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Learning to associate unambiguous sensory cues with rewarded
choices is known to be mediated by dopamine (DA) neurons.
However, little is known about how these neurons behave when
choices rely on uncertain reward-predicting stimuli. To study this
issue we reanalyzed DA recordings from monkeys engaged in the
detection of weak tactile stimuli delivered at random times and
formulated a reinforcement learning model based on belief states.
Specifically, we investigated how the firing activity of DA neurons
should behave if they were coding the error in the prediction of
the total future reward when animals made decisions relying on
uncertain sensory and temporal information. Our results show
that the same signal that codes for reward prediction errors also
codes the animal’s certainty about the presence of the stimulus
and the temporal expectation of sensory cues.
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When an inexperienced animal hears a soft rustle in the
nearby foliage, it does not associate this cue with the es-

caping prey that it observes immediately after. How does the
animal get to learn that the correct action to take is to approach
it and try to get it? In perceptual decision-making experiments,
animals learn how to make decisions based on their perception
of weak sensory stimuli, receiving a reward for their correct
choices, which they are taught to communicate by means of a
specific motor action (1–7). The learning of these tasks is pre-
sumably mediated by the activity of midbrain dopamine (DA)
neurons (8). Although DA recordings made while animals are
engaged in making such difficult decisions are scarce, experiments
on Pavlovian and instrumental conditioning have shown that under
a novel stimulus–reward association, DA neurons respond to the
unexpected reward with an activity burst. Remarkably, after training
this phasic response is shifted to the conditioned stimulus where
it works as a signal predicting the future reward (8–12). From a
computational standpoint, reinforcement learning (RL) methods
(13) have been successfully applied to explain this and many other
observations (ref. 14 and for reviews see refs. 15–17). According
to the reward prediction error (RPE) hypothesis (18, 19), the DA
phasic activity signals an error in the prediction of the expected total
reward (20–22) and it is used to learn associations between rewards
and task events.
In classical and instrumental conditioning the reward acts as a

reinforcement, strengthening the association with the stimulus,
provided the animal follows the task instructions. In some ex-
periments the reward was delivered only after the animal made a
choice between alternative options (20, 23, 24). However, in
those studies the task events were unambiguous: The animals’
reports were mostly correct and there was a well-defined tem-
poral relationship between the perceived stimulus and reward
delivery. However, this is very different from the real-world sit-
uation described above in which the reward is announced by a
muted sound produced in a noisy environment at an unexpected
time. Consequently, little is known about the DA signal in such
uncertain conditions and up to now few experiments have attempted

to fill this gap. The existing studies seem to indicate that the DA
signal has a much richer structure than in simple choice para-
digms. For example, in ref. 25 it was found that the response to
visual dynamic random dot stimuli is more complex than the
response to the stimuli commonly used in previous studies. The
DA activity seemed to follow a more elaborate temporal profile,
first responding abruptly to the onset of the stimulus (pre-
sumably due to its detection) and then producing a more ex-
tended response (supposedly due to the decision-making process)
(25, 26). In another recent study (27) the authors recorded DA
neurons while a monkey was engaged in the detection of weak
vibrotactile stimuli. In this task, when the animal was instructed to
communicate its choice by pushing one of two push buttons, DA
neurons coded the uncertainty associated with a perceptual judg-
ment about the presence or absence of the stimulus.
Here, we combined data analysis and computational modeling

to investigate the DA signal recorded from midbrain neurons as
monkeys detected weak vibrotactile stimuli applied at random
times (Fig. 1A and SI Materials and Methods). In this task (6, 28),
a start cue indicated the beginning of a trial and was followed by
an interval of variable duration after which, with probability 0.5,
the vibrotactile stimulus was applied. After a fixed interval, a go
cue instructed the monkey to communicate its decision about the
presence or absence of the stimulus by pushing one of two but-
tons. The animal was rewarded in all correct trials. The difficulty
of the task stems from the use of very weak stimulus amplitudes
and from the uncertainty about the time of possible stimulation.
It has been proved that because of these uncertainties, the firing
activity of frontal lobe cortex neurons codes internal processes
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associated with the elaboration of the decision reports in this
task (29–31).
A key result in the midbrain DA system was that the neurons’

response to the go cue is weaker in trials with stimulus-present
choices (hit and false alarm trials) than in trials with stimulus-
absent choices (correct rejection and miss trials) (27). This was
attributed to the higher certainty of the animal in “yes” re-
sponses. The result is important because it indicates that the DA
phasic response reflects internal processes; however, several is-
sues have been left unanswered. For instance, the nature of those
processes was attributed to decision certainty on the basis of a
comparison of the probabilities of reward in stimulus-present vs.
stimulus-absent choices, which was higher in the former case.
However, in the task the animal made a choice and received a
reward only after the delivery of the go cue. It is then not clear
whether the DA phasic response to that signal was related to the
choice itself or to some other process that occurred during
the formation of the decision. Besides, whatever the nature of the
process, it should be explained why it became visible in the DA
activity under the application of the go cue. Finally, the response to
this event was different in each of the four trial types and the
reason for this gradation in the DA activity was not explained.
In addition to the uncertain presence or absence of the stim-

ulus the detection task also has temporal uncertainty. The effect
of the trial-to-trial variability in the trial duration on the DA
activity was not considered in the previous work (27). However,
it is known to have important consequences over prefrontal
neurons (29, 31) and it is reasonable to believe that it will also
affect the midbrain DA system. In fact, effects of temporal var-
iability on DA neurons have been reported several times in tasks
without stimulus uncertainty (32–34) or with it (25). To in-
vestigate these issues further we have taken a different approach,
proposing a model based on the RL framework and using it to
interpret the activity of DA neurons. Because of the uncertainty
on the stimulus amplitude and on trial duration, the model es-
timates the total reward and RPEs using belief states (35–37).

Results
Temporal Profile of the DA Response. Behavior can be described in
terms of the four possible trial types of the vibrotactile detection

task. Stimulus-present trials can be correct (hits) or wrong (misses)
responses, while stimulus-absent trials produce correct rejection
(CR) or false alarm (FA) responses. Reward is delivered only in
trials with correct responses. The electrophysiological results pre-
sented in this work were obtained from midbrain DA neurons
responding to reward delivery with a positive phasic activation in
correct (rewarded) trials and with a pause in error (unrewarded)
trials (23, 33). These are 23 of the 69 neurons analyzed in ref. 27
(see Fig. S1 and SI Materials and Methods for the selection criteria).
We started the analysis of the selected DA neurons by computing
their average firing rate during the vibrotactile detection task (Fig.
1B). Its temporal profile is similar to that of the firing rate of the
larger population of midbrain DA neurons analyzed before (27).
However, there seems to be an important difference between the
two datasets: In Fig. 1B, the DA activity immediately before the go
cue exhibits a pronounced decay in all trial types. Instead, the firing
rate of the discarded neurons does not show this modulation (Fig. S2).

Transient DA Activity During the Possible Stimulation Period. If the
DA response to the go cue codes some type of certainty, we
wondered how the activity of the DA midbrain neurons might
have acquired this property. We reasoned that a detection pro-
cess and the certainty about detected events could have been
elaborated in cortical circuits and then transmitted to midbrain
neurons, producing transient changes in their activity. We then
investigated the existence of transient activation of the DA
neurons during the possible stimulation window (Fig. 1A; the
interval between 1.5 s and 3.5 s after the key down event).
It has been suggested that the initial response of DA neurons

to external stimuli reflects their physical salience (26). In fact,
Fig. 1B shows that in hit trials the vibrotactile stimulus generates
a clear transient response with a linear dependence of the neu-
rons’ firing rate at the stimulus onset as a function of the stimulus
amplitude (Fig. 1C). This effect had been observed for the larger
dataset (27), but here we show that it is also present for neurons
compatible with the RL framework.
Fig. 1B indicates that the vibrotactile stimulus generates a

phasic response in the DA neurons only in hit trials (0.5-s
stimulus window) (27). However, there are reasons to believe
that the apparent unresponsiveness of DA neurons in FA and
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Fig. 1. Detection task and temporal profile of the DA neurons’ activity. (A) Trials began with a start cue instruction, i.e., when the stimulator probe indented
the skin of one fingertip of the restrained hand. The monkey reacted by placing its free hand on an immovable key (key down event). In stimulus-present
trials, after a variable prestimulus period (1.5–3.5 s), a vibratory 0.5-s stimulus was presented. Then, after a fixed delay period (3 s), the go cue (stimulator
probe tip lifted off the skin) was delivered and the monkey communicated its decision by pressing one of the two buttons (push button event). The reward
was delivered immediately after the push button event in correct choice trials. Stimulus-absent trials had the same temporal structure with the only difference
that the vibrotactile stimulus was not presented. (B) Mean population firing rate of midbrain DA neurons (black line, ±SEM colored bands) plotted as a
function of time for the four trial types. Activity is aligned to the start cue (Left), go cue (Center), and reward delivery (Right). The dashed line indicates the
baseline activity (5.1 spikes per second). Before the go cue the activity exhibited a pronounced decay with respect to the baseline in all trial types. (C) Re-
sponses of DA neurons at the stimulus onset (SO) in yes-decision trials sorted by stimulus amplitude. Data showed a positive linear increase of the response
with the amplitude of the stimulus (R2 = 0.98, P < 0.001) (see SI Materials and Methods for more details on data analysis).
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miss trials requires a more detailed analysis. For example, in FA
trials the animal indicated the presence of a stimulus and this
perception could somehow be reflected in the activity of DA
neurons. Also, since the majority of miss trials occur for low-
amplitude stimuli, the existence of a transient response to
high-amplitude stimuli might be hidden in the mean over all miss
trials (neurons in cortical areas are activated by the stimulus even
in miss trials) (6). Hence, one should not discard that in high-
amplitude miss trials the information about the presence of a
stimulus is transmitted to midbrain neurons.
We then investigated whether there are transient DA re-

sponses in high-amplitude miss trials and FA trials. In miss trials
the onset of the stimulus seems not to produce any evident
modulation of the firing rate (Fig. 1B); it could then be argued
that in these trials the stimulus was not detected by cortical
frontal neurons. Indeed, most miss trials occur when the stimulus
amplitude is weak and the firing rate of DA neurons is not
modulated by its application (green trace in Fig. 2A, Left).
However, when high-amplitude miss trials are analyzed, we see
that the firing rate of the cells did increase at stimulus onset
(blue trace in Fig. 2A, Left).
In FA trials, although the subject reported the presence of a

stimulus, the firing rate in Fig. 1B does not show any apparent
modulation. Thus, it is not clear how a stimulus-present choice
was elaborated during the trial. A recent work about frontal lobe
cortex neurons recorded while monkeys performed the same
detection task (31) sheds light on this issue. In FA trials, those
cortical neurons underwent transient activity increases re-
sembling the response to a weak true stimulus. These transient
FA events occurred at random times within the possible stimu-
lation window, that is, inside the 2-s interval starting 1.5 s im-
mediately after the key down event (Fig. 1A). We have then

assumed that these events are transmitted to DA neurons in a
way similar to that of true stimuli. If this assumption were correct,
then the mean firing rate of DA neurons in FA trials, computed
during the possible stimulation period, should be slightly higher
than the mean firing rate in CR trials evaluated during the same
period. To test this hypothesis, we aligned all FA trials to the key
down event and compared their mean firing rate in the possible
stimulation window with the mean firing rate of CR trials com-
puted in the same temporal window. The results indicate that the
mean firing rate in FA trials is significantly higher than in CR
trials (Fig. 2B, Left). This seems to be an exclusive property of
this particular temporal interval: The mean firing rates in FA and
CR trials computed outside the possible stimulation window are
rather similar (Fig. 2B, Left). As a further test that the elevation
of the firing rate during the possible stimulation period is specific
to FA trials, we did a similar analysis with low-amplitude miss
trials aligned to the key down event (Fig. 1A). In contrast to what
happened with FA trials, the mean firing rate in low-amplitude
miss trials was not significantly different from that of CR trials
either within the possible stimulation window or outside the
possible stimulation window (Fig. 2A, Right).
The transient events discussed above are presumably related to

detection processes taking place before their reception by mid-
brain DA neurons and much before the animal reports its choice.
We interpret them as contributing to the certainty about the
detection of transient activity fluctuations in circuits presynaptic
to the midbrain DA system, distinguishing it from certainty about
the choice, a term which should be used after the animal indi-
cates its decision (38). A precise definition of certainty about the
presence of the stimulus is given later, in the context of our RL
model (Certainty About Stimulus Presence); however, we now give
a qualitative argument explaining why the transient events con-
tribute to this certainty. Regardless of whether the transient ac-
tivation was produced by a true stimulus (as in hit and high-
amplitude miss trials) or by some internal process (as in FA tri-
als), the transient event works as a subjective confirmation that a
stimulus was detected and hence it increases the certainty about its
presence. The degree to which the transient event contributes to
the certainty would depend on its strength. For instance, transient
events generated in FA trials have a similar effect on DA neurons
to those produced by true low-amplitude stimuli (Fig. S4) and they
could convey a similar level of certainty about their detection.
According to the conjecture explained above the activity of DA

neurons could covary with the animal’s choice during the pre-
sentation of the stimulus. This is because the firing rates of cortical
premotor neurons exhibit this covariation (6, 28, 30). The area
under the receiver operating characteristic curve (AUROC) con-
firms that during most of the possible stimulation window (PSW)
the firing-rate distributions in hit and miss trials differ significantly
(P < 0.01; Fig. S5).

Salience of the Go Cue. To obtain further insight about how the
response to the go cue acquired a dependence on the certainty
about the presence of a vibrotactile stimulus, we investigated the
effect of the stimulus amplitude on this task event. First, we note
the DA response to the go cue decreases linearly as a function of
the stimulus amplitude (Fig. 3A); this is similar to the results
found previously for the larger dataset (27). For the moment we
do not make any interpretation about this result, preferring to
discuss it in the context of the model presented below. Instead,
we now wonder whether the response to the reward delivery also
exhibits a dependence on the stimulus amplitude. The analysis
shows that the dependence disappears (Fig. 3B).
Our interpretation of this observation is that the go cue acts as

a physically salient signal that erases from the DA activation (at
least partially) the dependence on the properties of previous task
events. In fact, the responsiveness of DA neurons to the physical
salience of stimuli has been discussed frequently (e.g., ref. 26). A
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(A, Left) In high-amplitude miss trials DA neurons responded transiently to
the vibrotactile stimulus. (A, Right) The activity of neurons after the SO,
standardized with respect to a prestimulus window (SI Materials and
Methods), showed a significant phasic activation (P < 0.05, two-sample t test)
in high-amplitude miss trials compared with low-amplitude ones. (B, Left)
The mean activity in FA trials (SI Materials and Methods) exhibited a sig-
nificant positive modulation with respect to that in CR trials during the PSW
(P < 0.05, two-sample one-tailed t test) but not outside it (P = 0.80, two-
sample one-tailed t test). (B, Right) On the contrary, the activity in low-
amplitude miss trials was indistinguishable from that in CR ones both out-
side (P = 0.28) and within (P = 0.11) the PSW.
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specific implementation of this concept is performed in our com-
putational model (The Reinforcement Learning Model: Formulation).

Effects of Temporal Uncertainty. The effects of the trial-to-trial
variability in the duration of the interval immediately before the
go cue are visible in the phasic DA responses to that event. The
data analysis shows that, in both CR (Fig. 4A, Left) and low-
amplitude miss trials (Fig. 4A, Right), longer trial duration
leads to stronger DA phasic activation. This is opposite to what
was found in some other studies (25, 32) but agrees with ref. 33.
We come back to this issue later, when we explain this result with
our RL model. In contrast, the response to the delivery of reward
is the same for long-duration and short-duration trials, both in
CR and low-amplitude miss trials (Fig. 4B).
The variability of the duration of the trials also produces a

modulation of the DA activity during the period previous to the
go cue (Fig. 1B; downward trend before the go cue). To analyze

this effect, we aligned CR trials at the key down event. The
resulting firing rate has a negative modulation starting at the
earliest time that a trial can end (Fig. 4C, Top). We then asked
whether low-amplitude miss trials, when aligned to the key down
event, showed a temporal profile similar to that of CR trials.
Indeed, in low-amplitude miss trials, the DA phasic response to
the stimulus was not present (Fig. 2A), and the mean firing rates
inside and outside the possible stimulation window are not sig-
nificantly different (Fig. 2B, Right). Clearly, their alignments to
the key down event are also comparable; starting about 2 s im-
mediately before the go cue, the RPEs exhibit a tonic negative
modulation, the same as the one quantified in CR trials (Fig. 4C,
Middle). A similar effect is seen for FA trials (Fig. 4C, Bottom).

The Reinforcement Learning Model: Formulation. It has been sug-
gested that when the brain does not have full access to the
correct value of the physical attributes of the stimuli, the cerebral
cortex uses noisy observations to infer them (39, 40) and that the
midbrain DA neurons and striatal neuronal circuits evaluate the
state of the environment to select the appropriate actions based
on the results of that inference (35–37). In this scheme, the
outcome of the inference process is a posterior probability about
the state of the environment, which is interpreted as a measure
of the belief about that state (41). In line with these ideas, we have
assumed that a Bayesian module (representing cortical circuits) ac-
cumulates sensory evidence to compute a time-dependent posterior
probability about the presence of the vibrotactile stimulus [hereafter
referred to simply as the belief and denoted as bsp(t)]. The belief is
then sent to a RL module, representing midbrain DA neurons and
striatal neuronal circuits (Fig. 5A). This is a valuation and action
selection module that makes predictions about the future reward,
computes the error of this prediction (the RPE), and chooses
whether to press one button indicating a stimulus-present choice or
press another button indicating the stimulus-absence choice.
A crucial question is, When and how does the outcome of the

accumulation process (the belief state) affect the reward prediction
and action selection operations? In the analysis of the experimental
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data we found that DA neurons are activated transiently in hit
trials and in high-amplitude miss trials by the vibrotactile stimulus
and also in FA trials during the PSW by a stimulus-independent
process. A simple and plausible assumption is that the events re-
sponsible for those activations are related to a belief evaluated by
cortical circuits that exceeded a threshold value [the maximum a
posteriori (MAP) criterion sets the threshold at 0.5]. Specifically,
in the model we assume that when the belief computed by the
Bayesian module grows beyond that threshold, it is sent to the
relevant downstream structures. When this happens, a represen-
tation of the stimulus is turned on in the RL module and it is used
to establish associations between the reward and the stimulus. To
accomplish this function, the RL module operates following RL
rules based on belief states with two other important additions,
inspired from the previous data analysis. First, on the basis of the
physical salience of the go cue observed in the data (Fig. 3), we
introduce in the RL module a reset mechanism that allows events
predicting a high reward to disrupt the internal representations of
earlier events (42). This mechanism does not introduce any pa-
rameter in the model (SI Materials and Methods). Second, given the
effects of the variable duration of the trials found with the data

analysis (Figs. 1B and 4), each task event is represented with a
temporal resolution that degrades with the passage of time (43)
(Fig. 5B). To update the value of states and actions, the RLmodule
computes the error made in the prediction of the reward as δ(t) =
r(t) + TD(t), where r(t) is the reward received at time t in a trial and
TD(t) is the temporal difference between the total rewards pre-
dicted at times t + 1 and t (13) (see SI Materials and Methods for
further details on the model). According to the RPE hypothesis,
δ(t) should be compared with the population average of the mean
firing rate of the DA neurons.
In the following we use the model to show that these mech-

anisms, belief states, transmission of detected events, salience,
and a temporal representation with limited resolution, suffice to
explain the DA response to the go signal. We start by verifying
that the salience of the go signal actually produces a RPE after
the reward delivery independent of the stimulus amplitude. Then
we analyze the events transmitted from the Bayesian to the RL
module in hit trials, high-amplitude miss trials, and FA trials.
After that, we present the model explanation of how belief states
produce a RPE at the go cue that depends on the trial type,
reproducing the graded response of the DA neurons to this task
event, exhibited in Fig. 1B. The explanation of this observation is
one of the main objectives of the proposed model. Finally, we
close the analysis of the model with a study of how temporal
expectation modulates the RPE and propose an explanation of
the differences in various experimental observations about the
dependence on trial duration of phasic responses.

Salience of the Go Cue in the RL Model.Data show that although the
DA phasic activation at the go cue depends on the stimulus am-
plitude, this dependence disappears in the response to the reward
(Fig. 3), supposedly as a consequence of the physical salience of the
cue signal. This property led us to formulate a RL model in which
the task events are endowed with a reset mechanism. We now
analyze in the model the effect of this mechanism on the de-
pendence on the stimulus amplitude of the RPE at the go cue. In
agreement with the data (Fig. 3), numerical simulations of the
model exhibit a decreasing linear dependence of the RPE at the go
cue with the stimulus amplitude (Fig. 6A, Left) whereas after the
delivery of the reward the analysis does not show a significant slope
(Fig. 6A, Right).

Transmitted Events During the Period of Possible Stimulation. We
start by verifying that the belief transmitted from the Bayesian to
the RL module produces transient changes in the RPE in cor-
respondence to those observed in the DA activity. In hit trials,
after the application of the vibrotactile stimulus, the RPE in-
creases linearly with the stimulus amplitude (Fig. 6B), as the DA
response does (Fig. 1C).
An immediate prediction of the model is that miss trials can

arise in two possible ways. The most frequent ones happen when
the stimulus is too weak to be detected by the Bayesian module.
Less often, for stronger amplitudes, even if the stimulus is de-
tected (Fig. 6C), the variability of the action selection process
may generate a stimulus-absent choice, an effect that in our
simulation occurred in about 12% of all miss trials. In fact, data
show that in high-amplitude miss trials the animal reported
stimulus absence, although the firing rate of the cells did increase
at stimulus onset (blue trace in the Fig. 2A, Left). Similar mis-
matches between the cortical detection and action selection
outcomes are also present in CR and FA trials (Fig. 6E).
In the RL model, the times when the belief exceeds its

threshold value are known. FA trials aligned to those times ev-
idence a transient increase of the RPE signal δ(t) at the time of
the FA events (Fig. 6D, Left). Furthermore, those detection
times are distributed mainly during the possible stimulation
window (Fig. 6D, Right). Interestingly, the distribution is similar
to the one found from the activity of prefrontal neurons (31).
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Fig. 5. Model architecture and temporal representation of task events.
(A) The model relied on two structures: a Bayesian module and a RL module.
The Bayesian module used the noisy observations received from the envi-
ronment to compute a time-dependent posterior probability (the belief)
about the presence of external events and sent it to a RL module. The RL
module consisted of an actor–critic architecture (13). It used the information
inferred by the Bayesian module to evaluate and to select actions (see SI
Materials and Methods for more details on the model). (B) Each task event
was represented across time via a set of functions reproducing the event at
different latencies from its onset. Importantly, the resolution of the repre-
sentation degraded with the passage of time (43).
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Note that in FA trials perception arises from detected transient
events in the cortical module followed by a yes response.

Certainty About Stimulus Presence. We now turn to the main issue
we want to address with the model: how a RL module receiving
uncertain information through a Bayesian inference process can
explain the graded phasic response to the go cue. The compu-
tations carried out by the DA neurons during the delay period
are crucial to understanding and interpreting their responses to

the go cue. The immediate effect of a large stimulus belief on the
RL module is to initiate the evaluation of how much reward it
predicts until the end of the trial, that is, the estimated value of
the stimulus. Fig. 7A shows the reward predicted by the stimulus
in trials with stimulus-present choices. The predicted reward
increases in a graded manner with the stimulus amplitude. The
gradation is maintained during all of the delay period, until the
presentation of the go cue. Note that the transient events in FA
trials predict a reward similar to that estimated by low-amplitude

by the Bayesian module
Stimulus detected

A

C

E

D

B

Fig. 6. Basic properties of the RPE. (A) The RPE at the go cue depended on the stimulus amplitude but this dependence was lost at the reward delivery.
(A, Left) In stimulus-present decisions the RPE at the go cue linearly decreased (R2 = 0.84, P < 0.001) with the amplitude of the stimulus. (A, Right) The
dependence on the amplitude completely disappeared in the RPE at the reward delivery (R2 = 0.03, P = 0.64) as a consequence of the reset property of the go
signal. This should be compared with the DA activity in Fig. 3. (B) Responses at the SO in yes-decision trials as predicted by the model sorted by stimulus
amplitude. The model showed a positive linear increase of the response with the amplitude of the stimulus (R2 = 0.98, P < 0.001). See SI Materials and
Methods for more details on the model analysis). (C) The model predicted a response to the stimulus as a consequence of a Bayesian detection in miss trials
when the amplitude is high. A similar response was apparent in the data Fig. 2B. (D, Left) The RPE in FA trials after an erroneous detection showed a phasic
response. (D, Right) In the model these erroneous detection events were produced mainly within the PSW. KD denotes the key down event. (E) Percentage of
trials where a transient event was detected by the Bayesian module, for each of the four task contingencies. Note how the occurrence of a detected event in
the Bayesian module did not by itself generate perception (miss trials). The values of the model parameters are given in Table S1.
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Fig. 7. Predicted reward during the delay period and responses to the go cue and to the reward delivery. (A) In trials with stimulus-present choices during the
delay period the predicted reward increased with the stimulus amplitude in a graded manner. In FA trials (red line) its temporal profile was similar to that
observed when a low-amplitude stimulus is perceived. (B) The predicted reward during the delay period was higher in trials where the Bayesian module
detected a stimulus. It was higher in miss than in CR trials due to the detection of the stimulus when the amplitude was high. At the go cue, because of the
reset mechanism, the reward predictions in the four trial types collapsed in approximately the same value and immediately after they separated into two
values corresponding to the possible decisions. (C) The RPEs at the go cue were lower in stimulus-present decisions (hit and FA trials) than in stimulus-absent
choices (miss and CR trials). According to the model this gradation was determined by the modulation of the reward prediction described in A and B and by
the reset mechanism.
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stimuli (red line in Fig. 7A). The predicted reward increases with
time during the delay period, as a consequence of the smaller
temporal discount.
The total predicted rewards in trials with stimulus-absent

choices lie below those estimated in trials with stimulus-present
choices (Fig. 7B). This is because in the first case the key down
event is the only task event contributing to the prediction, and
instead in the second case the detection of an event increases the
belief about the presence of the stimulus so that it can reach its
threshold and generate an extra contribution. Another relevant
observation is that the predicted reward is slightly higher in miss
than in CR trials. As we noted before, miss trials behave the
same as CR trials, but only when low-amplitude stimuli are
presented; for high-amplitude stimuli, a detected event increases
the belief which then is transmitted from the cortical to the RL
module, producing a somewhat higher estimated value.
When the go cue is applied, its high physical salience partly

erases the information about the stimulus amplitude and the
corresponding reward predictions collapse in approximately the
same value (Fig. 7A). Since the error of each of these predictions
at the time of the go cue, δ(t), is the difference between the
reward predicted by this event and the prediction at the time
preceding it, the response to the go cue should be higher in FA
than in hit trials, a result which is verified by the data (compare
the RPE in Fig. 7C with the response of DA neurons to the go
cue in Fig. 1B). A similar argument explains why the response to
the go cue in CR trials is slightly higher than in miss trials (Figs. 1B
and 7C); here the small difference comes from the higher value of
miss trials during the delay period (Fig. 7B). Finally, since during
the delay period the predicted reward in trials with stimulus-absent
choices is smaller than in trials with stimulus-present choices, the
responses to the go cue are larger in the former case than in the
latter. The resulting model prediction for the response to the go
cue in the four trial types is summarized in Fig. 7C.
The above arguments explaining the response to the go cue

can be phrased in terms of how the subject’s certainty about a
detected event evolves throughout the delay period. This cer-
tainty can be defined as the probability of a correct detection.
Since the Bayesian module decides about the presence of a
stimulus using the MAP criterion, the probability of a correct
cortical detection is either the posterior probability about the
stimulus-present state [i.e., the belief bsp(t)], if this posterior is
above 0.5, or the posterior about the stimulus-absent state [i.e.,
1 − bsp(t)], if it is below 0.5. When the Bayesian module transmits
the belief to the RL module, we can then say that all of the
subsequent computations done in this module are based on the
certainty that the received information is correct. In particular,
the different responses to the go cue in hit and FA trials are due
to the difference in certainty of these two trial types. Also, the
difference between the responses in miss and CR trials comes
from the higher level of certainty in a fraction of miss trials. The
smaller response to the go cue in stimulus-present choices than
in stimulus-absent choices can be attributed to the larger cer-
tainty of the animal when it reports the stimulus presence.
The go cue predicts the total future reward averaged over yes

and no responses. After its delivery, because of the reset
mechanism, the RPE ceases to depend on the trial type and
starts coding the possible choices. This is seen in the response to
the reward both in the model and in the data (Fig. S2). The
smaller RPE in hit trials than in CR ones is explained by a larger
fraction of rewarded trials of the former type.

Temporal Expectation. In the detection task used here, the time
sequence of some events is not fixed and their presentation
cannot be predicted. Studies in cortical areas indicate that this
produces an expectation of the forthcoming events that is gov-
erned by the subjective hazard of occurrence of the expected
event (44). This temporal expectation might affect DA neurons

by modulating their firing rate during the intervals between task
events (25, 32, 33). In our detection task this is particularly evi-
dent during the interval preceding the go cue, where the firing
rate in the four contingencies decreases with respect to its
baseline value (Fig. 1B). Note, however, that the duration of this
interval depends on the trial type. While in stimulus-present
trials the delay period has a fixed duration (3 s), in stimulus-
absent trials the interval between the key down event and the
go cue varies from trial to trial, taking values between 5 s and 7 s
(Fig. 1A). However, the fact that the decay is also observed in hit
trials with a fixed stimulus onset–go cue interval suggests that
there must be other factors responsible for the decrease of the
firing rate. According to the model, the possible causes are the
following: In some hit trials, particularly those with weak stim-
ulus amplitude, the event detected by the Bayesian module was
not the stimulus itself but a noisy fluctuation, similar to what
happens in FA trials. In these trials, the effective duration of the
delay period depends on the time when the fluctuation occurs,
which lies within a 2-s temporal window (31). However, these are
only a small fraction of the total number of hit trials and this
effect is expected to give a small contribution. Even rarer are
those weak-amplitude trials in which the stimulus was not de-
tected, but variability in the selection of the action led to the
correct response. Finally, an imprecise estimate of the duration
of the delay period could also lead to an effective variability of
this interval. This effect occurs in all trials and it could be the
most important explanation of the decaying tonic activity in hit
trials. The coarse resolution of the temporal representation of
the task events that we introduced in the model (Fig. 5B and SI
Materials and Methods) allows us to test this conclusion. To an-
alyze its action on the RPE, we aligned the simulated hit trials at
the onset of the stimulus and confirmed that the limited tem-
poral resolution does generate a negative modulation of the
tonic activity that starts about 0.5 s immediately before the go
cue (cyan line in Fig. 8A).
The model also predicts a decreasing activity in all of the other

types of trials (Fig. 8B). In CR trials both the coarse resolution of
the temporal representation and the variability in the duration of
the interval between the key down event and the go cue could
contribute to this effect. Since this variability spans a 2-s interval,
the decay is expected to start about 2 s immediately before the go
cue. To check this in the model, we aligned simulated CR trials
at the key down event and averaged them by keeping each trial
only until the time when the go cue was presented. The resulting
quantity exhibits the expected decay (Fig. 8B, Middle). Since the
precision of this timing is affected by the limited resolution of
the temporal representation, this signal starts decreasing slightly
sooner. The effect is weak, but it is apparent in the traces in
Fig. 8B.
According to the model, most FA trials (84%, Fig. 6E) arise

from transient events that occur at random times during the
possible stimulation window (Fig. 6D, Right). Since FA events
behave as low-amplitude true stimuli, they generate an expec-
tation of the go cue roughly 3.5 s immediately after their time
occurrence. Therefore, they produce a slow negative modulation
in the RPE beginning ∼5 s after the key down event (because the
first possible production time of FA events is around 1.5 s after
the key down event), as shown in Fig. 8B, Top. Also, note the
slight elevation of the RPE during the window of possible
stimulation, as a consequence of the random production times of
the FA events (as described in Fig. 6D). Similar effects are seen
in the data (Fig. 4C, Bottom).
To complete the study of temporal expectation in the detection

task, we now come back to the analysis of the dependence on the
duration of the trial of the phasic response to the go cue. As we
have already seen, the largest DA firing activity occurs for long
durations (Fig. 4A). The same behavior is seen in the model
simulations in both CR (Fig. 8C, Left) and low-amplitude miss
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trials (Fig. 8C, Right). It could be argued that long trials should
produce a response smaller than short ones because the longer the
interval, the higher the hazard for the occurrence of the go cue
and the better its prediction by the RL module (32). However, the
response to the go cue is also affected by the finite resolution of
the temporal representation. Longer intervals are represented
more coarsely than short intervals and the occurrence of the go
cue becomes more difficult to predict in these trials. Hence, for
some value of the temporal resolution, the response to the go cue
becomes larger for long intervals than for short intervals. Again in
agreement with the data, where the DA phasic activation at re-
ward delivery does not depend on trial duration (Fig. 4B), the
RPE after that event is the same for long-duration trials and short-
duration trials. This result is shown in Fig. 8D, Left and Right, for
CR trials and low-amplitude miss trials, respectively.
Summarizing, during the variable interval in the task, the RPE

is modulated by the hazard function for the occurrence of the go
signal. The limited resolution in the estimation of time intervals
produces a similar modulation in hit trials. The hazard function,
together with the imprecise temporal estimation, determines the
phasic response to the go cue.

Discussion
When the state of the environment is uncertain, noisy observa-
tions have to be combined with an internal estimate of the state,
referred to as the belief state. This is the basic scheme followed
in early proposals about how to extend the RL framework to
model the DA activity in decision-making tasks (35–37). In this
approach, the belief state is used to predict rewards, to compute
the error in the prediction, and to select the action that indicates

the final choice. On the experimental side, in ref. 27 the authors
studied a detection task in which in each trial the animal made a
choice about the presence or absence of a vibrotactile stimulus.
Their main finding was that the response of midbrain DA neu-
rons to a go signal reflected an internal process that they termed
decision certainty, that is, the certainty the animal had on its
choice. Here, to investigate this and related issues further in the
midbrain DA activity, we adopted a different approach that
allowed us to identify the type of certainty coded by the go signal
and to elucidate the reasons why this certainty becomes visible at
that task event. To achieve this, we defined a RL model based on
the belief about the presence of the stimulus and three other
features, suggested by our empirical observations: the transmission
of transient activity events from a Bayesian module to a RL
module, the salience of the task events, and a temporal represen-
tation of those events with limited resolution. Although other au-
thors have included belief states (36), reset mechanisms (42), and
temporal representations with finite resolution (45) separately in
RL models, the need to consider them together in tasks with un-
certain reward-predicting stimuli has not been noted before.
Transient increases in the firing rates of DA neurons appear in

hit trials, in high-amplitude miss trials at the onset of the stim-
ulus, and plausibly in FA trials during a possible stimulation
window. In the model, the strength of these transient events
conveys the belief (and certainty) about the presence of the
vibrotactile stimulus. This certainty remains hidden during the
period preceding the go cue but it becomes evident in the response
to this signal, generating a gradation of the RPE according to the
trial type. This visibility is due to two robust properties of the
model: (i) Transmitted transient events of higher strength predict a
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higher reward (Fig. 7A), and (ii) because of the salience of the go
signal, the predicted reward after the delivery of the go cue is
roughly independent of the occurrence of a transient event and
of its strength (Fig. 7 A and B). As a consequence, the RPE is
smallest for transient events of large strength and is largest in the
absence of those events. This means that the RPE is large in CR
trials, is slightly smaller in miss trials, and takes its smallest values in
FA trials followed by hit trials (Fig. 7C), in agreement with the
graded DA phasic response to the go signal observed in the data
(Fig. 1B).
Our results help to clarify up to which point the DA response

to the vibrotactile stimulus correlates with its perception. The
uncertainties about the presence or absence of the vibrotactile
stimulus and the time when it is applied cause a trial-type–
dependent activity in DA neurons during the possible stimula-
tion window. Part of this variability comes from a detection
process occurring in a Bayesian module. Detection of a true
stimulus produces a transient response in a RL module and leads
to hit trials. Nondetected stimuli lead to miss trials. A perhaps
less expected phenomenon is that in high-amplitude miss trials,
the stimulus is detected, but the variability of the action selection
process produces a stimulus-absent choice. In these trials, the
model predicts that the cortical detection of the stimulus acti-
vates the DA neurons, although the animal’s report indicates
that it did not perceive it. More interesting is the case of FA
trials. The average of the firing rate of DA neurons over these
trials exhibits a positive modulation throughout the interval of
possible stimulation. A modulation is not apparent in CR trials,
although in both trial types the stimulus was not presented. The
explanation comes from a recent study on cortical premotor
neurons (31) that found that FA trials arose from transient ac-
tivity events similar to those evoked by low-amplitude stimuli.
Consistent with this finding, our study found that the positive
modulation observed in the DA activity might arise from tran-
sient cortical inputs produced at random times within the period
when the stimulus is expected. In conclusion, perception is
normally accompanied by a transient increase of the DA activity
during the PSW, except in high-amplitude miss trials. In this
case, although the stimulus induced a response of the DA neu-
rons, the animal indicated that it did not perceive it.
Interestingly, the DA activity during the period preceding the

go cue codes temporal expectation. The mean firing rate starts to
deviate from its baseline value around the first time when the go
cue can appear. As time elapses, the deviation increases in
magnitude, resembling a form of negative RPE strictly related to
temporal expectation of the forthcoming cue. In addition to this
negative slow modulation, we found that also the DA phasic
activation at the go cue depends on the duration of the temporal
interval preceding it, resulting in a stronger response for long
intervals. While some previous results appear not to be in con-
tradiction with this pattern of phasic activation (46), other
studies (25, 32, 47) reported an opposite trend (stronger re-
sponse for short intervals). Here we propose an explanation for
this discrepancy: The size of the response to the go cue is de-
termined by the hazard of occurrence of this event and by the
finite resolution in the estimation of the elapsed time, which is
worse for long (as in our work) than for short intervals (as, e.g.,
in ref. 32). This explanation is consistent with an argument made
in a somewhat different investigation: In a contextual instrumental
task in which the hazard of occurrence of a rewarded cue increased
with the number of trials elapsed since its previous appearance,
in ref. 48 it was found that during the early stage of learning, the
response to this cue did not decrease with that number. It was
argued to be due to the large counting errors produced during
that stage. As in our detection task, the different responses after
long or short intervals are due to the limited resolution in the
estimation of time.

In our model, task events initiate an internal representation
with coarse temporal resolution. Recent works have provided
direct evidence for a representation of time in the striatum that is
distributed over a set of neurons (49, 50) and that DA neurons
may directly modulate timing (47). The specific set of functions
adopted in our work (43, 51) is a possible realization of these
findings. Although there are alternative temporal representa-
tions (45) and approaches (52), our choice was dictated for the
sake of simplicity and because there exist detailed studies of this
internal representation that make its use attractive (53).
The main results of the model rely on robust features that

depend little on the precise parameter values. Partly for this
reason and also because of the difficulty of the computation, we
did not attempt to fit the model to the DA electrophysiological
data. Instead, we preferred to identify the mechanisms that can
explain how the DA activity is modulated by the stimulus and
temporal uncertainties present in the task. In addition, some
parameters have been set according to physiological constraints;
this is the case of the input noise, where in the model it appears
as Poisson spike trains with firing rates set to values similar to
those observed in prefrontal neurons. Hence, the events trans-
mitted to the RL module were not controlled by tuning the input
noise. Other features of the model did not require new param-
eters; for instance, the reset induced by the salience of the task
events is based on the direct comparison between the reward
predicted by the current event and that predicted by the events
preceding it, without including any specific threshold parameter.
The parameters associated with the limited resolution of the
temporal representation of the task events were set in such a way
that the decay of the RPE at the end of the interval preceding
the go signal was similar to the decay observed in the data. The
same values of those parameters yield a dependence of the
phasic response to the go signal on the duration of the trial larger
for the longest trial durations. The discount factor, also relevant
to describe this phenomenon, was fixed at γ = 0.98, which is a
standard value for this parameter.
Assessing the generality of our conclusions would require

consideration of other experimental paradigms to guide the
search for relevant features to be included in more complete RL
models. An intriguing case is the discrimination between two
sequential stimuli, when some physical property of one of them has
to be kept in working memory before the presentation of the second
one. An example of this is the somatosensory discrimination task
thoroughly studied in several cortical areas (3, 7). In the purely
temporal domain, the study of tasks that compare two temporal
patterns of pulse stimuli (54) would help to define the most conve-
nient temporal representations. A systematic study of these and other
paradigms often used to investigate decision-making processes would
contribute to understanding how DA influences the learning of as-
sociations between stimulus and reward under uncertain conditions.
The results obtained in the model and experimental data show

that the RPE signal codes also (i) the animal’s certainty about
the presence of the stimulus; (ii) the temporal expectation of
reward predicting sensory cues; and (iii) to some extent, also the
perception of uncertain stimulus. As it is proposed by the model,
these processes take place in a Bayesian (plausibly cortical)
module, which are then sent to a RL module (plausibly the
midbrain DA system and the striatum). The results of the model
and the experimental data show that the activity of the DA
neurons is not a mere reflection of the cortical signals but rather
that they are transformed into a new signal with a quite different
function. However, some expressions of the original inputs are
still visible in the firing rate of the DA neurons. These are, for
example, the transient events that are related to decision-making
processes, the certainty about the presence of these events
originates a hierarchy of responses to cues predicting reward,
and the acquired knowledge about the stochastic temporal
structure of the trials produces a declining DA activity during the
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intervals between task events. Whether these processes depend
only on the inputs to the DA neurons and the RL computations
performed over them or whether there is further elaboration in
the midbrain DA system is an open question.

Materials and Methods
Methods for analyses and the model are provided in SI Materials and
Methods. Animals were handled in accordance with standards of the Na-
tional Institutes of Health and Society for Neuroscience. All protocols were

approved by the Institutional Animal Care and Use Committee of the Insti-
tuto de Fisiología Celular.
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Detection Task. Two monkeys were trained to detect a vibro-
tactile stimulus of variable amplitude applied to one of each
monkey’s fingertips (6). Stimulus-present trials were ran-
domly interleaved with an equal number of stimulus-absent
trials. Stimuli were delivered to the skin of the distal segment of
one digit of the restrained hand, via a computer-controlled
stimulator (2-mm round tip; BME Systems). Initial probe in-
dentation was 500 μm. Vibrotactile stimuli consisted of trains of
20-Hz mechanical sinusoids with nine different amplitudes be-
tween 2.3 μm and 34.6 μm. Crucially, some of the amplitudes
were very weak and consequently difficult to detect. Animals
were rewarded with a drop of liquid for correct behavioral re-
sponses (correct detections in stimulus-present trials and CRs in
stimulus-absent trials) and received no reward otherwise (miss
trials and FA trials).

Recordings. Data for this analysis were obtained from an earlier
study (27). Recordings were obtained with quartz-coated plati-
num–tungsten microelectrodes (2–3 MΩ; Thomas Recording)
inserted through a recording chamber located over the central
sulcus, parallel to the midline. Midbrain DA neurons were
identified on the basis of their characteristic regular and low
tonic firing rates (1–10 spikes per second) and by their long
extracellular spike potential (2.4 ms ± 0.4 SD). Among the
69 neurons analyzed in the previous work we selected a group of
23 cells (monkey A, n = 9; monkey B, n = 14). The selected
group of cells corresponded to those neurons whose response to
the reward delivery did not violate a RL principle: They showed
a positive phasic activation or lack of response in correct trials
(hit and CR trials) while the activity paused or remained at the
baseline level when the reward was omitted (miss and FA trials).
A similar criterion has been adopted in many electrophysiolog-
ical studies of midbrain DA neurons (23, 33). The recorded sites
of the selected neurons differed from the discarded ones only in
their depth (the antero-posterior and medio-lateral coordinates
were kept constant). The median depth of the 23 selected neu-
rons was 362 μm above the median of the other 46 neurons. A
two-sample t test between the depths of the two groups of neu-
rons showed that their difference was at the margin of statistical
significance (P = 0.055).

Data Analysis. For each neuron, we computed the firing rate as a
function of time, using 300-ms sliding windows displaced every
50 ms (Fig. 1B). Responses to the stimulus (Fig. 1C and in Fig.
2A, Right) were measured in a 500-ms window centered 350 ms
after the stimulus onset and were standardized with respect to a
prestimulation window (of 500 ms centered 700 ms before the
stimulus presentation). Responses to the go instruction (Fig.
3A) were measured in a 250-ms window centered 170 ms after
the instruction and were standardized with respect to a precue
window (of 250 ms centered 500 ms before the cue pre-
sentation). Responses to the reward delivery were measured in
a 400-ms window centered 350 ms after the PB and were
standardized with respect to a precue window of 200 ms cen-
tered 200 ms before the PB (Fig. 3B). The activity outside the
PSW was calculated in two 1-s windows before the start and
after the end of the PSW (from 500 ms to 1.5 s after the KD
event and from 3.7 s to 4.7 s after that event). The mean activity
during and outside the PSW was standardized with respect to
a 500-ms window centered 1 s after the KD event (Fig. 2B).
To determine the statistical significance of the computed

AUROCs in Fig. S5, we used a permutation test with 10,000
resamples (significance was assessed when the permutation test
indicated P < 0.01).

Model.Themodel relies on twomodules: a Bayesianmodule and a
RL module.
Bayesianmodule.This module uses noisy observations to estimate
a posterior probability (belief) about the current state of the
external world, st. More specifically, it calculates the belief
bspðtÞ about the presence of the (ambiguous) vibrotactile
stimulus,

bspðtÞ=P
�
st = spjX1: t

�
, [S1]

where X1 : t is the entire history of observations up to time t. In
what follows we describe the detailed equations used by the
Bayesian module. This module represented some high-level cor-
tical areas receiving inputs from sensory areas. We referred to
these inputs as observations xt and interpreted them as Poisson
trains with firing rates λiði= 0, . . . ,NaÞ.
Each λi corresponded either to the absence of a vibrotactile

stimulus (i= 0) or to the application of that stimulation with one
of the Na = 9 possible values of its amplitude during the time step
t. Each of the 10 mean firing rates corresponded to a state i of
the world. In each time step t the module computed a posterior
probability (belief) btðiÞ about the hidden state of the world,
using the entire history of observations up to time t :

btðiÞ=Pðλt = λijX1: tÞ0. [S2]

The beliefs about the absence and the presence of the stimulus
corresponded, respectively, to

btðsaÞ=Pðλt = λ0jX1: tÞ
btðspÞ=

X
i≠0

Pðλt = λijX1: tÞ. [S3]

Due to the complex temporal structure of the task, evaluating the
btðiÞ required estimating the joint posteriors ~btði, nÞ on the value
of the firing rate of the input ðλiÞ and the time n elapsed since the
environment underwent a change to the state i. We therefore
computed the belief over λt by marginalizing:

btðiÞ=
X
n

Pðλt = λi, lt = njX1: tÞ=
X
n

~btði, nÞ. [S4]

We separated the last part of the history, i.e., the last observa-
tion xt, and calculated each belief recursively over time, using
Bayes’ rule,

~btði, nÞ=Pðλt = λi, lt = njX1: t−1, xtÞ
= k.Pðxtjλt = λiÞ

X
n

Pðλt = λi, lt = njX1: t−1Þ, [S5]

where k=PðxtjX1: t−1Þ is a normalization constant. The second
term in Eq. S5 was simplified using the Markov assumption
and the fact that xt did not depend on the length lt (it depends
only on the firing rate at the current time, λt). This term in
Eq. S5 represented the observation probability (Observation
probabilities). The last term in Eq. S5 could be rewritten as
follows:

Sarno et al. www.pnas.org/cgi/content/short/1712479114 1 of 5

www.pnas.org/cgi/content/short/1712479114


Pðλt = λi, lt = njX1: t−1Þ=
X
j,m

�
P
�
λt = λi, lt = njλt−1= λj, lt−1=m,X1: t−1

�
×P

�
λt−1 = λj, lt−1 =mjX1: t−1

��
=
X
j,m

h
P
�
λt= λijλt−1= λj, lt−1=m, lt = n,X1: t−1Þ

×P
�
lt = njλt−1 = λj, lt−1 =m,X1: t−1

�
× ~bt−1ðj,mÞ

i
.

[S6]

Eq. S5 together with Eq. S6 represented a recursive relationship
for the joint posteriors ~btði, nÞ. Evaluating them required the knowl-
edge of the change-point prior CPPðlt, lt−1, λt−1,X1: t−1, t− 1Þ=
Pðlt = njlt−1, λt−1,X1: t−1Þ and of the transition probability
Pðλt = λijλt−1 = λj, lt−1 =m, lt = n,X1: t−1Þ.
The change-point prior resulted independent from the history

X1: t−1 and, taking into account that the run length either in-
creased by one after each time step or became zero at a change
point, the CPP could be expressed as

CPP
�
n,m, λj, t− 1

�
=

8<
:

1− h
�
λj,m, t− 1

�
h
�
λj,m, t− 1

�
0

if   n=m+ 1
if   n= 0

otherwise.
[S7]

The function hðλt−1, lt−1, t− 1Þ represented the hazard rate, i.e.,
the probability that a change point occurred at time t− 1 given
that the state of the world was λt−1 for exactly lt−1 time steps. It
could be defined accordingly to the task structure (Hazard rate).
The third term of Eq. S6, i.e., the transition probability, could be
written as

P
�
λt = λijλt−1 = λj, lt−1 =m, lt = n

�
=

8<
:

δij
Tij

0

if   n=m+ 1
if   n= 0

otherwise,

[S8]

where δij represented the Kronecker delta and we introduced the
matrix Tij =Pðλt = λijλt−1 = λj, lt = 0Þ representing the transition
probability conditioned to the occurrence of a change point
(Transition probabilities). Using Eqs. S7 and S8 we could rewrite
Eq. S5 as

~btði, 0Þ∝
X
j≠i

X
m

Tijh
�
λj,m, t− 1

�
~bt−1ðj,mÞ

~btði, n≠ 0Þ∝ ½1− hðλi, n− 1, t− 1Þ�~bt−1ði, n− 1Þ.
[S9]

The equations above completely described the temporal evolu-
tion of the ~btði, nÞ once the hazard rate h and the transition
probability matrix Tij were defined.
Transition probabilities. Given that the transition matrix Tij was
conditioned to the occurrence of a change point, we needed only
to define the quantities Ti≠0,sa and Tsp,i≠0. These probabilities
were independent from the particular value of the firing rate λi in
the stimulus-present condition. We obtained that Ti≠0,sa = 1=9
(because all of the nine amplitude values were equally probable)
and Tsp,i≠0 = 1 (because the delay period always followed the
stimulation).
Hazard rate. As for the transition matrix, the hazard rate for the
stimulus-present condition was independent from the particular
value of the firing rate λi. The hazard rate depended only on the
time t− 1, on the duration of an epoch before the transition, lt−1,
and on the state corresponding to that epoch, λt−1.
In the stimulus-absent condition this function took a value

different from zero only during the PSWs and depended on the

epoch length λt−1 and on the time t− 1 (because transitions were
not allowed during the delay period). We defined it as

h
�
λj−1 = λ0, lt−1 =m, t− 1

�
=
�
hsaðmÞ

0
if  m= t− 1
otherwise. [S10]

In the stimulus-present condition, given the task, the hazard rate
depended only on the duration of the epoch before the transition
and was defined as

h
�
λj−1 ≠ λ0, lt−1 =m, t− 1

�
= hspðmÞ. [S11]

The exact form of the functions hsaðmÞ and hspðmÞ depended on
the task temporal structure. If the interval timing mechanism was
perfect, the function hsaðmÞ would represent the hazard rate
corresponding to a uniform probability density function while
hspðmÞ would represent the hazard rate corresponding to a fixed
duration interval lasting the stimulation period.
Nevertheless, these definitions ignored the fact that animals’

interval timing processes did not take place with infinite accuracy
(the accuracy of temporal estimation is supposed to be con-
strained by Weber’s law). Following ref. 44 we calculated a
“subjective” hazard function (based on the assumption of timing
scalar noise) and used these subjective hazards to perform the
inference. The value of the Weber fraction for time estimation
used in the simulations was ϕ= 0.18.
Observation probabilities. The last step to implement Eq. S5 was to
define the quantities PðxtjλtÞ. We considered that the observa-
tion xt represented the number of spikes produced in a sensory
area on a given time step and it was generated from a Poisson
distribution with mean λt. The parameter λ represented the
mean firing rate of a sensory area. Depending on the presence of
the stimulus and on the amplitude value, the parameter λt could
take the value λ0, in stimulus-absent conditions, and the value λi,
with i≠ 0, when a stimulus with amplitude i is presented. There-
fore, we defined the observation xt as follows:

xt =
�
Poissonðλ0Þ
PoissonðλiÞ

  if   the  stimulus  is  absent
if   the  stimulus  is  present  with  amplitude  i.

[S12]

We defined the probability to obtain the observation xt given a
mean firing rate λi at time t as

PðxtjλiÞ=PpoissonðxtjλiÞ, [S13]

where PpoissonðxjλÞ indicated the probability to obtain the obser-
vation x given a Poisson process with mean λ. The 10 values of
the parameters λi were obtained from previously recorded data
of the same experiment (6) and corresponded to the mean firing
rates of a sensory area in the 10 different conditions. Their
values, ordered according to increasing values of the amplitude
of the stimulus, were 15 Hz, 15.2 Hz, 15.5 Hz, 16 Hz, 17 Hz,
20 Hz, 23 Hz, 27 Hz, 35 Hz, and 40 Hz.
Belief equations. Using Eq. S9 the posterior probability btðiÞ of
being in the state i could be expressed as

btðiÞ=
X
n

~btði, nÞ

∝
X
j≠i

X
m

Tijhjðm, t− 1Þ~bt−1ðj,mÞ

+
X
n≠0

½1− hiðn− 1, t− 1Þ�~bt−1ði, n− 1Þ.

[S14]

For the stimulus-absent state the above equation took the form
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btðsaÞ∝
X
j≠0

X
m

Tsa,jhjðm, t− 1Þ~bt−1ðj,mÞ

+
X
n≠0

½1− hsaðn− 1, t− 1Þ�~bt−1ðsa, n− 1Þ. [S15]

Using the fact that ~btðsp,mÞ=
X
j≠0

~btðj,mÞ and the considerations

about the hazard rate and the transition probabilities made in
the previous sections, we obtained that

btðsaÞ= k ·PðxtjsaÞ
" X

m

hspðmÞ~bt−1ðsp,mÞ+
X
n≠t

~bt−1ðsa, n− 1Þ

+ ½1− hsaðlt−1 = t− 1Þ�~bt−1ðsa, t− 1Þ
#
.

[S16]

The first two terms of Eq. S16 represented the probability of the
delay interval while the last term corresponded to the probability
of remaining within the prestimulus interval. Using Eq. S9 we
could define btðλi ≠ λ0Þ for each of the nine amplitudes (with
λi ≠ λ0) as follows:

btði≠ 0Þ= k ·PðxtjλiÞ
"X

m

Ti≠0,sahsaðt− 1Þ~bt−1ðsa, t− 1Þ

+
X
n>0

�
1− hspðn− 1Þ�~bt−1ði, n− 1Þ

#
.

[S17]

Taking into account that btðspÞ=
X
i

btði≠ 0Þ and the consider-

ations about the transition probabilities and the hazard rate, we
obtained

btðspÞ= k·

"
1=9

X
i

PðxtjλiÞ
# X

m

hsaðt− 1Þ~bt−1ðsa, t− 1Þ

+ k ·

" X
n>0

�
1− hspðn− 1Þ� X

i

PðxtjλiÞ~bt−1ði, n− 1Þ
#
.

[S18]

The former term in the above equation represented the probabil-
ity of stimulus onset while the latter was the probability of remain-
ing in a stimulus-present state condition before the stimulus offset
(but after the onset of the vibration).
The stimulus was detected by the Bayesian module when the

belief about its presence exceeded the belief about its absence:

btðspÞ> btðsaÞ⇒ stimulus  detected. [S19]

The RL module. The latter module consists of a standard RL ar-
chitecture known as actor/critic (18). We consider a total of six
events: the vibrotactile stimulus, the start and go signals, and the
response movements of the animal (KD and the two PBs in-
dicating yes/no responses).
The physical salience function of event i is represented by the

ith component of the vector. With the exception of the vibro-
tactile stimulus, the component eðtÞ takes value one at the onset
of the event i and zero otherwise. The component evðtÞ corre-
sponding to the vibrotactile stimulus is activated when the
Bayesian module detects it. In this case we set evðtdÞ= bspðtdÞ
(with td denoting the time of the detection).
The onset of the salience function eiðtÞ at time tion activates a

temporal representation xiðtÞ of the event i. Since the stimulus

has to be represented during a long delay period, we have used a
temporal representation with optimal accuracy given a fixed
number of resources (53). This is defined as a set of N functions
TimðtÞ ðm= 1, . . . ,NÞ, each representing the event (a pulse of
one time step duration) around time τm after its detection. We
assume that the resolution of these functions decreases with τm
and that the times τm are distributed uniformly on a logarithmic
timescale (from a minimum value τmin = 0.1  s to a maximum
value τmax = 10  s). This leads to a scale-invariant representation
of the event i. An explicit mathematical realization is (53)

TimðtÞ≡Ti
�
t− tion, τm

�
=

1
jτmjCðkÞ

ZaiðtÞ
diðtÞ

�
τ′
τm

�k

e−k
τ′
τmdτ′, [S20]

where CðkÞ= kk+1=k!, aiðtÞ= tion − t, diðtÞ= tion + dt− t, and dt is
the duration of the original pulse (alternatively, Eq. S19 could
be expressed as a convolution of an alpha function with a pulse).
The parameter k controls the smear in the representation (the
larger k is, the more accurate the representation). The temporal
representation xiðtÞ= fxi1ðtÞ, xi2ðtÞ, . . . , xN1ðtÞg is taken equal to
the functions in Eq. S19 multiplied by the physical salience func-
tion of the event i :

xiðtÞ= ei
�
tion

�
TiðtÞ. [S21]

The reward predicted by the event i is expressed as

PiðtÞ=
XN
m=1

ximðtÞwim. [S22]

The total predicted reward at time t, V ðtÞ is given by

V ðtÞ=
X
i

PiðtÞ. [S23]

Following ref. 42, we suppose that the occurrence of an event i
with reward prediction higher than the total reward prediction at
the previous time disrupts earlier events representations:

Pi
�
tion

�
>
V
�
tion − 1

�
γ

⇒ xjm = 0  , j≠ i. [S24]

The DA signal is assumed to be represented by the RPE. How-
ever, DA neurons show an asymmetrical activity due to their low
baseline firing rate. This asymmetry is taken into account by in-
troducing a rectification threshold ψ > 0 for the RPE,

δðtÞ=
�
rðtÞ+TDðtÞ if   rðtÞ+TDðtÞ>ψ
−ψ otherwise, [S25]

where TDðtÞ= γV ðtÞ−V ðt− 1Þ and rðtÞ takes the value of R if the
reward occurs at time t and 0 otherwise. The ratio between the
value of ψ and the scalar reward value R determined the degree
of asymmetry in the error signal (the asymmetry increases if the
ratio decreases). The weights wim in Eq. S21 are adapted during
learning as

Δwim =
�
η+c   ximδðtÞ if   δðtÞ> 0
η−c   ximδðtÞ if   δðtÞ< 0, [S26]

where η+c indicates the learning rate for acquisition and η−c is the
learning rate in extinction.
The input to the actor component is a vector trace �eðtÞ whose

components �ei are defined as
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�eiðtÞ= eiðtÞ+ ρ�eiðt− 1Þ, [S27]

where ρ< 1 is a decay parameter. The actor selects an action aj only at
the end of each trial, after the go cue. The possible actions are pressing
one of the two buttons corresponding to yes/no decisions (the action
of withholding movement is not allowed). The probability of choosing
the action aj for an input �eðtÞ is given by a softmax distribution

P
�
ajj�eðtÞ

�
=
exp

P
i
νij ei

β

Z
, [S28]

where Z is the normalization constant and the parameter β gov-
erns the exploration/exploitation trade-off: As β approaches 0,
action selection approaches a winner-take-all mode while larger
values of β favor exploration. The weights νij in Eq. S27 are
adapted only at the end of each trial when the reward is
expected. Pressing of one of the two buttons occurs 0.3 s after
the go cue. The reward is delivered 0.2 s after the movement.
The weights νij are adapted with the learning rule

Δνij =

8>>><
>>>:

η+a
X
t

�eiðtrÞδðtÞ if   j=�j  , δðtÞ> 0

η−a
X
t

�eiðtrÞδðtÞ if   j=�j  , δðtÞ< 0

0 if   j≠�j,

[S29]

where �j denotes the selected action and tr is the time when the
reward is expected (i.e., five time steps after the go cue). The
parameters η+a and η−a correspond to the learning rate in acqui-
sition and in extinction.
Model analysis. In all of the simulations we used a time bin dt =
100 ms (for a full list of parameters used in the model see Table
S1). To compare the model results with the mean activity of DA
neurons we transformed the simulated RPE δðtÞ in an equivalent
firing rate ½δðtÞ�equiv as follows:

½δðtÞ�equiv = baseline+FδðtÞ. [S30]

The baseline representing the baseline activity of DA neurons
during the trial was set to 5.1 Hz. The value of the scale factor
F was chosen to obtain an equivalent prediction error ½δðtÞ�equiv
that matched the mean DA response at the start cue. Its value
in all of the simulations was 27.5 Hz. Additionally, the signal
½δðtÞ�equiv was filtered using a 300-ms sliding window displaced
every 100 ms (a procedure equivalent to the one done to obtain
the firing rate of DA neurons as a function of time). Responses
to the stimulus (in Fig. 6B) were calculated, averaging the signal
½δðtÞ�equiv over a 300-ms window centered 100 ms after the stim-
ulus onset. Responses to the go instruction and to the reward
delivery were calculated, averaging the signal ½δðtÞ�equiv over a
300-ms window centered, respectively, 100 ms after the go cue
and after the reward delivery (Fig. 6A).

Fig. S1. Selection of midbrain neurons. The neurons used for the study (n = 23) corresponded to those cells whose responses to the reward delivery in correct
trials were significantly higher than the responses to reward omission in incorrect trials (P < 0.05, two-sample t test). Responses to the reward were measured in
a 400-ms window centered 350 ms after the PB.

Start cue Stimulus Go cue Reward
Hits
Misses
False alarms
Correct rejections

Fig. S2. Mean firing rate of the discarded neurons. Mean population firing rate (black line, ±SEM colored bands) of the discarded neurons was plotted as a
function of time for the four trial types. Activity is aligned to the start cue (Left), the go cue (Center), and reward delivery (Right). The dotted line indicates the
baseline activity (5.9 spikes per second). The color code used to indicate the four trial types is the same as in Fig. 1B.
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Fig. S3. DA phasic responses and RPEs at the reward delivery. Both the mean firing rate (Left) and the RPE (Right) showed a positive activation in rewarded
trials and a pause in incorrect decision trials. The larger fraction of rewarded trials with the stimulus-present decision was responsible for the smaller RPE in hit
trials than in CR ones (Right). The color code used to indicate the four trial types is the same as in Fig. 1B. PB denotes the push button event.

-0.2

0

0.2

0.4

Fig. S4. DA activity in low-amplitude hit trials compared with the activity in stimulus-absent trials. The mean activity in low-amplitude hit trials (SI Materials
and Methods) exhibited a significant positive modulation with respect to CR trials during the PSW (P < 0.05, two-sample one-tailed t test) but not outside it (P =
0.26, two-sample one-tailed t test). Notably the activity in low-amplitude hit trials and in FA trials during the PSW did not show any significant difference (P =
0.21, two-sample one-tailed t test).

Fig. S5. The activity of DA neurons covaries with the animal’s choice during the presentation of the stimulus. The PSW was divided into four temporal bins. Hit
and miss trials of intermediate amplitudes were separately sorted according to their SO timing. For each time bin the normalized responses to the stimulus in
hit and miss trials were used to evaluate AUROC values. The analysis showed that the DA activity covaried with behavior significantly during the first three time
bins (P < 0.01). The small value of the index at the end of the PSW could be a consequence of the dynamics of cortical networks. Those dynamics can be
explained (31) in terms of a response criterion that becomes smaller during the PWS (to improve detection). After this temporal window the criterion increases
to reduce the production of FA events. It is reasonable to think that by the end of the PWS the criterion evolves continuously from a small to a large value. As a
consequence during the last time bin the firing response of cortical neurons in miss trials is more similar to the response in hit trials; DA midbrain neurons
reflect this situation. Green asterisks indicate significant AUROC values. The red dashed line indicates the chance level (AUROC = 0.5).

Table S1. List of the parameters adopted by the computational
model

Component of
the RL model Description Symbol Value

Critic Learning rate in acquisition η+c 0.1
Learning rate in extinction η−c 0.2
Rectification ψ 0.15
Discount factor γ 0.98
Smear of the T functions k 80
Spacing of the T functions c 0.2

Actor Learning rate in acquisition η+a 0.03
Learning rate in extinction η−a 0.1
Noise of the softmax β 0.5
Decay of stimulus trace ρ 0.98
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