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Abstract

The properties of cells in the prefrontal cortex and inferotemporal cortex recorded in
monkeys performing delayed matching-to-sample tasks with intervening visual stimuli and
memory guided attention tasks are reproduced by means of a model in which two networks of
leaky integrate-and-"re neurons representing the two cortical areas interact reciprocally. Each
of the networks is organized in micro-columns (M-Cs) which leads naturally to a dynamic
balance between excitation and inhibition within each M-C so that realistic cortical spiking
statistics (low "ring rates with higher or equal to one CVs) are obtained. � 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Themechanisms used by primates to solve visual working memory tasks are not yet
clear. In this type of experiments, two visual stimuli are shown separated by a period
in which no explicit visual cue is shown (i.e. the delay period). After the delay, the
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animal has to make a response which depends on a learned relationship between the
two stimuli in order for which it has to maintain the "rst stimulus in memory during
the delay period. This capacity of actively maintaining information in memory for
subsequent use is usually termed working memory. The prefrontal cortex (PFC) has
been implicated in working memory for several reasons: First, PF lesions impair
performance in delay memory tasks and second, PF neurons show higher than
baseline activity during the delay period, possibly re#ecting the information being
maintained (for a review see e.g. [7,6]). The PFC receives visual information from
the ITC, an area specialized in high order visual processing but also a!ected by
memory demands (see e.g. [11,13]), to which it also sends backward projections. In
addition, cells in ITC also show delay period related activity in visual memory tasks.
In a series of reports, Miller, Chelazzi, Desimone and co-workers found that the
selectivity in the persistent activity is maintained in the PFC across di!erent delay
intervals within a single trial even when several intervening visual stimuli have to be
processed between the sample and the matching stimuli, whereas this selectivity is
disrupted by the intervening stimuli in the ITC [9,10]. Also, there are populations of
cells in both the ITC and the PFC which respond more to a given visual stimuli
when it is the match in a trial than when the same stimulus is a non-match. This
e!ect, which they termed match enhancement and which could be used to detect
repetitions of behaviorally relevant stimuli, was both more frequent and more
intense in the PFC than in the ITC. Cells in the ITC have also been found to have
memory-modulated responses in visual search (VS) tasks. These cells respond
di!erently to a physically identical array of visual stimuli shown after the delay
depending on which of the stimuli in the array was shown as a cue before the delay
[3,2]. This di!erential response based on the contents of memory suggests that the
underlying mechanism could also depend on the interaction between the ITC and
PFC.
Recent evidence about the type of circuitry that might be involved in the

generation of persistent activity in the PFC [12] and about the "ring statistics of
cells in persistent activity in this area [8] has also been obtained. In Ref. [12], the
fact that tuned inhibition might contribute to the generation of persistent
activity has been highlighted. In particular, adjacent putative excitatory and
inhibitory neurons in the monkey dorsolateral PCF have been found to have
similar response preferences during both the sensory and the delay periods of
a visuospatial working memory task, whereas more distant pairs have inverted
preferences [18]. This has been interpreted as evidence for a micro-columnar
organization of the PFC. Evidence of a functional micro-columnar organization
in some parts of the ITC also exists [5,17]. The spike trains of PFC cells in
persistent activity seem to be highly irregular, with a coe$cient of variation (CV)
of the inter-spike-interval (ISI) in the range 1}1.5 [8]. A balance between the
total excitation and inhibition a!erent to cortical cells has been postulated as
a possible mechanism for generating this temporally irregular activity [15,16].
Tightly coupled excitation and inhibition within PFC M-Cs might therefore
contribute to provide a balanced recurrent feedback responsible for the observed
temporal irregularity.
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2. Model

Only a schematic description of the architecture of the model is provided here.
A more detailed exposition will be given elsewhere. The global network consists of
two modules, representing local circuits in the ITC and PFC, which are connected
reciprocally. In each module there is a large number of excitatory and inhibitory
neurons which are sparsely connected and organized in M-Cs. The M-Cs are de"ned
by having a denser connectivity, so that the probability of connection between
neurons in the same M-C is &5 times larger than between neurons in di!erent
M-Cs. The excitatory-excitatory (e-e) connections are plastic, so that synapses to an
excitatory neuron from excitatory a!erents within its own M-C are potentiated,
whereas the rest are depressed. In the absence of potentiation, the baseline synaptic
e$cacies J are such that inhibition dominates over excitation, with J
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. A large background excitatory input is also present
from outside each module. The IT and PF modules interchange only excitatory
signals, the feed-forward projections being stronger than the feed-back ones. These
long-range connections are random but plastic, so that each M-C in one module
receives (sends) stronger synapses from (to) an associated pair in the other module.
The amount of depression is chosen so that the net a!erent synaptic e$cacy with or
without plasticity is the same.
We use the leaky integrate-and-"re (LIF) model with no synaptic dynamics for the

single neurons. All neurons with the same statistical properties are grouped into
a single sub-population, and each sub-population is characterized by the mean rate
and CV of its constituent neurons. Our theory, which is an extension of [1], assumes
that spike trains in the network can be described as renewal processes, with an ISI
distribution close to an exponential, so that the statistics obtained be similar to
Poisson, as is observed experimentally. The main steps followed to construct a
self-consistent description of the mean "ring rates and CV of the ISI are: (1) By
means of the ISI distribution and using the renewal assumption we calculate the
auto-correlogram (two-point correlation function) of the individual spike trains,
which is the sum of a delta function at zero lag, plus an exponential term and which
depends on the rate �, the CV and the time-scale of the exponential correlations �

�
. (2)

We then use that, since the network is sparse, the neurons will essentially be uncor-
related, so that the mean and two-point correlation of the total a!erent current
are calculated by adding all the individual contributions. (3) We approximate the
resulting total a!erent current by a Gaussian process with the same mean and
two-point correlation, and calculate the "rst correction to the white-noise case of the
mean rate and CV of a LIF neuron charged with a Gaussian current with "nite, but
small temporal correlations, using �

�
/�

�
as perturbative constant (where �

�
is the

membrane time constant). This "rst correction will be a good approximation if the
spike trains are close to Poisson. (4) The "nal result is that the output mean rate and
CV are identical to those that would be obtained if all the pre-synaptic neurons where
Poisson, (the total a!erent current being then a white noise) but with a renormalized
input variance which takes into account the CV of the pre-synaptic neurons.
The mean and variance of this `e!ectivea white noise current to neurons in, e.g.
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sub-population � are:

��"�
�

C���J����
�� , (1)

���"�
�

C���J�����
��C<�� , (2)

where � and � label the post- and pre-synaptic neuronal sub-populations,
respectively, C�� is the number of synaptic connections that a neuron in � receives
from neurons � and �J����

and �J�����
are the "rst two moments of the distribution

of the synaptic strength of those connections. Both the mean rate and the CV are
treated as dynamical variables and are, therefore, self-consistent in the stationary
states.
It is well known that dopamine (DA) a!ects the biophysical properties of neurons in

the PFC and modulates their delay period activity (see e.g. [4] and references therein).
Dopaminergic neurons in the mid-brain, are also known to respond to salient,
behaviorally relevant stimuli (see e.g. [14]). Although the DA modulation of PFC
activity is non-selective, recent detailed computational studies have found that the net
DA e!ect on active neurons is excitatory and reinforcing, whereas its e!ect on neurons
in spontaneous activity is the opposite [4]. We have schematically mimicked the DA
modulation of the PFC by an increase in the e-e recurrent synaptic strength of the
PFC M-C coding for the behaviorally relevant sample stimulus on each trial. Since
the modulation only operates on the time scale of a single trial, it is not taken into
account in the balance of the total a!erent potentiation and depression. The e!ects of
this schematic manipulation go qualitatively in the same direction as those obtained
with more the detailed biophysical models [4].

3. Results

There exists a range of parameters in the model in which a dynamic balance
between the excitatory and inhibitory sub-populations within each M-C is achieved.
This balance holds independently of the "ring rate of the neurons, and is thus
maintained during spontaneous, persistent and stimulus-driven activity. As a result of
this balance, the mean current to the neurons becomes essentially constant and
independent of the pre-synaptic rates and only the size of the a!erent #uctuations
change, determining the output rate. These #uctuations provoke temporally irregular
activity (the irregularity actually increasing with the rate) so that large CVs are
obtained (&1}1.3).
The model also reproduces almost quantitatively the "ring rate modulations

observed in the DMS tasks [9,10] (Fig. 1). The baseline level of potentiation (without
the DA modulation) in both modules has been set below the critical value needed for
bi-stability. Only the PFC M-C modulated by DA (a&30% increase in the e-e
synaptic e$cacy starting after the presentation of the sample) has a persistent elevated
rate, which corresponds to its only stable state in this conditions. In this sense, the DA
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Fig. 1. DMS task with an intervening stimulus in the IT (top) and PF (bottom) networks. Thick and
thin lines represent PSTHs of the excitatory sub-population of the M-Cs which are selective for the
sample stimulus A and the intervening stimulus B, respectively. The PSTHs are obtained by generating
Poisson trains with instantaneous "ring rates as predicted by the model. This is justi"ed since the
CV in both sub-populations remains within the range 1}1.2 the whole trial (data not shown in the
"gure).

modulation in the model acts as a switch on the dynamic properties of the PFC
network. The match enhancement e!ect occurs in the PF module as a result of the
larger ampli"cation by the recurrent excitation of the external signal in the
DA-modulated M-C. The match enhancement in the IT module is due to the back-
projected signal from the PFC, and as a result is smaller in magnitude. The very low
rate delay activity in the IT module also a re#ection of PF activity.
In the VS tasks, one of the two stimuli in the array is e!ective (good) and the

other is ine!ective (poor) in driving the cells response. As can be seen in Fig. 2,
the stationary response to the same array stimulus is much larger when the good
stimulus was shown as a cue than when the cue was the poor stimulus. This is a
result of the fact of the feedback signal form the PF module targets cells selective
to the cue stimulus in the array, biasing the competition established between the
M-Cs selective to the good and the poor stimuli in the IT module. This large
non-target suppression e!ect achieved in the model is directly related to the
large competition between di!erent IT M-Cs, which is an inherent property of our
network of balanced M-Cs. The top-down bias is also evident in the slight selectivity
of the delay period activity in the IT module, consistently with the experimental
observations [2,3].
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Fig. 2. Visual search experiment. The thick line represents the instantaneous mean "ring rate of a sub-
population of cells when the stimulus to which the respond (good stimulus) is presented as the cue in the
trial. The thin line represents the same thing when an ine!ective (poor) stimulus is presented as cue. Note
the large suppression in response to the array in the IT module when the cue is the poor stimulus. This is
due to the large competition between representations present in the M-C network.

4. Discussion

We have proposed a model in which a dynamic excitation-inhibition balance is
achieved through a M-C architecture. This leads naturally to temporally irregular
activity [8] and to tuned inhibitory responses [12]. The M-Cs compete strongly for
activation, which leads to the strong suppression e!ects observed in Refs. [2,3]. With
the aid of an schematic representation of the DA-modulation in the PFC, we are also
able to produce resistant selective delay period activity in the PF module and
enhanced responses to the matching stimuli in both modules, with a larger enhance-
ment in the PF module [9,10].
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