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Abstract

Learning in sensory systems takes place after a repeated exposure to the incoming signals
and many ideas based on information theoretical principles have been proposed to explain the
synaptic adaptation which improves the coding capabilities of sensory areas. In this paper we
want to emphasize that a simple, natural learning rule can be derived from a careful treatment
of image redundancies. The learning rule is used to split images into independent components
which connect di2erent resolution levels, in a nonlinear way. The result shows the biological
plausibility of this coding strategy not only in the visual pathway but also in other sensory
modalities.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Following early suggestions by Attneave [2] and by Barlow [3], many works have
focussed on the use of information theoretical concepts to address the question of the
e ciency of the neural code. Two of them are the minimization of the redundancy
[3] and the maximization of the transmitted information [5]. As shown in [8], the
code which maximizes information transfer minimizes redundancy, that is, it extracts
the independent components [4] of the signal. Several theoretical studies of the pri-
mary visual system have been done based on these ideas of information maximization
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and redundancy reduction [1,15]. The Grst nontrivial issue one has to deal with is the
detection of the sources of redundancy in the stimuli. Second-order correlations have
been extensively studied in this context [1,15], but these are not the only source of
redundancies [14]. Statistical analysis of natural images points to the existence of impor-
tant regularities in natural scenes related to their properties under scale tranformations
[9–11].
One of these regularities is the persistency of image features across scales. This was

studied in [10] and here we brieIy review the main Gndings of that work (Section 2).
Eliminating this form of redundancy from the code leads to a prediction of feature
detectors and e cient coding [12,13]. In Section 3 we show that the Glter resulting
from our study has an intuitive interpretation in terms of learning. In the last section
these results are discussed.

2. Feature persistency across scales

Here we deal with a particular kind of redundancy present in natural images. As an
image is zoomed from coarse to Gner scales details initially not seen suddenly become
relevant. Once a feature (a spatial modulation of contrast) is detected at a given scale
it will frequently be also present at Gner scales [7]. This persistency property of image
features implies a redundancy that should be eliminated in order to obtain an e cient
internal code.
For illustrative purposes let us consider the simple case where a single feature is

present in a set of natural images, although it can appear at di2erent scales and image
positions. 1 The spatial dependence of this feature is described by a function �(̃x).
Scenes can then be represented by placing the feature at a discrete set of scales and
positions on the image. The coarsest scale is taken as one (the linear size of the
image) and the jth scale as 2−j (j = 0; : : : ;∞). At a Gxed scale j, where the feature
has an extension of the order of the scale, there are up to 2j distinct positions along
each spatial dimension (one at the coarsest scale, four at the next Gner scale, and
so on) where the feature can be placed. We denote these scaled and shifted versions
of the feature by �jk̃ (̃x) ≡ �(2−jx̃ − k̃) (the two components of k̃ are the integers
0; : : : ; 2j − 1). Notice that this construction derives from a compromise between scale
and translational invariances, as no representation can fulGll both at the same time [6].
The contrast c(̃x) (luminosity minus its mean) of an image can then be expressed

as

c(̃x) =
∞∑
j=0

∑
k̃∈Z2

2 j

	jk̃�jk̃ (̃x): (1)

The persistency property implies that the coe cients 	 at two di2erent scales j and
j′ are statistically related. Knowledge of this relation would allow us to Gnd a more
e cient representation of images. This is because this regularity of the visual world

1 For a generalization to several features see [13,14].
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Fig. 1. Experimental veriGcation of the multiplicative process using two di2erent feature functions. Left:
Haar’s function; Right: the optimal feature detector obtained from the learning rule, Eq. (7). It was found
using a set of ten images from Hans van Hateren’s web database (see Ref. [16] for details). Starting from
the histogram (+) of the wavelet coe cients 	j;k at scale j=5, assuming translational invariance, and using
a log-Poisson distribution [10] with parameters: 
 = 0:33, � = 0:66 and s = 1 [11], we obtain a prediction
for the distribution of 	j;k at scale j = 6 (dashed line). This has to be compared with the direct evaluation
of the distribution of 	j;k at scale j = 6 (x).

could be stored in the wiring of the network instead of having to be observed at the
arrival of every stimulus.
This problem was solved in [10], and its application to expansions such as Eq. (1)

was discussed in [12]. The key point is that the feature coe cients at two di2erent
scales are related multiplicatively through another variable 
 which is statistically
independent of the feature coe cient at the coarser scales (i.e., with smaller j). For
simplicity, we consider consecutive scales (the general case was discussed in [10]).
Then, persistency is formulated as

	jk̃
:= 
jk̃	

j−1;
[
k̃
2

]; (2)

where := means equality in the distributional sense. Eq. (2) implies that statistically
the values of feature coe cients at a given scale are propagated to the next scale
multiplicatively. However, we cannot say that large values at a coarse scale are followed
by large values at Gner scales and the corresponing location, because the equality is just
distributional (i.e., persistency is statistical). We will see how to implement persistency
as a geometrical feature.
Fig. 1 shows the numerical evidence that the multiplicative process, Eq. (2) is indeed

a property of natural images. The existence of a multiplicative process is extremely
robust, in particular it holds for a large class of feature functions �(̃x). The left
pannel in Fig. 1 was computed using the Haar function, while for the right pannel
a di2erent function, optimal for image coding in a sense to be discussed in the next
section, was used. In both cases the rightmost curve is the distribution of the feature
coe cients at a coarse scale, obtained numerically on a set of natural images. The
other two curves, overlapping each other to a large extent in both pannels, are the
experimentally obtained distribution of feature coe cients at a Gner scale and the
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prediction of the same distribution obtained with Eq. (2). Previous works [10] already
shown the validity of the multplicative process in a more general formulation.

3. The optimal �lter: learning rule

We have seen how the feature coe cients at di2erent scales are related, according
to the multiplicative process deGned by Eq. (2). As shown in Fig. 1, we have veriGed
the experimental validity of that model for a large class of Glters and multiplicative
processes in the class of log-Poisson distributions [10]. However, having an e cient
representation of natural images requires more than that: we would like to code an
image by decomposing it in independent resolution levels. This means that the variables

jk̃ relating feature coe cients at two consecutive scales for a Gxed image and position,
in the following way:

	jk̃ = 
jk̃	j−1
[
k̃
2

]; (3)

should be independent of the feature coe cient at the coarser scale, 	j−1k̃ , and have

the same distribution for all resolution levels j and spatial locations k̃. In other words,
it is necessary that Eq. (2) holds point-by-point, and not only distributionally.
This requirement is very restrictive and it cannot hold for any feature function �. In

fact, as it was shown in Eq. (12), this condition determines an optimal feature detector
uniquely. Here we present a brief and simple derivation of this learning rule. From
Eq. (3) it follows that

	jk̃ =
j−1∏
i=0



j−i

[
k̃
2i

]	0̃0: (4)

Now, taking Eq. (4) into account and averaging Eq. (1) over a large learning set of
natural images (averages are indicated by angular brackets) we have

〈c(̃x)〉= 〈	0̃0〉


�(̃x) +

∞∑
j=1

∑
k̃∈Z2

2 j

〈
〉j�jk̃ (̃x)


 : (5)

A similar equation can be written for the average contrast at the next Gner scale

〈c(2̃x)〉= 〈	0̃0〉
〈
〉




∞∑
j=1

∑
k̃∈Z2

2 j−1

〈
〉j�jk̃ (̃x)


 : (6)

The sum in Eq. (6) is very similar to the second term in Eq. (5), the only dif-
ference is that the Grst runs over one-fourth of the indices k̃ of the second. So,
translating the sum in Eq. (6) to the four base points needed to fully expand the
second term in Eq. (5), we can extract the Glter � by a simple subtraction,
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Fig. 2. Contribution to the optimal feature detector � of a single image. Left: the selected image. Middle:
the inhibitory contribution from cells at the next Gner scale. Right: the net contribution, �1(̃x), of the image.

that is,

�(̃x) =
1

〈	0̃0〉


〈c(̃x)〉 − 1

2

∑
k̃∈Z2

2

〈c(2̃x − k̃)〉

 ; (7)

where we used that 〈|
|〉 = 1
2 because image statistics is invariant under translations

[11]. Eq. (7) tells us that the feature function �(̃x) is obtained by averaging the images
in the dataset and correcting this contribution from double-coding in detectors at the
closest Gner scale. The contribution of one scene is represented in Fig. 2, the four
terms of the correction are given by the same image rescaled by a factor one-half and
centered at the four indicated positions. Eq. (7) deGnes a learning rule based on a
correction to the simple Hebb’s rule of the Grst term, in which neurons associated to
Gner scales act inhibitorily over neurons in the coarser scale, suppressing their response
to features which were already detected at smaller sizes and forcing them to concentrate
in the truly novel arriving features. So, supressing the redundancy between scales leads
to an optimal Glter which can be learned in a Hebbian-like manner.

4. Discussion

Let us now discuss some of the most relevant properties of this feature detector.
The feature �(̃x) can be learned online by just accumulating the contributions from the
incoming visual stimuli, as the expression Eq. (7) is linear in c(̃x). The optimal feature
detector obtained after the observation of a large set of natural scenes is shown in
Fig. 3; it is an horizontal edge, which implies that images consist of, and are represented
by, edges.
Eq. (7) assumes that the 
jk̃ ’s are independent of the 	’s at scales coarser than

j. This hypothesis can be veriGed, Grst evaluating 	jk̃ and 	j−1; [̃k=2] (with the feature
function in Fig. 3), then computing the 
jk̃ ’s as ratios of those coe cients, Eq. (3).
Using information theoretical measures one Gnds that the independence assumption
holds very well [13].
As a mathematical remark, it should be noticed that Eq. (1) is a wavelet expansion,

and the feature function �(̃x) is a special type of function, a mother wavelet. A
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Fig. 3. Left: Gray level representation of the Glter learnt from 4000 images (white: positive values, black:
negative values); Middle: Horizontal cut; Right: vertical cut.

wavelet is capable to expand any function c(̃x) by a linear superposition of shifted and
rescaled versions of itself. Our presentation shows that simple principles, derived from
observational properties of the statistics of signals, can give rise to coding schemes
which are very e cient in both coding and processing. At the same time, the algorithms
proposed seem to be strongly connected with the way in which biological systems act.
We think that this methodology is not exclusive of the visual system, and could be
used to understand other sensory modalities.
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