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Abstract

The impact of synchronous inputs onto a simple neuron model with synapses showing short-
term plasticity is studied. The synaptic model includes depression, stochastic release and facil-
itation. The mean and second-order statistics of the current are computed. The combination of
synchrony and STP produces a non-monotonic behavior of the current variance �, while the mean
� saturates monotonically. Provided that � saturates under threshold, the output rate inherits the
resonant behavior of �, making the neuron respond maximally to a speci1c rate. Information
about the input rate can be transmitted beyond the saturation of � by means of �.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Although short-term synaptic plasticity was 1rst observed more than 60 years ago
[3], its computational implications are still not fully explored. It has been suggested
[1,9] that short-term depression (STD) provides a gain control mechanism which pre-
vents a neuron from 1ring with increasingly higher rates, because, in the stationary
regime, the mean synaptic current eventually saturates. This imposes an important con-
straint in the type of input messages that a neuron is sensitive to. More exactly, synap-
tic depression prevents the neuron from distinguishing the input rate beyond a certain
saturation frequency �sat [1,9].
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On the other hand there has been an increasing interest in analyzing the impact
of input correlations in the neural response [2,6,7] and to study whether they provide
plausible coding strategies. In the present work we analyze the eDect of cross-correlated
inputs impinging on a target cell across dynamical stochastic synapses. We 1nd that
considering the all-or-none stochastic nature of synaptic transmission is important be-
cause the Fuctuations of the synaptic current play a crucial role in driving the neuron
response. We will show that when the mean current has saturated, a neuron can still
be sensitive to its inputs because the current variance can be modulated either by the
input rate �, or by the input correlations.
It will be shown that the presence of synchrony in the stimulus makes the response

of a leaky integrate-and-1re neuron (LIF) exhibit a non-monotonic behavior, where the
cell responds maximally to a preferred �. While the amount of synchrony increases the
gain of the resonance, the values of the synaptic parameters determine the position of
the maximum.
Some of these results were previously presented in abstract form [5].

2. The model

The input stimulus consists of the aDerent spike trains coming from C pre-synaptic
neurons: Si(t) =

∑
l 	(t − tli )(i = 1; 2; : : : ; C). The activity of each aDerent 1ber is

modeled by a stationary Poisson process with identical rate �. The correlation among
pre-synaptic neurons is positive and instantaneous, which means that there exist zero-lag
cross-correlations or perfect synchrony. The second-order statistics of the stimulus are
completely de1ned by the correlation function of two diDerent spike trains which is

Cij(t; t′) ≡ 〈Si(t)Sj(t′)〉= �
	(t − t′) + �2:

The coeJcient of correlation of the aDerent spikes, 
, equals the probability that
given a spike at the 1ber i at time t, there is another one at the 1ber j at the same
time.
The C presynaptic neurons connect onto a target cell. Each connection is composed

of an arbitrary number of functional contacts, M , where transmitter release takes place.
At each of these contacts a stochastic model of vesicle depletion, which incorporates
a facilitating mechanism, is implemented: we model the dynamics of the vesicles by
setting a primed pool (PP) of vesicles which can hold at most one of them. When a
spike arrives the primed vesicle fuses the membrane, releasing its transmitter content,
with a probability u. When this occurs, the PP is depleted and the time it takes to be
replenished is a random variable following an exponential distribution with mean �v.
During the recovery time no vesicle can undergo exocytosis upon arrival of a spike.
This model was previously used in [8].
We model the facilitation of the transmission following the model proposed in [9].

The variable u(t) represents the probability of release given that there is a vesicle
ready. Upon arrival of a spike, it increases by an amount U (1 − u(t)) and decreases
exponentially towards the resting value U with a time constant �f .
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The total synaptic current generated by a sequence of releases occurring at diDerent
contacts is assumed to be a sum of instant pulses

Isyn(t) =
C∑
i

Mi∑
n

Ji;n
rel∑
k

	(t − tki;n); (1)

where i is the index of the pre-synaptic neuron, n indicates the functional contact, and
the last sum in k refers to the sequence of releases in the contact (i; n), that is, the
subset of the incoming spikes which succeeded in triggering a synaptic response. The
number of functional contacts that a neuron establishes, Mi, varies across neurons with
a certain distribution with mean LM and variance LM 2�2M .
The current is numerically integrated with a leaky integrate-and-1re (LIF) neuron

whose potential V (t) follows:

dV (t)
dt

=−V (t)
�m

+ Isyn(t) if V (t)¡�: (2)

When V (t) reaches the threshold, �, a spike is emitted and the potential is reset to H
where it remains during a refractory period �ref . The synaptic eJcacies, Ji;n (introduced
in Eq. (1)) measure, in voltage units, the amplitude of the PSP produced by the release
of one vesicle. They are distributed with mean LJ and variance �2 LJ 2.
Averaging the stochastic response over trials with the same spike train pattern, this

model becomes the phenomenological models of references [1,9], which reproduce
the experimental data. However, the resulting deterministic model leads to a neuron
response diDerent from that of the stochastic model. This occurs because the Fuctuations
due to the stochasticity of the synapse are wiped out in an averaged model, so that
the synaptic current variance generated is severely reduced.

3. Statistics of the synaptic current

We will start considering synapses which do not show facilitation or equivalently
�f = 0. In this case, given that a vesicle is ready, the release probability is always
u(t) = U . The mean and connected correlation function of the synaptic current (Eq.
(1)) read

� = C LM LJ�r = C LM LJ
U�

1 + U��v
; (3)

CI (t; t′) = �2	(t′ − t)− �2
2�c

e−(|t
′−t|)=�c ; (4)

where �r is the rate of release at a single functional contact. The time constant is
�c ≡ �v=(1 + U��v). The coeJcients �2, which we shall call the current variance, and
�2 are

�2 = C LM LJ 2�r

[
(1 + �2J ) +

U ( LM (1 + �2M )− 1)
1 + U��v(1− U=2)

+
U (C − 1) LM


1 + U��v(1− U
=2)

]
;
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Fig. 1. Non-monotonic response function to a correlated input with STP. Top: numerical output rate vs. input
� for three diDerent grades of input synchrony (see inset). Middle: Mean (diamonds) and variance (symbols
as in top) of the synaptic current received in a time window �m, for the three same examples as top plot.
Solid lines represents the theoretical prediction derived from expressions (3)–(5) and shown in the text.
Bottom: Response function as in top but with a slight change of the parameters U and �v. We see that �out
inherits the non-monotonic behavior from the current Fuctuations because the mean depolarization ��m ¡�.
While 
 determines the amplitude of the resonant function the parameters U and �v set the position of
the maximum. Top inset applies for all plots. Error bars are smaller than symbols size. Current parameters:
C =3750, LM =1, �M =0, LJ =0:19 mV, �J =0, �v = 1 (top) and 0:9 s (bottom), �f = 1:5 s, U =0:1 (top)
and 0:028 (bottom). Neuron parameters: �=20 mV, �m =20 ms, H =10 mV and �ref = 2 ms. Background:
Je = 0:05 mV, Ji =−0:2 mV, Ce = 2000, Ci = 500, �e = �i = 2 Hz and static reliable synapses.

�2 = 2C LM LJ 2�2r �c

[
(1 + �2J ) +

U ( LM (1 + �2M )− 1)(1 + U��v=2)
1 + U��v(1− U=2)

+
U (C − 1) LM
(1 + U��v=2)
1 + U��v(1− U
=2)

]
: (5)

Several observations must be made here: (i) � rapidly saturates as � increases (see
middle plot in Fig. 1). Making an expansion of � around its asymptotic value up to
1rst order in 1=�, the saturation frequency, �sat, is de1ned as the frequency at which
the 1rst-order correction equals the zero-order term. It equals �sat = 1=U�v and sets
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the point beyond which the stationary value of � is insensitive to the value of � [1].
(ii) The negative exponential correlations are due to the refractoriness arising from
vesicle recovery. (iii) The releases at diDerent contacts are synchronized by means of
two sources: the synchrony present in the pre-synaptic activity (last term within the
squared brackets of Eq. (5) when 
¿ 0) and the fact that each pre-synaptic neuron
stimulates M diDerent contacts with exactly the same train (second term within the
brackets of (5) when M ¿ 1). The striking feature about this release synchrony is that
it is modulated by the input rate, and eventually vanishes when � goes to in1nity. More
precisely, making M = 1, the coeJcient of correlation of the releases takes the form


r =
U


1 + U��v(1− U
=2)
: (6)

This expression shows the impact of unreliability and depression on the synchronization
of the responses: the 1rst, i.e. U ¡ 1, attenuates the eDect of 
¿ 0, while the second
makes the releases desynchronize when � becomes large, i.e. lim�→∞ 
r=0. Computing
the saturation frequency for �2, as it was done before for �, it yields

�′
sat =

1
U�v

(
1 +

U (M − 1)
1− U=2

+
U
(C − 1)M
1− U
=2

)
: (7)

Therefore, beyond �′
sat, the current variance saturates to the value �2 � (C LM LJ 2(1 +

�2J )=�v). This expression equals the Fuctuations produced by C LM independent Poisson
trains with rate 1=�v. But that is exactly the vesicle recovery rate, which explains that,
in saturation, the release statistics are essentially governed by the vesicle recovery
process. Because recovery occurs independently at each contact, in saturation, there
are no correlations across contacts. Therefore, in this regime, the trace of the input
synchrony cannot be detected.
When 
¿ 0, or M ¿ 1, we obtain that �′

sat ¿�sat. This implies that after the mean
current has saturated, the second-order statistics still conveys information about �. This
information can be read out by the neuron if its output is sensitive to the Fuctuations
of the current. Recent works [6,7] have shown that this is the case when the neuron
works in a sub-threshold regime. This regime is de1ned by the condition that the
mean depolarization, which in our case equals 〈V (t)〉 � ��m, falls below threshold.
We 1nd that for a wide range of plausible values of the parameters, ��m saturates
below threshold, leading naturally to the regime where the modulation of the current
variance is maximally expressed in the output.
What happens when facilitation is included? As a 1rst approximation, we can sub-

stitute U in the previous expressions of �2 and 
r by its mean value 〈u(t)〉 = (U +
U��f )=(1+U��f ). This is a monotonic increasing function of � which saturates to one.
As a consequence, at low rates we have 
r ∼ U
 and, since U in facilitating synapses
takes very low values (as low as 0:02), synchrony is strongly attenuated. As � increases,
the synapse facilitates and unreliability due to low u(t) no longer weakens the impact
of the synchrony. However, as � becomes higher, depression starts to play a predomi-
nant role, and 
r decreases because of saturation. Therefore, depression and facilitation
tend to diminish the magnitude of the release cross-correlations at high and low rates,
respectively. Thus, there exists a resonance in the synaptic responses synchrony. As in
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the case with only depression, the variance �2 also displays a non-monotonic behavior
as a function of � (see middle plot in Fig. 1).

4. Response of a LIF neuron

To test whether this resonance present in the current Fuctuations could be readout
by a neuron, we simulated a LIF spike generator integrating Isyn(t) plus a balanced
background current (see caption of Fig. 1). The output rate, �out, is illustrated in Fig. 1
(top and bottom plots) for three diDerent amounts of synchrony (
=0:06; 0:12; 0:2). The
middle plot shows the numerical and theoretical prediction of the mean and standard
deviation of the current received in a time window �m. These magnitudes read ��m
and �2�m + �2(�m − �c(1 − e−�m=�c )), respectively. The mean saturates monotonically
below the threshold value, �=20 mV, and it is independent of 
. The deviation shows
a resonant behavior which becomes more prominent as 
 increases. Thus �out inherits
the non-monotonic behavior from the input Fuctuations and its overall magnitude scales
with the input synchrony. When 
=0, the Fuctuations, which are not resonant anymore,
are too small to make the neuron 1re. The position of the maximum depends crucially
on the synaptic parameters U and �v. By coherently changing both, the maximum is
boosted with little change in magnitude (compare top and bottom plots).
Moreover, the 1gure shows that �out can be modulated for input rates beyond �sat,

i.e. the saturation value for �. This means that input correlations provide a mechanism
by which a neuron with STD can encode information about high input rates by means
of the variation of the Fuctuations of its aDerent current.

5. Conclusions

Short-term depression prevents an individual synapse from releasing transmitter with
increasingly higher rates. This constraint may lead to scenarios in which a 1xed number
of aDerent 1bers cannot make a target neuron reach threshold unless they cooperate,
that is, there exist cross-correlations. But synchronous 1ring does not necessarily pro-
duce transmitter discharge with the same grade of synchrony because vesicle release
is stochastic. Not only correlations are therefore needed but also reliable transmis-
sion. STP makes the reliability to be a function of � and, as a result, it shapes in a
non-monotonic way the response function. Moreover, our results show (Fig. 1) that 
,
besides making the neuron respond in a tuned manner to �, acts as a gating variable
which switches the output on and oD.
The parameters U and �v, are subject to long-term changes by pairing the pre- and

post-synaptic activities [4]. This could be a plausible way to adjust the selectivity of
neurons, since we showed that it depends 1nely in the values of these two parameters.
Our results stress the importance of the synaptic Fuctuations driving the neuronal

response. For this reason, taking an averaged synaptic response model, would have led
to a diDerent result than the one obtained here considering the stochastic nature of
release.
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To conclude, we showed that neurons can convey information about the input � by
means of the current variance, so that information can be transmitted, contrary to what
is generally thought, beyond the saturation of �.
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