein & Mandelbrot, 1964).
Although the implications of this result were first studied in a feedforward
architecture (Shadlen & Newsome, 1994), it was soon discovered that a state
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in which excitation and inhibition balance each other, resulting in irregular
spiking, was a robust dynamical attractor in recurrent networks (Tsodyks
& Sejnowski, 1995; van Vreeswijk & Sompolinsky, 1996, 1998); that is, under
very general conditions, a recurrent network settles down into a state of
this sort.

Although the original studies characterizing quantitatively the degree
of spiking irregularity in the cortex were done using data from sensory cor-
tices, it has since been shown that neurons in higher-order associative areas
like the prefrontal cortex (PFC) also spike irregularly (Shinomoto, Sakai,
& Funahashi, 1999; Compte et al., 2003) (see Figure 1). This is interesting
because it is well known that cells in the PFC (Fuster & Alexander, 1971;
Funahashi, Bruce, & Goldman-Rakic, 1989; Miller, Erickson, & Desimone,
1996; Romo, Brody, Hernández, & Lemus, 1999), as well as those in other
associative cortices like the inferotemporal (Miyashita & Chang, 1988) or
posterior parietal cortex (Gnadt & Andersen, 1988; Chafee & Goldman-
Rakic, 1998), show activity patterns that are selective to stimuli no longer
present to the animal and are thus being held in working memory. The
activity of these neurons seems to be able to switch, on presentation of an
appropriate brief, transient input, from a basal spontaneous activity level
to a higher activity state. When the dimensionality of the stimulus to be
remembered is low (e.g., the position of an LED on a computer screen or
the frequency of a vibrotactile simulus), the mnemonic activity during the
delay period when the stimulus is absent seems to be graded (Funahashi
et al., 1989; Romo et al., 1999), whereas when the dimensionality of the
stimulus is high (e.g., a complex image), the single neurons seem to choose
from a small number of discrete activity states (Miyashita & Chang, 1988;
Miller et al., 1996). This last coding scheme is referred to as object working
memory.

Since there is no explicit sensory input present during the delay period in
a working memory task, the neuronal activity must be a result of the dynam-
ics of the relevant neural circuit. There is a long tradition of modeling studies
that have described delay-period activity as a reflection of dynamical at-
tractors in multistable (usually bistable) networks presumed to represent
the local cortical environment of the neurons recorded in the neurophys-
iological experiments (Hopfield, 1982; Amit & Tsodyks, 1991; Ben-Yishai,
Lev Bar-Or, & Sompolinsky, 1995; Amit & Brunel, 1997b; Brunel, 2000a;
Compte, Brunel, Goldman-Rakic, & Wang, 2000; Brunel & Wang, 2001;
Hansel & Mato, 2001; Cai, Tao, Shelly, & McLaughlin, 2004). Originally
inspired by models and techniques from the statistical mechanics of dis-
ordered systems, network models of persistent activity have progressively
become more faithful to the biological circuits that they seek to describe. The
landmark study (Amit & Brunel, 1997b) provided an extended meanfield
description of the activity of a recurrent network of spiking current-based
leaky integrate-and-fire neurons (LIF). One of its main achievements was
to use the theory of diffusion processes to provide an intuitive, compact
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Figure 1: CV of the ISI of neurons in monkey prefrontal cortex during a spatial
working memory task. The monkey made saccades to remembered locations
on a computer screen after a delay period of a few seconds. On each trial, a
dot of light (cue stimulus) was briefly shown in one of eight to-be-remembered
locations, equidistant from the fixation point but at different angles. After the
delay period, starting with the disappearance of the cue stimulus and terminat-
ing with the disappearance of the fixation point, the monkey made a saccade
to the remembered location. Top and bottom rows correspond, respectively, to
the CV and CV2 (CV calculated using only consecutive ISIs to try to compensate
from possible slow nonstationarities in the neurons instantaneous frequency)
computed from spike trains of prefrontal cortical neurons recorded from mon-
keys performing an oculomotor spatial working memory task. Results shown
correspond to analysis of the activity during the delay period of the task. The
spike trains are irregular (CV ∼ 1), and to a similar extent, both when the data
correspond to trials in which the preferred (PR; middle column) positional cue
for the cell was held in working memory (higher firing rate during the delay
period) and when it corresponds to stimuli with the nonpreferred (NP; right
column) positional cue for the particular neuron (lower firing rate during the
delay period). See Compte et al. (2003) for details. Adapted with permission
from Compte et al. (2003).

description of the spontaneous, low-rate, basal activity state of cortical cells
in terms of self-consistency equations that included information about both
the mean and the fluctuations of the afferent current to the cell. The theory
proposed was both simple and accurate, and matched well the properties
of simulated LIF networks.

The spontaneous activity state in Amit and Brunel (1997b) is effectively
the balanced state described above, in which the recurrent connectivity is
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dominated by inhibition and firing is due to the occurrence of positive fluc-
tuations in the drive to the neurons. However, in Amit and Brunel (1997b),
this same model was used to describe the coexistence of the spontaneous
activity state with a persistent activity state with a physiologically plausi-
ble firing rate that would correspond to the spiking observed during the
delay period in object working memory tasks, such as seen in, for example,
Miyashita and Chang (1988).

Although the model, with its large number of subsequent improvements,
has been successful in providing a fairly accurate description of simulated
spiking networks, no effort has yet been made to study systematically the
relationship between multistability and the irregularity of the spike trains,
especially in the elevated activity state. As we will show below, the qual-
itative organization of the connectivity in the recurrent network not only
determines the existence of a fluctuation-driven balanced spontaneous ac-
tivity state in the network, but also the existence of bistability in the network,
and whether the elevated activity states are fluctuation driven.

In order to perform a systematic analysis of the types of persistent ac-
tivity that can be obtained in a network of current-based LIF neurons,
two steps are important. First, we believe that the scaling of the synaptic
connections with the number of afferent synapses per neuron should be
made explicit. This approach was taken in the studies of the balanced state
(Tsodyks & Sejnowski, 1995; van Vreeswijk & Sompolinsky, 1996), but is
not present in the Amit and Brunel (1997b) framework. As we shall see,
when the scaling is made explicit and the network is studied in the limit of
a large number of connections per cell, the difference between the behavior
of alternative circuit organizations (or architectures) becomes qualitative.
Second, it would be desirable to be able to check for the spike train irregu-
larity within the theory. In Amit and Brunel (1997b), spiking was assumed
to be Poisson and, hence, to have a CV equal to 1. Poisson spike trains
are completely characterized by a single number, the instantaneous fir-
ing probability, so there is nothing more to say about the spike train once
its firing rate has been given. A general self-consistent description of the
higher-order moments of spiking in a recurrent network of LIF neurons is
extremely difficult, as the calculation of the moments of the ISI distribution
becomes prohibitively complicated when the input current to a particu-
lar cell contains temporal correlations (although see Moreno-Bote & Parga,
2006). However, based on our study of the input-output properties of the
LIF neuron under the influence of correlated inputs (Moreno, de la Rocha,
Renart, & Parga, 2002), we have constructed a self-consistent description
for the first two moments of the current to the neurons in the network,
which relaxes the Poisson assumption and which we expect to be valid if
the temporal correlations in the spike trains in the network are sufficiently
short.

Some of the results presented here have already been published in ab-
stract form.
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2 Methods

We consider a network of current-based leaky integrate-and-fire neurons.
The voltage difference across each neuron’s membrane evolves in time
according to the following equation,

dV(t)
dt

= − V(t)
τm

+ I (t),

with voltages being measured relative to the leak potential of the neu-
ron. When the depolarization reaches a threshold voltage that we set at
Vth = 20 mV, a spike is emited, and the voltage is clamped at a reset po-
tential Vr = 10 mV during a refractory period τref = 2 ms, after which the
voltage continues to integrate the input current. The membrane time con-
stant is τm = 10 ms. When the neuron is inserted in a network, I (t) repre-
sents the total synaptic current, which is assumed to be a linear sum of the
contributions from each individual presynaptic cell.

We consider the simplest description of the synaptic interaction between
the pre- and postsynaptic neurons, according to which each presynaptic
action potential provokes an instantaneous “kick” in the depolarization of
the postsynaptic cell. The network is composed of NE excitatory and NI

inhibitory cells randomly connected so that each cell receives CE excitatory
and CI inhibitory contacts, each with an efficacy (“kick” size) J E j and J Ik ,
respectively ( j = 1, . . . , CE ; k = 1, . . . , CI ). The total afferent current into
the cell can be represented as

I (t) =
CE∑
j=1

J E j s j (t) −
CI∑

k=1

J Ik sk(t),

where s j(k)(t) represents the spike train from the j th excitatory (kth in-
hibitory) neuron. Since according to this description, the effect of a presy-
naptic spike on the voltage of the postsynaptic neuron is instantaneous, s(t)
is a collection of Dirac delta functions, that is, s(t) ≡ ∑

j δ(t − tj ), where tj

are the spike times.

2.1 Mean-Field Description. Spike trains in the model are stochas-
tic, with an instantaneous firing rate (i.e., a probability of measuring
a spike in (t, t + dt) per unit time) denoted by ν(t) = ν. The second-
order statistics of the process is characterized by its connected two-point
correlation function C(t, t′), giving the joint probability density (above
chance) that two spikes happen at (t, t + dt) and at (t′, t′ + dt), that is,
C(t, t′) ≡ 〈s(t)s(t′)〉 − 〈s(t)〉〈s(t′)〉. Stochastic spiking in network models is
usually assumed to follow Poisson statistics, which is both a fairly good
approximation to what is commonly observed experimentally (see, e.g.,
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Softky & Koch, 1993; Compte et al., 2003) and convenient technically since
Poisson spike trains lack any temporal correlations. For Poisson spike trains,
C(t, t′) = νδ(t − t′), where ν is the instantaneous firing probability.

We have previously analyzed the effect of temporal correlations in the
afferents to a LIF neuron on its firing rate (Moreno et al., 2002). Temporal
correlations measured in vivo are often well fitted by an exponential (Bair,
Zohary, & Newsome, 2001). We considered exponential correlations of the
form

C(t, t′) = ν

[
δ(t′ − t) + (F∞ − 1)

e− |t′−t|
τc

2τc

]
, (2.1)

where F∞ is the Fano factor of the spike train for infinitely long time win-
dows. The Fano factor in a window of length T is defined as the ratio
between the variance and the mean of the spike count on the window. It is
illustrative to calculate it for our process,

FT ≡
σ 2

N(T)

〈N(T)〉 ,

where N(T) is the (stochastic) spike count in a window of length T ,

N(T) =
∫ T

0
dt s(t),

so that 〈N(T)〉 = νT , and the spike count variance is given by

σ 2
N(T) ≡

∫ T

0

∫ T

0
dt dt′ C(t, t′) = νT + ν(F∞ − 1)

[
T − τc

(
1 − e− T

τc
)]

.

When the time window is long compared to the correlation time constant,
that is, T 	 τc , then σ 2

N(T) ∝ F∞νT ; hence, our use of the factor F∞ in the
definition of the correlation function. An interesting point to note is that
for time windows that are long compared to the correlation time constant,
the variance of the spike count is linear in time, which is a signature of
independence across time, that is, independent variances add up (for the
Poisson process, (σ 2

N(T))Poisson = νT , so that (FT )Poisson = 1). If the charac-
teristic time of the postsynaptic cell integrating this stochastic current (its
membrane time constant) is very long compared with τc , we expect that the
main effect of the deviation from Poisson of the input spike trains will be on
the amplitude of the current variance, with the parameter τc playing only
a marginal role, as it does not appear in σ 2

N(T) when T 	 τc . As we show
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below, a rigorous analysis of the effect of correlations on the mean firing
rate of a LIF neuron confirms this intuitive picture.

The postsynaptic cell receives many inputs. Recall that the total current
is given (we consider for simplicity for this discussion that the cell receives
C inputs from a single, large, homogeneous population composed of N
neurons) by I (t) = J

∑C
j s j (t). Thus, the mean and correlation function of

the total afferent current to a given cell are

〈I (t)〉 = C J ν

CI (t, t′) = 〈I (t′)I (t)〉 − 〈I (t)〉〈I (t′)〉
= J 2

∑
i j

[〈si (t)s j (t′)〉 − 〈si (t)〉〈s j (t′)〉]

= C J 2C(t, t′) + C(C − 1)J 2Ccc(t, t′),

where C(t, t′) is the (auto)correlation function in equation 2.1 and Ccc(t, t′) is
the cross-correlogram between any two given cells of the pool of presynaptic
inputs (which we have assumed to be the same for all pairs). We restrict
our analysis to very sparse random networks—networks with C � N—so
that the fraction of synaptic inputs shared by any two given neurons can
be assumed to be negligible. In this case, the cross-correlation between
the spike trains of the two cells Ccc(t,′ t) will be zero. This approximation
simplifies the analysis of the network behavior significantly and allows for
a self-consistent solution for the network’s steady states. Thus, the temporal
structure of the total current to the cell is described by

CI (t, t′) = σ 2
0

[
δ(t − t′) + α

2τc
e− |t−t′ |

τc

]
(2.2)

with

σ 2
0 = C J 2ν and α = F∞ − 1.

We have previously calculated the output firing rate of an LIF neu-
ron subject to an exponentially correlated input (Moreno et al., 2002). The
calculation is done using the diffusion approximation (Ricciardi, 1977) in
which the discontinuous voltage trajectories are approximated by those ob-
tained from an equivalent diffusion process. The diffusion approximation
is expected to give accurate results when the overall rate of the input pro-
cess is high, with the amplitude of each individual event being very small
(Ricciardi, 1977).

For small but finite τc , the analytic calculation of the firing rate of the cell
can be done only when the deviation of the input current from a white noise
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process is small, that is, it has to be done assuming that k ≡ √
τc/τm � 1 and

that α � 1. More specifically, we found that if k = 0, then the firing rate can
be calculated for arbitrary values of α, but if k is small but finite, then an
expression can be found for the case when both k and α are small (see
Moreno et al., 2002, for details).

If k = 0, then the result one obtains is that the firing rate of the neuron
is given by the same expression that one finds for the case of a white noise
input, but with an effective variance that takes into account the change in
amplitude of the fluctuations due to the non-Poisson nature of the inputs.
The effective variance is equal to

σ 2
eff = σ 2

0 (1 + α) = C J 2νF∞,

which is exactly the slope of the linear increase with the size of the time
window T of the variance in the spike count NI (T) of the total input current.
This result can be understood in terms of the Fano factor calculation outlined
above. Assuming k = 0 is equivalent to assuming an infinitely long time
window for the calculation of the Fano factor, and in those conditions we
also saw that the only effect of the temporal correlations is to renormalize
the variance of the spike count with respect to the poisson case.

In order to set up a self-consistent scenario, we have to close the loop, by
calculating a measure of the variability of the postsynaptic cell and relating
it to the same property in the spike trains of its inputs. To do this, we note
that if the spike trains in the model can be described as renewal processes,
these processes have a property that relates their spike count variability and
their ISI variability,

F∞ = CV2,

if a point process is renewal (Cox, 1962). Renewal point processes are char-
acterized by having independent ISIs, which are not necessarily exponen-
tially distributed. Since we are assuming that the temporal correlations in
the spike trains are short anyway, and the firing rates of the cells in the
persistent activity states that we are interested in are not very high, then we
expect the renewal assumption to be appropriate. The final step is to make
sure that the result for the firing rate (the inverse of the mean ISI) in terms
of the effective variance also holds for higher moments of the postsynaptic
ISI, not only for the first, and this is indeed the case (Renart, 2000); that is,
the CV of the ISI when k = 0 is given by the same expression as when the
input is a white noise process, but with a renormalized variance equal to
σ 2

eff.
Thus, under the assumptions described above, there is a way of comput-

ing the output rate and CV of an LIF neuron solely in terms of the rate and
CV of its presynaptic inputs. In the steady states, both input and output
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firing rate and CV will be the same, and this provides a couple of equa-
tions that determine these quantities self-consistently. In the reminder of the
letter, we thus use the common expressions for the mean and CV of the first
passage time of the Ornstein-Uhlenbeck (OU) process,

ν−1 = τref + τm
√

π

∫ Vth−µV
σV

√
2

Vres−µV
σV

√
2

dx ex2
[1 + erf(x)] (2.3)

CV2 = 2πν2
∫ Vth−µV

σV
√

2

Vres−µV
σV

√
2

dx ex2
∫ x

−∞
dy ey2

[1 + erf(y)]2, (2.4)

where µV and σ 2
V are the mean and variance of the depolarization of the

postsynaptic cell (in the absence of threshold; Ricciardi, 1977). In a stationary
situation, they are related to the mean µ and variance σ 2 of the afferent
current to the cell by

µV = τmµ; σ 2
V = 1

2
τmσ 2.

Following the arguments above, the mean and (effective) variance of the
current to the cells are given by

µ = C J ν

σ 2 ≡ σ 2
eff = C J 2νCV2

for the mean and variance of the white noise input current. Finally, it is easy
to show that if the presynaptic afferents to the cell come from a set of dif-
ferent statistically homogeneous subpopulations, the previous expressions
generalize readily to

µi =
∑

j

Ci j J i jν j (2.5)

σ 2
i ≡ σ 2

ieff
=

∑
j

Ci j J 2
i jν j CV2

j (2.6)

as long as the timescales of the correlations in the spike trains of the neu-
rons in the different subpopulations are all of the same order. Inhibitory
subpopulations are characterized by negative connection strengths.

2.2 Dynamics. A detailed characterization of the dynamics of the activ-
ity of the network is beyond the scope of this work. Since our main interest
is the steady states of the network, we use a simple, effective dynamical



Bistability in Balanced Recurrent Networks 11

scheme that is consistent with the self-consistent equations that determine
the steady states. In particular, we use the subthreshold dynamics of the
first two moments of the depolarization in terms of the first two moments
of the current (Ricciardi, 1977; Gillespie, 1992):

dµV

dt
= −µV

τm
+ µ; dσ 2

V

dt
= − σ 2

V

τm/2
+ σ 2. (2.7)

In using these equations, our assumption is that the activity of the popula-
tion follows instantaneously the distribution of the depolarization. Thus, at
every point in time, we use expressions 2.5 and 2.6 for µ and σ appearing in
the right-hand side of equations 2.7, which depend on the rate ν(µV, σV) and
CV(µV, σV) as given in equations 2.3 and 2.4. The only dynamical variables
are therefore µV and σ 2

V (Amit & Brunel, 1997b; Mascaro & Amit, 1999).

2.3 Numerical Analysis of the Analytic Results. The phase plane anal-
ysis of the reduced network was done using both custom-made C++ code
and the program XPPaut. The integrals in equations 2.3 and 2.4 were calcu-
lated analytically for very large and very small values of the limits of inte-
gration (using asymptotic expressions for the error function; Abramowitz
& Stegun, 1970) and numerically for values of the integration limits of order
one. The corresponding C++ code was incorporated into XPPaut through
the use of dynamically linked libraries for phase plane analysis. Some of
the cusp diagrams were calculated without the use of XPPaut by the direct
approach of looking for values of the parameters at which the number of
fixed points changed abruptly.

2.4 Numerical Simulations. We simulated an identical network to the
one used in the mean-field description (see the captions of Figures 12 and
13 for parameters). In the simulation, on every time step dt = 50 µs, it is
checked which neurons in the network receive any spikes. The membrane
potential of cells that do not receive spikes is integrated analytically. The
membrane potential of cells that receive spikes is integrated analytically
within that dt, taking into account the synaptic postsynaptic potentials
(PSPs) but assuming that there is no threshold. Only at the end of the time
step is it checked whether the membrane potential is above threshold. If
this is the case, the neuron is said to have produced a spike. This proce-
dure effectively introduces a (very short but nonzero) synaptic integration
time constant. Emitted spikes are fed back into the network using a sys-
tem of queues to account for the synaptic delays (Mattia & Del Giudice,
2000).
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3 Results

3.1 Network Architecture and Scaling Considerations. We first study
the issue of how the architecture of the network determines the qualitative
nature of the steady-state solutions for the firing rate of the cells in the
network. In particular, we are interested in understanding under which
conditions there are multiple steady-state solutions (bistability or, in gen-
eral, multistability) in networks in which cells will fire with a high degree of
irregularity. We consider a network for object working memory composed
of a number of nonoverlapping subpopulations, or columns, defined by
selectivity with respect to a given external stimulus. Each subpopulation
contains both excitatory and inhibitory cells. The synaptic properties of
neurons within the same column are assumed to be statistically identical.
Thus, the column is, in our network, the minimal signaling unit at the av-
erage level, that is, all the neurons within a column behave identically on
average. As will be shown below, the type of bistability realizable for the
column depends critically on its size (more specifically, on the number of
connections that a given cell receives from within its own column). Different
architectures will thus be considered in which the total number of afferent
connections per cell C is constant (and large) but the number of columns in
the network varies, effectively varying the number of afferent connections
from a given column to a cell. A multicolumnar architecture of this sort is
inspired in the anatomical organization of the PFC, in which columnarly
organized putative excitatory cells and interneurons show similar response
profiles during working memory tasks (Rao, Williams, & Goldman-Rakic,
1999).

As noted in section 1, many of the properties of the network can be
inferred from a scaling analysis. In the limit in which the connectivity is
very sparse, so that correlations between the spike trains of different cells
can be neglected (see section 2), the relevant parameter is the number of
afferent connections per neuron C . We will investigate the behavior of
the network in the limit C → ∞ (the “extensive” limit) since, in this case,
the different scenarios become qualitatively different. Of course, physical
neurons receive a finite number of connections, but the rationale is that the
physical solution can be considered a small perturbation to the solution
found in the C = ∞ case, which is much easier to characterize. One should
keep in mind that even if C becomes very large, we still need to impose
the sparseness condition for our analysis to be valid, which implies that it
should always hold that N 	 C .

When considering current-based scenarios in the extensive limit, one is
forced to normalize the connection strengths (the size of the unitary PSPs,
which we denote generally by J ) by (some power of) the number of con-
nections per cell C , in order to keep the total afferent current within the
(presynaptic) dynamic range of the neuron (whose order of magnitude is
given by the distance between reset and threshold). As we show below,
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different scaling schemes of J with C lead to different relative magnitudes
of the mean and fluctuations of the afferent current into the cells in the
extensive limit, and this in turn determines the type of steady-state solu-
tions for the network. We thus proceed to analyze the expressions for the
mean and variance of the afferent current (see equations 2.5 and 2.6) under
different scaling assumptions.

We consider multicolumnar networks in which the C afferent connec-
tions to a given cell come from Nc different “columns” (each contributing
Cc connections, so that C = NcCc). Each column is composed of an excita-
tory and an inhibitory subpopulation. The multicolumnar structure of the
network is specified by the following scaling relationships,

Nc ≡ ncCα

Cc ≡ n−1
c C1−α,

with 0 ≤ α ≤ 1 and nc order one, that is, independent of C . The case α = 0
corresponds to a finite number nc of columns, each contributing a number of
connections of order C . The case α = 1 corresponds to an extensive number
of columns, each contributing a number of connections of order one—that
is, a fixed number as the total number of connections C grows.

Although connection strengths between the different subpopulations can
all be different, we assume that they can be classified into two types accord-
ing to their scaling with C : those between cells within the same column,
of strength Jw, and those between cells belonging to different columns, of
strength Jb (the scaling is assumed to be the same for excitatory and for
inhibitory connections). We define

Jw ≡ jwC−αw

Jb ≡ jbC−αb

where αw, αb > 0 and the j ’s are all order one.
In these conditions, the afferent current to the excitatory or inhibitory

cells (it does not matter which, for this analysis) from their own subpopu-
lation is characterized by

µin = Cc[J Ew
νEin − J IwνIin ]

= C1−α−αw [ jEw
νEin − jIwνIin ]n−1

c ≡ C1−α−αw fµin

σ 2
in = Cc[J 2

Ew
νEin CV2

Ein
+ J 2

IwνIin CV2
Iin

]

= C1−α−2αw [ j2
Ew

νEin CV2
Ein

+ j2
IwνIin CV2

Iin
]n−1

c ≡ C1−α−2αw fσin ,

where the f ’s are linear combinations of rates and CVs weighted by factors
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of order one. We proceed by assuming that all other columns are in the same
state νE,I out , CVE,I out , so that the current to the cells in the column under
focus from the rest of the network is characterized by

µout = (Nc − 1)Cc
[
J Eb νEout − J Ib νIout

]
= C1−αb

(
1 − n−1

c C−α
)[

jEb νEout − jIb νIout

] ≡ C1−αb
(
1 − n−1

c C−α
)

fµout

σ 2
out = (Nc − 1)Cc

[
J 2

Eb
νEout CV2

Eout
+ J 2

Ib
νIout CV2

Iout

]
= C1−2αb

(
1 − n−1

c C−α
)[

j2
Eb

νEout CV2
Eout

+ j2
Ib
νIout CV2

Iout

]
≡ C1−2αb

(
1 − n−1

c C−α
)

fσout .

In the extensive limit, the terms 1 − n−1
c C−α become equal to one if α > 0

and are of order one if α = 0, in which case they can be included as an extra
multiplicative factor in the f terms. We thus omit them from now on.

In addition to their recurrent inputs, cells receive a similar number of
external excitatory inputs as well, but since we are interested in the gener-
ation of irregularity by the network, we will assume this external drive to
be deterministic, that is, characterized by

µext = C Jextνext = C1−αext jextνext ≡ C1−αext fext,

with Jext = jextC−αext and αext > 0.
The scaling with C of the different components of the total afferent

current is thus given by

µin = C1−α−αw fµin σ 2
in = C1−α−2αw fσin

µout = C1−αb fµout σ 2
out = C1−2αb fσout

µext = C1−αext fext.

If α, αb, αw are such that the variances vanish as C → ∞, the corre-
sponding networks will consist of regularly spiking neurons. Since we are
interested in irregular spiking, we therefore look for solutions in which
σ 2

in, σ 2
out or both remain order one in the C → ∞ limit. There are several

ways to achieve this.

3.1.1 Scenario 1: Homogeneous Balanced Network. This case is associated
with the choice α = 0. In this case, the size of the columns is of the same
order as the size of the whole network (i.e., the number of columns, nc ,
is order one), in which case the in and out quantities become equivalent.
A finite variance is achieved by setting αw = αb = 1/2, that is, J ∝ 1/

√
C .

This scenario is equivalent to the network studied originally in Tsodyks and
Sejnowski (1995) and van Vreeswijk and Sompolinsky (1996, 1998). In such
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a network, the mean input from the recurrent network grows as the square
root of the number of inputs,

µin + µout =
√

C( fµin + fµout ).

This quantity can be positive or negative depending on the excitation-
inhibition balance in the network. The overall mean input into the neurons
is obtained by adding the external input: µ = µin + µout + µext. In order not
to saturate the dynamic range of the cell in the extensive limit, the overall
mean current into the neurons should remain of order one as C → ∞.
Hence, it is needed that

µ =
√

C[ fµin + fµout + fextC
1
2 −αext ] ∼ O(1), (3.1)

which is possible only if the term in square brackets vanishes as 1/
√

C . If
the synapses from the external inputs vanish like 1/C (αext = 1), then the
external input has a negligible contribution to the overall mean input to
the cells. In this case, since both fµin and fµout are linear combinations of
the firing rates of the neurons inside and outside the column under fo-
cus, equation 3.1 effectively becomes, in the extensive limit, a set of linear
homogeneous equations for the activity of the different columns (note that
although we have, for brevity, written only one, there are four equations like
equation 3.1, for the excitatory and inhibitory subpopulations inside and
outside the column under focus). Thus, unless the matrix of coefficients of
the firing rates in fµin and fµout for the excitatory and inhibitory subpopula-
tions is not full rank, the only solution of equation 3.1 in the extensive limit
is given by a silent, zero rate, network (van Vreeswijk & Sompolinsky, 1998).
On the other hand, if αext = 1/2, the linear system defined by equations 3.1
in the extensive limit is not homogeneous anymore. Hence, in the general
case (except for degeneracies), if αext = 1/2, there is a single self-consistent
solution for the firing rates in the network, in which the activity in each
subpopulation is proportional to the external drive νext (van Vreeswijk &
Sompolinsky, 1998). This highlights the importance of a powerful external
excitatory drive. When αext = 1/2, the external drive by itself would drive
the cells to saturation if the recurrent connections were inactivated. In the
presence of the recurrent connections, the activities in the excitatory and
inhibitory subpopulations adjust themselves to compensate this massive
external drive. The firing rates in the self-consistent solution correspond to
the only way in which this compensation can occur for all the subpopula-
tions at the same time. It follows that inasmuch as the different inputs to
the neuron combine linearly, unless the connectivity matrix is degenerate,
which requires some kind of fine-tuning mechanism, bistability in a large,
homogeneous balanced network is not a robust property.
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3.1.2 Scenario 2: Homogeneous Multicolumnar Balanced Network. Since the
linearity condition that results in a unique solution follows from the mean
current to the cells from within the column growing with C , we impose that
µin ∼ O(1), that is, 1 − α − αw = 0. If this is the case, the variance coming
from within the column goes as Cα−1. We consider first the case α < 1. In
these conditions, the variance coming from the activity inside the column
vanishes for large C . To keep the total variance finite, we set αb = 1/2. If we
also choose α = 1/2, then αw = αb = 1/2, so the network is homogeneous
in that all the connection strengths scale similarly with C regardless of
whether they connect cells belonging to the same or different columns.
Since α = 1/2, there are many columns in the network, and the number of
connections coming from inside a particular column is a very small fraction
(which decreases like 1/

√
C) of the total number of afferent connections to

the cell.
The fact that αb = 1/2 implies that the mean current coming from out-

side the column will still grow like
√

C . Thus, in order for the cells not to
saturate, the excitation and the inhibition from outside the column have
to balance precisely; the steady state of the rest of the network becomes,
again, a unique, linear function of the external input to the cells (where
again we choose αext = 1/2 to avoid the quiescent state). However, now
the mean current coming from inside the column is independent of C , so
the steady-state activity inside the column is not determined by a set of
linear equations. Instead, it should be determined self-consistently using
the nonlinear transfer function in equation 2.3, which, in principle, permits
bistability. This scenario is, in fact, equivalent to the one studied in Brunel
(2000b), where a systematic analysis of the conditions in which bistability
in a network like this can exist has been performed. (Although no explicit
scaling of the synaptic connection strengths with C was assumed in Brunel,
2000b, the essential fact that the total variance to the cells in the subpopu-
lation that supports bistability is constant is considered in that article.) As
will be shown in detail below, the fact that the potential multiple steady-
state solutions in this scenario differ only in the mean current to the cells,
not in their variance (which is fixed by the balance condition on the rates
outside the column), leads necessarily to a lower (in general, significantly
lower) CV in the activity in the cells in the elevated persistent activity state.
Therefore, in a network with J ∝ 1/

√
C scaling, bistability is possible in

small subsets of neurons comprising a fraction ∝ 1/
√

C of the total number
of connections per cell, but the elevated persistent activity states are char-
acterized by a change in the mean drive to the cells at constant variance,
and, as we show below, this leads to a significant decrease in the spiking
irregularity in the elevated persistent activity states.

3.1.3 Scenario 3: Heterogeneous Multicolumnar Network. In order for the
CV in the elevated persistent activity state to remain close to one, the vari-
ance of the afferent current to the cells inside the column should depend
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on their own activity. Thus, in addition to the condition 1 − α − αw = 0
necessary for bistability, we have to impose that σ 2

in ∝ Cα−1 be indepen-
dent of C , that is, α = 1, which implies αw = 0. In these conditions, the
extensive number of connections per cell come from an extensive number
of columns, with the number of connections from each column remaining
a finite number. The αw = 0 condition reflects the fact that since cells re-
ceive only a finite number of intracolumnar connections, the strength of
these connections does not need to scale in any specific way with C . As
for the activity outside the network, one could now, in principle, choose ei-
ther J b ∝ 1/C or J b ∝ 1/

√
C (corresponding to αb = 1, 1/2, respectively),

since there is already a finite amount of variance coming from within the
column. In the first case, the rest of the network contributes only a noise-
less deterministic current whose exact amount has to be determined self-
consistently, and in the second it contributes both to the total mean and
variance of the afferent current to the neurons in the column. In this last
case, as in the previous two scenarios, the J b ∝ 1/

√
C scaling results in

the need for balance between the total excitation and inhibition outside
the network, which (again, if αext = 1/2) leads to a unique solution for the
activity of the rest of the population linear in the external drive to these
neurons.

In this scenario, the network is heterogeneous since the strength of the
connections from neurons within the same column is larger than those
from neurons in other columns. Since the rate and CV of the cells inside
the column have to be determined self-consistently in this case, we proceed
to do a systematic quantitative analysis of this scenario in the next section.
From the scaling considerations described in this section, it is already clear,
though, that a potential bistable solution with high CV is possible only in a
small network.

3.2 Types of Bistable Solutions in a Reduced Network. In this section,
we consider the network described in scenario 3 in the previous section,
with the choice αb = 1/2, and analyze the types of steady-state solutions
for the activity in a particular column of finite size. The rest of the network
is in a balanced state, and its activity is completely decoupled from the
activity of the column, which is too small in size to make a difference in
the overall input to the rest of the cells. For our present purposes, all that
matters about the afferents outside the column (from both the rest of the
network and the external ones) is that they provide a finite net input to the
cells in the column. We denote the mean and variance of that fixed external
current by µext

E,I /τm and 2(σ ext
E,I )2/τm, where the factors with the membrane

time constant τm have been included so that µext
E,I and (σ ext

E,I )2 represent the
contribution to the mean and variance of the postsynaptic depolarization
(in the absence of threshold) in the steady states arising from outside the
column.
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The net input to the excitatory and inhibitory populations in the column
under focus is thus characterized by

µE = cEE jEEνE − cEI jEIνI + µext
E

τm

µI = cIE jIEνE − cII jIIνI + µext
I

τm

σ 2
E = cEE j2

EEνE CV2
E + cEI j2

EIνI CV2
I + (σ ext

E )2

τm/2

σ 2
I = cIE j2

IEνE CV2
E + cII j2

IIνI CV2
I + (σ ext

I )2

τm/2
,

where the number of connection and connection strength parameters c and
j are all order one. We proceed by simplifying this scheme further in order
to reduce the dimensionality of the system from four to two, which will
allow a systematic exploration of the effect of all the parameters on the type
of steady-state solutions of the network. In particular, we make the inputs
to the excitatory and inhibitory populations identical,

cIE = cEE ≡ cE cII = cEI ≡ cI jIE = jEE ≡ jE jII = jEI ≡ jI

µext
E =µext

I ≡ µext (σ ext
E )2 = (σ ext

E )2 ≡ (σ ext)2,

so that the whole column becomes statistically identical: νE = νI ≡ ν and
CVE = CVI ≡ CV. For simplicity, we also assume that the number of exci-
tatory and inhibitory inputs is the same: cE = cI = c. Thus, we are left with
a system with four parameters,

cµ = c( jE − jI ); cσ =
√

c( j2
E + j2

I ); µext; σ ext, (3.2)

all with units of mV, and two dynamical variables (from equation 2.7)

dµV

dt
= −µV

τm
+ µ; dσ 2

V

dt
= − σ 2

V

τm/2
+ σ 2, (3.3)

where

µ = cµν + µext

τm
; σ 2 = c2

σ νCV2 + (σ ext)2

τm/2
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Figure 2: Mean firing rate ν (left), CV (middle), and product νCV2 (right) of the
LIF neuron as a function of the mean and standard deviation of the depolariza-
tion. Parameters: Vth = 20 mV, Vres = 10 mV, τm = 10 ms, and τref = 2 ms.

and

ν(µV, σV)−1 = τref + τm
√

π

∫ Vth−µV
σV

√
2

Vres−µV
σV

√
2

dx ex2
[1 + erf(x)] (3.4)

CV2(µV, σV) = 2πν2
∫ Vth−µV

σV
√

2

Vres−µV
σV

√
2

dx ex2
∫ x

−∞
dy ey2

[1 + erf(y)]2 (3.5)

The parameters cµ and c2
σ measure the strength of the feedback that the

activity in the column produces on the mean and variance of the current to
the cells. cµ can be less than equal to, or greater than zero. A value larger
(less) than zero implies that the activity in the column has a net excitatory
(inhibitory) effect on the neurons. In general, we assume the positive pa-
rameter c2

σ to be independent of cµ (implying the recurrent feedback on the
mean and on the variance can be manipulated independently). Note, how-
ever, that since jI /jE > 0, c2

σ cannot be arbitrarily small, that is, c2
σ > c2

µ/c.
Equations 3.4 and 3.5 are plotted as a function of µV and σV in Figure 2.

3.2.1 Mean- and Fluctuation-Driven Bistability in the Reduced System. The
nullclines for the two equations 3.3 are given by

ν(µV, σV) = µV − µext

τmcµ

; ν(µV, σV)CV2(µV, σV) = σ 2
V − (σ ext)2

(τm/2)c2
σ

.

The values of (µV, σV) that satisfy these equations are shown in Figure 3
for several values of the parameters cµ, cσ . The nullclines for the mean (see
Figure 3, left) are the projection on the (µV, σV) plane of the intersection
of the surface in Figure 2, left, with a plane parallel to the σV axes, shifted
by µext and tilted (i.e., with slope) at a rate 1/(τmcµ). Since the mean firing
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Figure 3: Nullclines of the equation for the mean µV (left) and standard devia-
tion σV (right). The nullcline for the mean depends on only cµ, and the one for
the standard deviation depends on only cσ .

rate as a function of the average depolarization changes curvature (it has
an inflection point near threshold, where firing changes from being driven
by fluctuations to being driven by the mean), the nullcline for the mean has
a “knee” when the net feedback cµ is large enough and excitatory.

Similarly, the nullclines for the standard deviation of the depolarization
(see Figure 3, right) are the projection on the (µV, σV) plane of the inter-
section of the surface in Figure 2, right, with a parabolic surface parallel
to the µV axes, shifted by (σ ext)2 and with a curvature 2/τmc2

σ . Again, this
curve can display a “knee” for high enough values of the net strength of
the feedback onto the variance c2

σ .
The fixed points of the system are given by the points of intersection

of the two nullclines. We now show, through two particular examples, the
main result of this letter: depending on the degree of balance between
excitation and inhibition, two types of bistability can exist: mean driven
and fluctuation driven.

Mean-Driven Bistability. Figure 4 shows a particular example of the type
of bistability obtained for low-moderate values of cσ and moderate-high
values of cµ. Figure 4a shows the time evolution of the firing rate (bottom)
and CV (top) in the network when the external drive to the cells is transiently
elevated. In response to the transient input, the network switches between
a low-rate, high-CV basal state, into an elevated activity state. For this
particular type of bistability, the CV in this state is low. The nullclines for this
example are shown in Figure 4b. The σV nullcline is essentially parallel to the
µV axis, and it intercepts the µV nullcline (which has a pronounced “knee”)
at three points: one below (stable), one around (unstable), and one above
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Figure 4: Example of mean-driven bistability. (a) CV (top) and firing rate (bot-
tom) in the network as a function of time. Between t = 0 s and t = 0.5 s (dashed
lines), the mean of the external drive to the neurons was elevated from 18 mV to
19 mV, causing the network to switch to its elevated activity fixed point. In this
fixed point, the CV is low. (b) Nullclines for this example. The two stable fixed
points differ primarily in the mean current that the cells are receiving, with an
essentially constant variance. Hence, the CV in the elevated persistent-activity
fixed point is low. Parameters: µext = 18 mV, σ ext = 0.65 mV, cµ = 7.2 mV,
cσ = 1 mV. Dotted line: neuronal threshold.

(stable) threshold. The stable fixed point below threshold corresponds to
the state of the system before the external input is transiently elevated in
Figure 4a. It is typically characterized by a low rate and a relatively high CV,
as subthreshold spiking is fluctuation driven and thus irregular. However,
since the CV drops fast for µV > Vth at the values of σV at which the µV
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nullcline bends (see Figure 2, middle), the CV in the suprathreshold fixed
point is typically low (but see section 4). Fluctuations in the current to the
cells play little role in determining the spike times of the cells in this elevated
persistent activity state.

Qualitatively, this is the type of excitation-driven bistability that has been
thoroughly analyzed over the past few years . It is expected to be present in
networks in which small populations of excitatory cells can be bistable in the
presence of global inhibition by virtue of selective synaptic potentiation. It
is also expected to be present in larger populations if the fluctuations arising
from the recurrent connections are weak compared to those coming from
external afferents, for instance, due to synaptic filtering (Wang, 1999).

Fluctuation-Driven Bistability. If the connectivity is such that the mean
drive to the neurons is only weakly dependent on the activity, that is, cµ is
small, but at the same time the activity has a strong effect on the variance,
that is, cσ is large, the system can also have two stable fixed points, as
shown in the example in Figure 5 (same format as in the previous figure).
In this situation, however, the two fixed points are subthreshold, and they
differ primarily in the variance of the current to the cells. Hence, spiking in
both fixed points is fluctuation driven, and the CV is high in both of them;
in particular, it is slightly higher in the elevated activity fixed point (see
Figure 5a).

This type of bistability can be realized only if there is a precise balance
between the net excitatory and inhibitory drive to the cells. Since cσ must be
large in order for the σV nullcline to display a “knee,” both the net excitation
and inhibition should be large, and in these conditions, a small cµ can be
achieved only if the balance between the two is precise. This suggests that
this regime will be sensitive to changes in the parameters determining
the connectivity; that is, it will require fine-tuning, a conclusion that is
supported by the analysis below.

Mean- and fluctuation-driven bistability are not discrete phenomena.
Depending on the values of the parameters, the elevated activity fixed
point can rotate in the (µV, σV) plane, spanning intermediate values from
those shown in the examples in Figures 4 and 5. We thus now proceed to a
systematic characterization of all possible behaviors of the reduced system
as a function of its four parameters.

3.2.2 Effect of the External Current. Since c2
σ > 0, the σV nullcline always

bends upward (see Figure 3), that is, the values of σV in the nullcline are
always larger than σ ext. Assuming for simplicity that cσ can be arbitrarily
low, this implies that no bistability can exist unless the external variance
is low enough. In particular, for every value of the external mean µext,
there is a critical value σ ext

c1 defined as the value of σV at which the first two
derivatives of the µV nullcline vanish (see Figure 6, middle). For σ ext > σ ext

c1 ,
the two nullclines can cross only once, and therefore no bistability of any
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Figure 5: Example of fluctuation-driven bistability. (a) CV (top) and firing rate
(bottom) in the network as a function of time. Between t = 0 s and t = 0.5 s
(dashed lines), the standard deviation of the external drive to the neurons was
elevated from 5 mV to 7 mV, causing the network to switch to its elevated
activity fixed point. In this fixed point, the CV is slightly higher than in the
basal state. (b) Nullclines for this example. The two stable fixed points differ
primarily in the variance of the current that the cells are receiving, with little
change in the mean. Hence, the CV in the elevated persistent-activity fixed point
is slightly higher than in the low-activity fixed point; that is, the CV increases
with the rate. Parameters: µext = 5 mV, σ ext = 5 mV, cµ = 5 mV, cσ = 20.2 mV.
Dotted line: Neuronal threshold.

kind is possible in the reduced system (see Figure 6, left). For values of σ ext

only slightly lower than this critical value, the jump between the low- and
the high-activity stable fixed points in the (µV, σV) plane is approximately
horizontal, so the type of bistability obtained is mean driven. For lower
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Figure 6: The external variance determines the existence and types of bistability
possible in the network. For σ ext > σ ext

c1 (left), no bistability is possible. σ ext =
σ ext

c1 marks the onset of bistability (middle). At σ ext = σ ext
c2 bistability becomes

possible in a perfectly balanced network (a network with cµ = 0) (right).

values of the external variance, a point is eventually reached at which
bistability becomes possible in a perfectly balanced network. Again, for
each µext, one can define a second critical value σ ext

c2 in the following way:
σ ext

c2 is the value of σ ext at which the point where the derivative at the
inflection point of the σV nullcline is infinite occurs at a value of µV equal
to µext (see Figure 6, right). For values of σ ext < σ ext

c2 , bistability is possible
in networks in which the net recurrent feedback is inhibitory.

Since both critical values of σ ext are functions of the external mean, they
define curves in the (µext, σ ext) plane. These curves are plotted in Figure 7.
Both are decreasing functions of µext and meet at threshold, implying that
bistability in the reduced network is possible only for subthreshold mean
external inputs (see section 4).

3.2.3 Phase Diagrams of the Reduced Network. For each point in the
(µext, σ ext) plane, the external current is completely characterized, and the
only two parameters left to be specified are cµ, cσ . In particular, in the re-
gions where bistability is possible, it will exist for only appropriate values
of cµ and cσ . The two insets in Figure 7 show phase diagrams in the (cµ, cσ )
plane showing the regions of bistability in two representative points: one in
which σ ext

c2 < σ ext < σ ext
c1 , in which bistability is possible only in excitation-

dominated networks (top-right inset), and one in which σ ext < σ ext
c2 , in which

bistability is possible in both excitation- and in inhibition-dominated net-
works (bottom-left inset). In this latter case, the region enclosed by the curve
in which bistability can exist stretches to the left, including the region with
cµ � 0.

We have further characterized the nature of the fixed-point solutions in
these two cases by plotting the rate and CV on each point in the (cµ, cσ )
plane on which bistability is possible, as well as the ratio between the rate
and CV in the high- versus low-activity states. Instead of showing this in the
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Figure 7: Phase diagram with the effect of the mean and variance of the external
current on the existence and types of bistability in the network. The two insets
represent the regions of bistability in the (cµ, cσ ) plane at the corresponding
points in the (µext, σ ext) plane. Fluctuation-driven bistability is possible only
near and below the lower critical line σ ext = σ ext

c2 (µext). Top-right and bottom-left
insets correspond to µext = 10 mV; σ ext = 4 mV and µext = 10 mV; σ ext = 3 mV,
respectively.

(cµ, cσ ) plane, we have inverted Equations 3.2 to show (assuming a constant
c = 100) the results as a function of the unitary EPSP jE and of the ratio of
the unitary inhibitory to excitatory PSPs jI /jE , which measures the degree
of balance in the network, that is, jI /jE = 1 implies a perfect balance:

jE =
cµ +

√
2cc2

σ − c2
µ

2c
; jI /jE =

√
2cc2

σ − c2
µ − cµ√

2cc2
σ − c2

µ + cµ

. (3.6)

In Figure 8 we show the results for the case where the external variance
is higher than σ ext

c2 , so that bistability is possible only if the net recurrent
connectivity is excitatory. Overall, the shape of the bistable region in this
space is a diagonal to the right. This means that closer to the balanced
region, the net excitatory drive (proportional to jE ) has to be higher in order
for bistable solutions to exist. The low-activity fixed point (left column) is
subthreshold, and thus spiking is fluctuation driven, characterized by a
high CV. In this case, the high-activity fixed point is suprathreshold, so the
CV in this fixed point is in general small (see the bottom right). Of course,
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Figure 8: Bistability in an excitation-dominated network in the ( jE , jI /jE ) plane.
(Top and bottom left) Firing rate and CV in the low-activity fixed point. (Top and
bottom right) Ratio of the firing rate and CV between the high- and low-activity
fixed points. (Inset) same as bottom-right panel in the (cµ, cσ ) plane. Parameters:
c = 100, µext = 10 mV, and σ ext = 4 mV.

very close to the cusp, at the onset of bistability, the CV (and rate) in both
fixed points is similar.

In Figure 9 the same information is shown for the case where the external
variance is lower than σ ext

c2 so that bistability is possible when the recurrent
connectivity is dominated by excitation or inhibition. In this case, the re-
gion where the CV in the high- and low-activity fixed points is similar is
larger, corresponding to situations in which jI /jE ∼ 1, that is, excitation and
inhibition in the network are roughly balanced. Only in this region is the
firing rate in the high-activity state not too high, <∼100 Hz. In this regime,
when excitation dominates, the rate in the high-activity state becomes very
high. Note also that the transition between the relatively low-rate, high-CV
regime and the very high-rate, low-CV regime at jI /jE ∼ 0.9 is relatively
abrupt.

Finally, we can use the relations 3.6 to study quantitatively the effect of
the number of connections c on the regions of bistability, something we
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Figure 9: Mean and fluctuation-driven bistability in the ( jE , jI /jE ) plane. Panels
as in Figure 8. (Inset) Portion of the bistability region with fluctuation-driven
fixed points in the (cµ, cσ ) plane. When the network is approximately balanced,
that is, jI /jE ∼ 1, the CV in the high-activity state is high. Parameters: c = 100,
µext = 10 mV, and σ ext = 3 mV.

did in section 3.1 at a qualitative level based on scaling considerations.
Figure 10 shows the effect of increasing the number of afferent connec-
tions per cell on the shape of the region of bistability for σ ext = 4 mV
(left) and for σ ext = 3 mV (right). The results are clearer when shown in
the plane ( jE c, jI /jE ), where jE c represents the net mean excitatory drive
to the neurons. The range of values of the net excitatory drive in which
bistability is allowed in the excitation-dominated regime, where jI /jE < 1,
does not depend very strongly on c. However, for both σ ext = 4 mV and
σ ext = 3 mV, when inhibition and excitation become more balanced, a higher
net excitatory drive is needed. In particular, when σ ext = 3, the bistable re-
gion always includes the balanced network, jI /jE = 1, but the range of
values of jI /jE ∼ 1 where bistability is possible (being in this case fluctua-
tion driven) considerably shrinks. Thus, as noted in section 3.1, bistability
in a large, balanced network requires a precise balance of excitation and
inhibition.
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Figure 10: Effect of number of connections c on the phase diagram in the
( jE c, jI /jE ) plane for the case where µext = 10 mV and σ ext = 4 mV (left) and
σ ext = 3 mV (right). Note that in the right panel, jI /jE = 1 is always in the region
of bistability, but the range of values of jI /jE ∼ 1 in the bistable region decreases
significantly with c.

The precise balance between excitation and inhibition required to obtain
solutions with fluctuation-driven bistability is also evident when one ana-
lyzes the effect of changing the net input to the excitatory and inhibitory
subpopulations within a column. In this case, the excitatory and inhibitory
mean firing rate and CV become different. We have chosen to study the
effect of the different ratios of excitation and inhibition to the excitatory
and inhibitory populations. In particular, defining

γE ≡ jEI

jEE
and γI ≡ jII

jIE
,

we have considered the effect of having γE �= γI while still considering
that the excitatory connections to the excitatory and inhibitory populations
are equal, that is, jEE = jIE ≡ jE . To proceed with the analysis, we started
by specifying a point in the parameter space of the symmetric network
in which excitation and inhibition were identical by choosing a value for
(µext, σ ext, cµ, cσ ). Then, fixing c = 200, we used the relationships 3.6 to solve
for jE and γ and, defining γE ≡ γ , we found which values of γI resulted in
bistable solutions. Correspondingly, when γI = γE , the two subpopulations
within the column become identical again.

We performed this analysis for two initial sets of parameters of the
symmetric network: one corresponding to mean-driven and the other to
fluctuation-driven bi-stability. The results of this analysis are shown in
Figure 11. The type of bistability does not change qualitatively depending
on the value of γI /γE in the mean-driven case (left column). For the right
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Figure 11: Effect of different levels of input to the excitatory and inhibitory
subpopulations. The ratio between the inhibitory and excitatory connection
strengths γ was allowed to be different for each subpopulation. Left and
right columns correspond to mean- and fluctuation-driven bistability in the
corresponding situation for the symmetric network. The network is bistable
for values of γI /γE within the dashed lines. Parameters on the left column:
µext = 18 mV, σ ext = 0.65 mV, cµ = 7.2 mV, cσ = 1 mV. Parameters on the right
column: µext = 10 mV, σ ext = 3 mV, cµ = 0.5 mV, cσ = 19 mV.

column, however, the original fluctuation-driven regime is quickly abol-
ished as γI /γE increases, leading to very high activity and low CV in the
high-activity fixed point. Note that the size of the bistable region is also
much smaller in this case.

3.3 Numerical Simulations. We conducted numerical simulations of
our network to investigate whether the two types of bistable states that the
mean-field analysis predicts, the mean-driven and the fluctuation-driven
regimes, can be realized. In addition to the approximations that we are
forced to make in order to be able to construct the mean-field theory itself,
the more qualitative and robust result that fluctuation-driven bistable points
require large fluctuations in relatively small networks with relatively large
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synapses leads to the question of whether potential fixed points in this very
noisy network will indeed be stable. We found that under certain conditions,
both types of bistable points can be realized in numerical simulations.

In Figure 12 we show an example of a network supporting bistability
on the mean-driven regime. In this network, the recurrent connections are
dominated by excitation, and the mean of the external drive leaves the
neurons very close to threshold, with the fluctuations of this external drive
being small. As expected, the irregularity in the elevated-activity fixed point
is low, with a CV ∼ 0.2. The mean µV in this fixed point is above threshold.
The mean-field theory predicts for the same network a rate of 46.7 Hz and
a CV of 0.21.

An example of another network showing bistability, this time in the
fluctuation-driven regime, is shown in Figure 13. In this network, the recur-
rent connections are dominated by inhibition, and the external drive leaves
the membrane potential relatively far from threshold on average but has
large fluctuations. Taking into account only consecutive ISIs, the temporal
irregularity is still large: CV2 ∼ 0.8. The spike trains in the elevated activity
state are quite irregular, partly, but not only, due to large, temporal fluctu-
ations in the instantaneous network activity. The mean-field prediction for
these parameters gives a rate of 91.5 Hz and a CV of 1.6.

In order for the elevated activity states to be stable, in both the mean-
driven and, especially, the fluctuation-driven regimes, we needed to use a
wide distribution of synaptic delays in the recurrent connections: between 1
and 10 ms for Figure 12 and 1 and 50 ms for Figure 13. Narrow distributions
of delays lead to oscillations, which destabilize the stationary activity states.
The emergence and properties of these oscillations in a network similar to
the one we study here have been described in Brunel (2000a).

Although such long synaptic delays are not expected to be found in
connections between neighboring local cortical neurons, our network is
extremely simple and lacks many elements of biological realism that would
work in the same direction as the wide distributions of delays. Among these
are slow and saturating synaptic interactions (NMDA-mediated excitation;
(Wang, 1999) and heterogeneity in cellular and synaptic properties.

The large and slow temporal fluctuations in the instantaneous rate in
Figure 13 are due to the large fluctuations in the nearly balanced external
and recurrent drive to the cells and the wide distribution of synaptic delays.
These fluctuations lead to high trial-to-trial variability in the activity of
the network, as shown in Figure 14. In this figure, we show nine trials
with identical parameters as in Figure 13, and only different seeds for the
random number generator. On each panel, the mean instantaneous activity
across all nine trials (the thick line) is shown along with the activity in
the individual trial. Sometimes the large fluctuations lead to the activity
returning to the basal spontaneous state. Other times they provoke long-
lasting periods of elevated firing (above average). Nevertheless, on a large
fraction of the trials, a memory of the stimulus persists for several seconds.
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Figure 12: Numerical simulations of a bistable network in the mean-driven
regime. The rate of the external afferents was raised between 200 and 300 ms
(vertical bars). (Top) Raster display of the activity of 200 neurons in the network.
(Middle) Instantaneous network activity (temporal bin of 10 ms). The dashed
line represents the average network activity during the delay period, 53.4 Hz.
(Lower panels) Distribution across cells of the rate (left), CV (middle), and CV2

(right) during the delay period. The fact that the CV and CV2 are very similar
reflects the stationarity of the instantaneous activity. Single-cell parameters as
in the caption to Figure 2. The network consists of two populations of excitatory
and inhibitory cells (1000 neurons each) connected at random with 0.1 probabil-
ity. Delays are uniformly distributed between 1 and 10 ms. External spikes are
all excitatory, with PSP size 0.09 mV. The external rate is 19.25 KHz. This leads to
µext = 17.325 mV and σ ext = 0.883 mV. Recurrent EPSPs and IPSPs are 0.138 mV
and −0.05 mV, respectively, leading to cµ = 8.8 mV and cσ = 1.468 mV.
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Figure 13: Numerical simulations of a bistable network in the fluctuation-
driven regime. Panels as in Figure 12. Parameters as in Figure 12 except distri-
bution of delays, which is uniform between 1 and 50 ms. External spikes are
excitatory, with PSP size 1.85 mV and rate 0.78 KHz and inhibitory, with PSP size
−1.85 mV and rate 0.5 KHz. This leads to µext = 5.18 mV and σ ext = 4.68 mV.
Recurrent EPSPs and IPSPs are 1.85 mV and −1.98 mV, respectively, leading to
cµ = −13 mV and cσ = 27.1 mV.
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Figure 14: Trial-to-trial variability in the fluctuation-driven regime. Each panel is
a different repetition of the same trial, in a network identical to the one described
in Figure 13. The thick line represents the average across all nine trials, and the
thin line is the instantaneous network activity in the given trial. Vertical bars
mark the time during which the rate of the external inputs is elevated.

In the mean-driven regime, the trial-to-trial variability is very low (not
shown).

We conclude that despite quantitative differences in the rate and CV
between the mean-field theory and the simulations, it is possible, albeit dif-
ficult, to find both mean-driven and fluctuation-driven bistability in small
networks of LIF neurons.

4 Discussion

In this letter, we have aimed at an understanding of the different ways in
which a simple network of current-based LIF neurons can be organized in
order to support bistability, the coexistence of two steady-state solutions
for the activity of the network that can be selected by transient external
stimulation. We have shown that in addition to the well-known case in
which strong excitatory feedback can lead to bistability, bistability can also
be obtained when the recurrent connectivity is nearly balanced, or even
when its net effect is inhibitory, provided that an increase in the activity in
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the network provides a large enough increase in the size of the fluctuations
of the current afferent to the cells. When bistability is obtained in this
fashion, the CV in both steady states is close to one, as found experimentally
(see Figure 1; Compte et al., 2003). We have done a systematic analysis at
the mean-field level (and a partial one through numerical simulations) of
a reduced network where the activity in the excitatory and the inhibitory
subpopulations was equal by construction (implying balance at the level
of the output activity) and studied which types of bistable solutions are
obtained depending on the level of balance in the currents (the parameter
cµ), that is, balance at the level of the inputs. This simple model allows for
a complete understanding of the role of the different model parameters.

The first phenomenon, which we have termed mean-driven bistability, can
essentially be traced back to the shape of the curve relating the mean firing
rate of the cell to the average current it is receiving (at a constant noise level;
Brunel, 2000b), that is, the f − I curve. In order for bistability to exist, this
curve should be a sigmoid, for which it is enough that the neurons possess
a threshold and a refractory period. If, in addition, the low-activity fixed
point is to have a nonzero activity (consistent with the fact that cells in the
cortex fire spontaneously), then the neuron should display nonzero activity
for subthreshold mean currents. This can be achieved if the current is noisy,
where the noise is due to the spiking irregularity of the inputs to the cell.
When this type of bistability is considered in a network of LIF neurons, the
mean current to the cells in the high-activity fixed point is above threshold.
Under general assumptions, this leads invariably to fairly regular spiking
in this high-activity fixed point. Of course, tuning the parameters of the
current in such a way that the mean current in the high-activity fixed point
is only very marginally suprathreshold will result in only a small decrease
of the CV with respect to the low-activity fixed point (e.g., Figure 2 in Brunel
& Wang, 2001). On the other hand, in this scenario, it is relatively easy (it
does not take much tuning) for the firing rate in the elevated persistent
activity state not to be very much higher than that in the low-activity state,
for example, below 100 Hz (see Figure 8).

When the recurrent connectivity is balanced, bistable solutions can exist
in which both fixed points are subthreshold, so that spiking in both fixed
points is fluctuation driven and thus fairly irregular. This can be the case if
the fluctuations in the depolarization due to current from outside the col-
umn are low enough (see Figure 6). However, in order for these solutions
to exist, first, the overall inputs to the excitatory and the inhibitory subpop-
ulations should be close enough (ensuring balance at the level of the firing
activity in the network); second, both of these inputs, the one to the exci-
tatory and the one to the inhibitory subpopulation, should themselves also
be balanced (be composed of similar amounts of excitation and inhibition);
and third, both the net excitatory drive and the inhibitory drive to the cells
should be large. This third condition, if the first two are satisfied, results
in a high, effective fluctuation feedback gain: an increase in the activity of



Bistability in Balanced Recurrent Networks 35

the cells results in a large increase in the size of the fluctuations in the af-
ferent current to the neurons (a large value of the parameter cσ ). However,
it also implies that the excitation-inhibition balance condition will be quite
stringent; it will require tuning, especially when the network is large. In ad-
dition, if this balance is slightly broken, since both excitation and inhibition
are large, the corresponding firing rate in the elevated persistent activity
state becomes very large, for example, significantly higher than 100 Hz (see
Figure 9). In fact, based just on scaling considerations (see section 3.1), one
can conclude that this type of bistability can be present only (unless one
allows for perfect tuning) in small networks. If the network is large, the
excitation-inhibition balance condition has, in general, a single (albeit very
robust) solution (van Vreeswijk & Sompolinsky, 1996, 1998). It is intriguing,
however, that several lines of evidence in fact suggest a fairly precise bal-
ance of local excitation and inhibition in cortical circuits, at both the output
level (Rao et al., 1999) and the input level (Anderson, Carandini, & Ferster,
2000; Shu, Hasenstaub, & McCormick, 2003; Marino et al., 2005).

4.1 Limitations of the Present Approach. Most of the results we have
presented are based on an exhaustive analysis of the stationary states of a
mean-field description of a simple network of LIF neurons. Several limita-
tions of our approach should be noted. First, in order to be able to go beyond
the Poisson assumption, we have had to make a number of approximations
(discussed in section 2) that are expected to be valid only on limited regions
of the large parameter space. Second, we have focused only on the station-
ary fixed points of the system, neglecting an examination of any oscillatory
solutions. Oscillations in networks of LIF neurons in the high-noise regime
have been extensively studied by Brunel and collaborators (see, e.g., Brunel
& Hakim, 1999; Brunel, 2000a; Brunel & Wang, 2003). Third, in order to
be able to provide an analytical description, we have considered a very
simplified network lacking many aspects of biological realism known to
affect network dynamics, most important, a more realistic description of
synaptic dynamics (Wang, 1999; Brunel & Wang, 2001). Finally, the use of a
mean-field description based on the diffusion approximation to study small
networks with big synaptic PSPs might lead to problems, since the diffu-
sion approximation assumes these PSPs are (infinitely) small. Large PSPs
might lead to fluctuations that are too strong, which would destabilize the
analytically predicted fixed points.

In order to check that the main qualitative conclusion of this study was
not an artifact due to the mean-field approach, we simulated the network
of LIF neurons used in the mean-field description, adding synaptic delays.
Provided the distribution of delays was wide, we observed both types of
bistable solutions. However, as expected, the fluctuation-driven persistent
activity states show large, temporal fluctuations that sometimes are enough
to destabilize them.
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The evidence we have provided is suggestive, but given the limitations
listed above, it is not conclusive. Addressing the limitations of this work
will involve using recently developed analytical techniques (Moreno-Bote
& Parga, 2006), along with a systematic exploration of the behavior of more
realistic recurrent networks through numerical simulations.

4.2 Self-Consistent Second-Order Statistics. The extended mean-field
theory we have used builds on the landmark study by Amit and Brunel
(1997b), which provided a general-purpose theory for the study of the dif-
ferent types of steady states in recurrent networks of spiking neurons in the
presence of noise, while leaving room for different degrees of biophysical
realism. Our contribution has been to try to go beyond the Poisson assump-
tion in order to allow a self-consistent solution to the second-order statistics
of the spike trains in the network. If the spike trains are assumed to be
Poisson, there is only one parameter to be determined self-consistently: the
firing rate. Under the approximations made in this letter, the statistics are
characterized by two parameters, the firing rate and the CV, which provides
information about the degree of irregularity of the spiking activity. In order
to go beyond the Poisson assumption, we have assumed the spike trains
in the network can be described as renewal processes with a very short
correlation time. In these conditions, for time windows large compared to
this correlation time, the Fano factor of the process is constant, but instead
of being one, as for a Poisson process, it is equal to CV2. This motivates our
strategy of neglecting the temporal aspect of the deviation from Poisson,
which is extremely complicated to deal with analytically, and keep only its
effect on the amplitude of the correlations. We have done this by using the
expressions for the rate and CV of the first passage time of the OU process
with a renormalized variance that takes into account the CV of the inputs.
If the time constant of the autocorrelation of the process is exactly zero, this
approximation becomes exact (Moreno et al., 2002), so we have assumed it
will still be qualitatively valid if the correlation time constant is small. In
this way, we have been able to solve for the CV of the neurons in the steady
states self-consistently.

It has to be stressed that the fact that the individual inputs to a neuron
are considered independent does not imply that the overall input process,
made of the sum of each individual component, is Poisson. Informally, in
order for the superposition to converge to a (homogeneous) Poisson process
of rate λ, two conditions have to be met: given any set S on the time axis
(say, any time interval), calling N1

i the probability of observing one spike in
S from process i , and N>2

i the probability of observing two or more spikes
in S from process i , then the superposition of the i = 1, . . . , N processes will
converge to a Poisson process if limN→∞

∑N
i N1

i = λS (with max{N1
i } = 0 as

N → ∞) and if limN→∞
∑N

i N>2
i = 0 (see, e.g., Daley & Vere-Jones, 1988).

The autocorrelated renewal processes that we consider in this letter do
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not meet the second condition, which can also be seen in the fact that the
superposition process has an autocorrelation given by equation 2.2, not by a
Dirac delta function, as would be the case for a Poisson process. Despite this,
it might be the case that if instead of any set S, one considers only a given
time window T , both conditions could approximately be met in T , and we
could say that the superposition process is locally Poisson in T . Whether
this locally Poisson train will have the same effect on the postsynaptic cell
as a real Poisson train of the same rate depends on a number of factors and
has been studied in detail in Moreno et al. (2002) for the case of exponential
autocorrelations. Other types of autocorrelation structures, for instance,
regular spike trains, could lead to different results. This is an open problem.

4.3 Current-Based versus Conductance-Based Descriptions. We have
analyzed a network of current-based LIF neurons. The motivations for this
choice are that current-based LIF neurons are simpler to analyze, especially
in the presence of noise, than conductance-based LIF neurons and also
that there were a number of unresolved issues raised in the current-based
framework that we have made an attempt to clarify. In particular, we were
interested in understanding whether the framework of Amit and Brunel
(1997b) could be used to produce bistable solutions in balanced networks
like those studied in Tsodyks and Sejnowski (1995) and van Vreeswijk and
Sompolinsky (1996, 1998) outside the context of multistability in recurrent
networks. An important issue has been the relationship between different
scaling relationships between the connection strengths and the number of
afferents and the possible types of bistability attainable in large networks,
when the number of afferents per cell tends to infinity. This analysis shows
that large, homogeneous networks using the J ∼ 1/

√
C scaling needed

to retain a significant amount of fluctuation at large C do not support
bistability in a robust manner, a result already implicitly present in van
Vreeswijk and Sompolinsky (1996, 1998). Reasonably robust bistability in
homogeneous balanced networks requires that they are small.

Does one expect these conclusions to hold qualitatively if one considers
the more realistic case of conductance-based synaptic inputs to the cells?
The answer to this question is uncertain. In particular, scaling relationships
between J and C , absolutely unavoidable in current-based scenarios to keep
a finite input to the cells in the extensive C limit, are not necessary when
synaptic inputs are assumed to induce a transient change in conductance.
In the presence of conductances, the steady-state voltage is automatically
independent of C for large C , regardless of the value of the unitary synaptic
conductances. In fact, assuming a simple model for a cell having only leak,
excitatory, and inhibitory synaptic conductances, the steady-state voltage
in the absence of threshold is given by

Vss = gL

gTot
VL + gE

gTot
VE + gI

gTot
VI ,
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where VL , VE , VI are the reversal potentials of the respective currents;
gL , gE , gI are the total leak, excitatory, and inhibitory conductance in the
cell and

gTot = gL + gE + gI .

(This expression ignores the effect of temporal fluctuations in the conduc-
tances, but it is a good approximation, since the mean conductance, being by
definition positive, is expected to be much larger than its fluctuations.) The
steady-state voltage is just the average of the different reversal potentials,
each weighted by the relative amount of conductance that the respective
current is carrying. Of course, each of the total synaptic conductances is
proportional to the number of inputs, but since the steady-state voltage is
just a weighted sum, it does not explode even if C tends to infinity.

It might seem that in fact, the infinite-C limit leads to an ill-defined
model, as the membrane time constant vanishes in this case as 1/C . If Cm is
the membrane capacitance, then

τm = Cm

gTot
∼ 1/C,

assuming that gE,I ∼ C . We believe, however, that this is an artifact due to an
incorrect way of defining the model in the large C limit. It implicitly assumes
that the number of synaptic inputs grows at a constant membrane area, thus
increasing indefinitely the local channel density. A more appropriate way
of taking the large C limit is to fix the relative densities of the different
channels per unit area and then assume the area becomes large. In this
case, both Cm and the total leak conductance of the cell (proportional to the
number of leak channels) will grow with the total area. This way of taking
the limit respects the well-known decrease in membrane time constant as
the synaptic input to the cell grows, but retaining a well-defined, nonzero
membrane time constant in the extensive C limit (in this case, the range of
values that τm can take is determined by the local differences in channel
density, which is independent of the total channel number).

A crucial difference with the current-based cell is the behavior of the
variance of the depolarization in the large C limit. A simple estimate of this
variance can be obtained by ignoring threshold and considering only the
low-pass filtering effect of the membrane (with time constant τm) on a gaus-
sian noise current of variance σ 2

I and time constant τs . It is straightforward
to calculate the variance of the depolarization in these conditions, resulting
in

σ 2
V = σ 2

I

g2
Tot

(
τs

τs + τm

)
.
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If the inputs are independent, both the variance of the current and the total
conductance of the cell are proportional to C , which implies that σ 2

V ∼ 1/C
for large C .

Therefore, the statistics of the depolarization in conductance-based and
current-based neurons show a very different dependence with the number
of inputs to the cell. In particular, it is unclear whether the main organiza-
tional principle behind the balanced state in the current-based framework,
that is, the J ∼ 1

√
C scaling that is needed to retain a finite variance in

the C → ∞ limit and that leads to the set of linear equations that specify
the single solution for the activity in the balanced network, is relevant in
a conductance-based framework. A rigorous study of this problem is be-
yond the scope of this work, but is one of the outstanding challenges for
understanding the basic principles of cortical organization.

4.4 Correlations and Synaptic Time Constants. Our mean-field de-
scription assumes that the network is in the extreme sparse limit, N 	 C ,
in which the fraction of common input shared by two neurons is negligible,
leading to vanishing correlations between the afferent current to different
cells in the large C , large N limit. This is a crucial assumption, since it
causes the variance of the depolarization in the network to be the sum of
the variances of the individual spike trains, that is, proportional to C . If
the correlation coefficient is finite as C → ∞, the variance is proportional
to C2 (see, e.g., Moreno et al., 2002). In a current-based network, J ∼ 1/C
scaling would lead to a nonvanishing variance in the large C limit without a
stringent balance condition, and in a conductance-based network, it would
lead to a C-independent variance for large C . This suggests that correla-
tions between the cells in the recurrent network should have a large effect
on both their input-output properties (Zohary, Shadlen, & Newsome, 1994;
Salinas & Sejnowski, 2000; Moreno et al., 2002) and the network dynamics.
The issue is, however, not straightforward, as simulations of irregular spik-
ing networks with realistic connectivity parameters, which do show weak
but significant cross-correlations between neurons (Amit & Brunel, 1997a),
seem to be well described by the mean-field theory in which correlations
are neglected (Amit & Brunel, 1997a; Brunel & Wang, 2001).

Noise correlations measured experimentally are small but significant,
with normalized correlation coefficients on the range of a few percent to
a few tenths for a review (see, e.g., Salinas & Sejnowski, 2001). It would
thus be desirable to be able to extend the current mean-field theory to
incorporate the effect of cross-correlations and to understand under which
conditions their effect is important. The first steps in this direction have
already been taken (Moreno et al., 2002; Moreno-Bote & Parga, 2006). The
arguments of the previous section suggest that a correct treatment of correla-
tions might be especially important in large networks of conductance-based
neurons.
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An issue of similar importance for the understanding of the high irreg-
ularity of cortical spike trains is the relationship between the time constant
(or time constants) of the inputs to the neuron and its (effective) membrane
time constant. Indeed, the need for a balance between excitation and in-
hibition in order to have a high-output spiking variability when receiving
many irregular inputs exists only if the membrane time constant is relatively
long—in particular, long enough that if the afferents are all excitatory, the
input fluctuations are averaged out. If the membrane time constant is very
short, large, short-lived fluctuations are needed to make the postsynaptic
cell fire, and these occur only irregularly, even if all the afferents are excita-
tory (see, e.g., Figure 1 in Shadlen & Newsome, 1994). These considerations
seem relevant since cortical cells receive large numbers of inputs that have
spontaneous activity, thus putting the cell into a high-conductance state
(see, e.g., Destexhe, Rudolph, & Pare, 2003) in which its effective membrane
time constant is short—on the order of only a few miliseconds (Bernander,
Douglas, Martin, & Koch, 1991; Softky, 1994). It has also been recognized
that when the synaptic time constant is large compared to the membrane
time constant, spiking in the subthreshold regime becomes very irregular,
and in particular, the distribution of firing rates becomes bimodal. Qualita-
tively, in these conditions, the depolarization follows the current instead of
integrating it. Relative to the timescale of the membrane, fluctuations are
long-lived, and this separates two different timescales for spiking (which
result in bimodality of the firing-rate distribution) depending on whether
the size of a fluctuation is such that the total current is subthreshold (i.e.,
no spiking leading to a large peak of the firing rate histogram at zero) or
suprathreshold (leading to a nonzero peak in the firing rate distribution)
(Moreno-Bote & Parga, 2005). In these conditions, neurons seem “bursty,”
and the CV of the ISI is high. Interestingly, recent evidence confirms this
bimodality of the firing-rate distribution in spiking activity recorded in vivo
in the visual cortex (Carandini, 2004).

Increases in the synaptic-to-membrane time constant ratio leading to
more irregular spiking can be due to a number of factors: a very short
membrane time constant if the neuron is a high-conductance state, relatively
long excitatory synaptic drive if there is a substantial NMDA component
in the excitatory EPSPs, or even long-lived dendrosomatic current sources,
for instance, due to the existence of “calcium spikes” generated in the
dendrites. There is evidence that irregular current applied to the dendrites
of pyramidal cells results in higher CVs than the same current applied to
the soma (Larkum, Senn, & Luscher, 2004).

4.5 Parameter Fine-Tuning. In order for both stable firing rate states of
the networks we have studied to display significant spiking irregularity, the
afferent current to the cells in both states needs to be subthreshold. We have
shown that this requires a significant amount of parameter fine-tuning,
especially when the number of connections per neuron is large. Parameter
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fine-tuning is a problem, since biological networks are heterogeneous and
cellular and synaptic properties change in time.

Regarding this issue, though, some considerations are in order. First, the
model we have considered is extremely simple, especially at the single-
neuron level. We have already pointed out possible consequences of con-
sidering properties such as longer synaptic time constants or some degree
of correlations between the spiking activity of different neurons. Another
biophysical property that we expect to have a large impact is short-term
synaptic plasticity. In the presence of depressing synapses, the postsynap-
tic current is no longer linear in the presynaptic firing rate, thus acting as
an activity-dependent gain control mechanism (Tsodyks & Markram, 1997;
Abbott, Varela, Sen, & Nelson, 1997). It remains to be explored to what ex-
tent balanced bistability in networks of neurons exhibiting these properties
becomes a more robust phenomenon.

Second, synaptic weights (as well as intrinsic properties; Desai,
Rutherford, & Turrigiano, 1999) can adapt in an activity-dependent man-
ner to keep the overall activity in a recurrent network within an ap-
propriate operational range (Turrigiano, Leslie, Desai, Rutherford, &
Nelson, 1998). Delicate computational tasks, which seem to require fine-
tuning, can be rendered robust though the use of these types of activity-
dependent homeostatic rules (Renart, Song, & Wang, 2003). It will be
interesting to study whether homeostatic plasticity (Turrigiano, 1999) can
be used to relax some of the fine-tuning constraints described in this
letter.

4.6 Multicolumnar Networks and Hierarchical Organization. The fact
that bistability is not a robust property of large, homogeneous balanced
networks suggests that the functional units of working memory could cor-
respond to small subpopulations (Rao et al., 1999). In addition, we have
shown that bistability in a small, reduced network is possible only for sub-
threshold external inputs (see section 3.2.2). At the same time, it is known
that a nonzero activity balanced state requires a very large (suprathresh-
old) excitatory drive (see section 3.1 and van Vreeswijk & Sompolinsky,
1998). This seems to point to a hierarchical organization: large networks
receive massive excitation from long-distance projections, and this external
excitation sets up a balanced state in the network. Globally, the activity in
the large, balanced network follows the external input linearly. This large,
balanced network then provides an already balanced (subthreshold) input
to smaller subcomponents, which, in these conditions (in particular, if the
variance of this subthreshold input is small enough; see figure 7), can dis-
play more complex nonlinear behavior such as bistability. From the point
of view of the smaller subnetworks, the balanced subthreshold input can
be considered external, since the size of this network is too small to make a
difference in the global activity of the larger network (despite being recur-
rently connected, the activities in the large and small networks effectively
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decouple). In the cortex, the larger balanced network could correspond to
a whole cortical column. Indeed, long-range projections between columns
are mostly excitatory (see, e.g., Douglas & Martin, 2004). Within a column,
the smaller networks that interact through both excitation and inhibition
could anatomically correspond to microcolumns (Rao et al., 1999) or, more
generally, define functional assemblies (Hebb, 1949).

5 Summary

General principles of cortical organization (large numbers of active synap-
tic inputs per neuron) and function (irregular spiking statistics) put strong
constraints on working memory models of spiking neurons. We have pro-
vided evidence that a network of current-based LIF neurons can exhibit
bistability with the high persistent activity driven by either the mean or
the fluctuations in the input to the cells. The fluctuation-driven bistability
regime requires a strict excitation-inhibition balance that needs parameter
tuning. It remains a challenge in future research to analyze systematically
what the conditions are under which nonlinear phenomena such as bista-
bility can exist robustly in large networks of more biophysically plausi-
ble conductance-based and correlated spiking neurons. It is also conceiv-
able that additional biological mechanisms, such as homeostatic regulation,
are important for solving the fine-tuning problem and ensuring a desired
excitation-inhibition balance in cortical circuits. Progress in this direction
will provide insight into the microcircuit mechanisms of working memory,
such as found in the prefrontal cortex.
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