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Response of a LIF neuron to inputs %ltered with
arbitrary time scale
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Abstract

Neurons process their inputs with a variety of synaptic time scales. The presence of fast or
slow %lters provides the neuron with particular behaviors and changes quantitatively the output
rate of the neuron. Here we study the e1ect of synapses with arbitrary time constant �s on the
neuron response and give an analytical prediction of the %ring rate for arbitrary values of �s.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A neuron communicates with other neurons through synapses by generating synaptic
currents. These currents manifest a wide variety of characteristic time scales. For
example, AMPA-type receptors open during only 1–5 ms, while the activation of
NMDA receptors lasts for ∼ 100 ms. Also, the e1ect of a spike on the post-synaptic
neuron depends on the e1ective membrane time constant �m of this neuron [1]. We
will show that the value of the ratio �m=�s sets the operating regime of a leaky
integrate-and-%re (LIF) neuron model with added synaptic %lters [4]. Besides, we prove
that a perturbative expansion of its output %ring rate in powers of �=

√
�m=�s does not

exist.

2. Model and analytical solution

The membrane potential V of the model neuron obeys

�mV̇ =−V + �mI(t); (1)
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where I(t) is the pre-synaptic current. When V reaches a threshold value �, the neuron
produces a spike and V it is reset to a value H . If a large barrage of pre-synaptic spikes
arrives at the neuron per unit time, the input can be approximated [5] by its mean 

and variance �2. Synapses %lter this input through an exponential linear %lter

�s İ(t) =−I(t) + 
 + ��(t); (2)

where �(t) is a Gaussian white noise with zero mean and unit variance. Performing
the linear transformations I = 
+ z�=

√
2�s and V = 
�m + x�

√
�m=2, Eqs. (1) and (2)

become

ẋ =− x
�m

+
z√
�m�s

; ż =− z
�s
+

√
2
�s
�(t): (3)

In these units, the threshold and reset potentials are: �̂ =
√
2(� − 
�m)=�

√
�m and

Ĥ =
√
2(H − 
�m)=�

√
�m. The stationary Fokker–Planck equation (FPE) [6] associated

to Eqs. (3) is[
@
@x
(x − �z) + �2Lz

]
P(x; z) =−�mJ (z)�(x − Ĥ); (4)

where �=
√
�m=�s and Lz=(@=@z)z+@2=@2z. P(x; z) is the stationary probability density

of having the neuron in the state (x; z). The probability current J (z) is injected at the
reset potential, and it equals the probability current escaping at the threshold. It is then
calculated as

J (z) = �−1m (−�̂+ �z)P(�̂; z): (5)

Because J (z) cannot be negative, it has to be made zero by imposing that P(�̂; z)= 0
for z¡ zmin = �̂=�. The output %ring rate is %nally computed as

�out =
∫ ∞

zmin

dzJ (z): (6)

First we will see that an expansion of both P(x; z) and J (z) in powers of � as

P = P̃0 + �P̃1 + · · · ; J = J̃ 0 + �J̃ 1 + · · · (7)

does not exist for all input parameters. All coeLcients of the expansion have to satisfy
the following conditions:

(i) P̃n(�̂; z) = 0 ∀z¡ �̂=�; (8)

(ii) J̃ n(z) = �−1m (zP̃n−1(�̂; z)− �̂P̃n(�̂; z)); (9)

(iii)
∫ �̂

−∞
dx
∫ ∞

−∞
dzP̃n(x; z) = �n;0; (10)

(iv) lim
z→±∞ zP̃n → 0; lim

x→−∞ xP̃n → 0: (11)
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Here Pn=0 for n¡ 0; besides, �n;0 = 1 for n=0, and otherwise it is zero. Integrating
Eq. (4) over x and imposing conditions (9) and (11) at all orders, one obtains an
equation for P(x; z) whose solution is∫ �̂

−∞
dxP̃n(x; z) = �n;0

e−z2=2
√
2�

: (12)

This states that the marginal distribution of z is a normalized Gaussian. In what follows,
we have to distinguish two di1erent cases:
Suprathreshold regime: In this case, the mean depolarization, 
�m, is above threshold

(�̂¡ 0). Then, from Eq. (9) we obtain J̃ 0(z) = −�−1m �̂P̃0(�̂; z), which is positive.
Solving the FPE (4) at zeroth order leads to

P̃0(x; z) =−�m J̃ 0(z) H (x − Ĥ)
x

: (13)

Using conditions (6) and (12) for n = 0, we %nd J̃ 0(z) = �̃0e−z2=2=
√
2�, from where

we obtain that the zeroth-order %ring rate is �̃−10 = �m log(Ĥ =�̂). Notice that �̃0 is the
rate of a LIF neuron driven by a noiseless current with mean 
. After solving the %rst
and second orders, we obtain that the output %ring rate up to second order is

�out ∼ �̃0 +
�2m �̃

2
0

�s

[
�m �̃0(�̂−1 − Ĥ−1)2 − �̂−2 − Ĥ−2

2

]
: (14)

This formula has also been obtained in [4] using a perturbative technique that is
explained later.
Subthreshold regime: Now we prove that the perturbative expansion of the %ring

rate does not exist in this regime. Here, the mean depolarization is below threshold
(�̂¿ 0). Because the probability current J (z) cannot be negative, the zeroth-order
probability current J̃ 0(z)=−�−1m �̂P̃0(�̂; z) cannot be negative. Then, since �̂¿ 0, the
density P̃0(�̂; z) has to be zero, and also J̃ 0 =0. This implies that the zeroth-order rate
is �̃0=0 in the subthreshold regime. Assuming that P̃m(�̂; z)=0 for all m¡n, it is easy
to prove that P̃n(�̂; z)=0: If P̃m(�̂; z)=0 for all m¡n, then J̃ n(z)=−�−1m �̂P̃n(�̂; z)
(see Eq. (9)). Since J (z) cannot be negative and J̃ m = 0 for all m¡n, the order J̃ n
cannot be negative. But since �̂¿ 0, P̃n(�̂; z) has to be again zero, and in fact, all
orders Jn are zero. This proves that the output %ring rate in Eq. (6) does not admit an
expansion in powers of � in the subthreshold regime.
How to %nd a formula valid for all regimes? Because the expansion is not de%ned in

the subthreshold regime, we cannot replace zmin by in%nity in Eq. (6) as �s increases.
This suggests maintaining %xed the lower integration limit in Eq. (6) as �s increases.
We implement this idea by rewriting the FPE (4) as[

@
@x
(x − �z) + �2Lz

]
P(x; z) =−�mJ (z)�(x − Ĥ); (15)

where we have introduced the new parameter � in the drift term. At the same time, we
express the escape probability current as in Eq. (5), but where � is replaced by �. Now
the central idea becomes clear: We expand the density and the probability current in
powers of �2 as

P = P0 + �2P1 + · · · ; J = J0 + �2J1 + · · · (16)
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Fig. 1. Left: Membrane potential (top) and z(t) (bottom) for a LIF neuron with a single synaptic type for
�s = 1, 20 and 50 ms from left to right. The horizontal lines in the bottom plots represent zmin. Parameters
are �m = 10 ms, � = 1 and H = 0 (in arbitrary units), 
 = 80 s−1, and �2 = 12 s−1. The %ring rates and
coeLcients of variation of the inter-spike-intervals are, from left to right: 20.5, 4.4 and 1:1 Hz, and 0.7, 1.1
and 1.2. Right: The same as before but for a suprathreshold LIF neuron for �s = 20 ms and 
 = 110 s−1.
Notice that zmin is negative in this regime. The neuron %res at 38:5 Hz with CV = 0:7. In all cases the
plotted time interval is 2 s.

maintaining %xed the auxiliary parameter �. Only at the end, when the coeLcients
Pn and Jn have been determined, � can be given its true value �. We introduce
this expansion into the FPE (15). Each order has to satisfy Eqs. (10) and (11), but
conditions (8) and (9) have to be replaced by (i) P̃n(�̂; z) = 0 ∀z¡ �̂=� and
(ii) Jn(z) = �−1m (�z − �̂)Pn(�̂; z). After solving the leading order, one obtains (see
[4] for further details) that the output %ring rate at zeroth order is

�out;0 =
∫ ∞

�̂=�

dz√
2�

e−z2=2F0(Ĥ − �z; �̂− �z); (17)

where F−1
0 (a; b)=�m log(a=b). This is a remarkable result with a clear intuitive meaning

that is discussed in [4]: Eq. (17) is an average over z—with a Gaussian distribution—of
the %ring rate, F0, of a neuron receiving an e1ective noiseless current Ie1 =
+z�=

√
2�s

[5]. As we have previously proved, it is possible to check that this formula does
not admit an expansion in powers of �−1s in the subthreshold regime, while in the
suprathreshold regime the expansion does exist and is the same as in Eq. (14).
In Fig. 1 (left) we plot V (t) and z(t) and show the dependence of the neuron

response on �s in the subthreshold regime. For long �s, the neuron %res whenever
z(t)¿zmin ∼ 1 and, then, it acts as a detector of particular rare events. If z is high
enough, the neuron emits a burst of spikes. In this mode, the neuron %res with high
output variability. However, for short �s the neuron does not always detect z(t)¿zmin,
and the output variability is lower. In the suprathreshold regime the neuron behaves
as an integrator, because its %ring is driven by the mean input current, and it is not
very sensitive to the value of z(t), as it can be seen in Fig. 1 (right).



R. Moreno, N. Parga /Neurocomputing 58–60 (2004) 197–202 201

τs (ms)

10

20

30

5050 100
µ (s-1)

0
0

20

40

60

ν ou
t
(H

z)

ν o
ut

(H
z)

Fig. 2. Left: Output %ring rate as a function of �s for a neuron in the subthreshold regime with 
= 80 s−1

and �−1 = 12 s−1. Full line is the interpolation prediction with �inter = 15 ms and dash line is the long �s
prediction given by Eq. (17). Besides, �m =10 ms, �=1 and H =0. Right: Output %ring rate as a function
of 
. The synaptic time constant is �s = 10, 40 and 150 ms for the upper, intermediate and bottom curves.
In the three cases the input variance �2 = 30 s−1 and the other parameters are as above.

3. Short �s, interpolation procedure and results

Using a technique introduced by [2], the output %ring rate of a LIF has been calcu-
lated in the short �s limit [3], and it is

�out = �̃0 − 1:46
√
�s�m �̃20

[
R

(
�̂√
2

)
− R

(
Ĥ√
2

)]
; (18)

where R(t) =
√
�=2et

2
(1 + erf (t)), and erf (t) is the error function. An interpolation

between the long and short limits, Eqs. (17) and (18), has been performed in [4],
and here we summarize the procedure. First, we set the %ring rate for short �s as
�out = �̃0+A

√
�s+B�s+C�

3=2
s , where the constant A is the same as in formula (18), and

then B; C are chosen to obtain a continuous and derivable function at an intermediate
�s = �inter. In Fig. 2 (left) we compare the result of this interpolation procedure with
the simulation data obtained using Eqs. (1) and (2). In Fig. 2 (right) the output %ring
rate is shown as a function of 
 for three di1erent �s. In this last case, the prediction
is just the long �s %ring rate, Eq. (17). In both graphs the prediction is good even for
intermediate values of the synaptic time constant, �s ∼ �m.

4. Conclusions

We have showed that a neuron with slow %lters acts as a detector of rare events in the
subthreshold regime, since it responds only when large Quctuations in the synaptic drive
are present. This response could be particularly useful when the system is engaged in
coding rare but meaningful events in the external world. Also, the neuron is particularly
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designed to detect large a1erent Quctuations in a time scale �s. This makes reasonable
that long synaptic time constants in the nervous system are present to read information
and selects it in the behavioral relevant time scale of hundreds of milliseconds.
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