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Abstract We consider a linear. one-layer feedforward ne& nehvork performing a coding 
task. The goal of the network is to provide a statistical neural representation that. conveys 
as much information as possible on the input stimuli in noisy conditions. We determine the 
family of synaptic couplings that maximizes the mutual information between input and output 
distribution. Optimization is performed under different constraints on the synaptic efficacies. 
We analyse the dependence of the solutions on input i d  output noises. This work goes beyond 
previous studies of the same problem in that: (i) we perform a detailed stability analysis in 
order to find the global maxima of the mutual i n f o d o n ;  (ii) we examine the properties of the 
optimal synaptic cunfigurations under different constraints; (iii) we do not assume translational 
invariance of the input data, as it is usually done when inputs are assumed to be visual stimuli. 

1. Introduction 

This paper deals with the problem of learning the statistical properties of a set of 
multidimensional data with a neural network by this here we mean finding, for a chosen 
architecture, network configurations which are able to resolve as many features as possible 
of the input data distribution. Finding such 'optimal' codings can be of interest for both 
the statistical applications of neural networks and the neural modeling of early sensory 
processing. Some' previous works concerned with several aspects of this problem are 
described in [l-31 (see also~[4,5] and, for a review, 161). 

We suppose that the data are generated according to some probability dishibution and 
sent to the network as  its^ input. In the easiest case the distribution is Gaussian and then the 
task is equivalent to the learning of the principal components of the two-point correlation. 
How many of these components can be learnt depends on the network architecture and 
on the noise level that affects both the input (ideal signal) .and the processing inside the 
network. For the simplest architecture, a feedforward one-layer network with p output 
linea units, and in the small-noise limit, the best the system can perform is to adapt the 
synaptic couplings between input and output neurons to the p principal components. 

\I Labomoi~  associd au CNRS ([IRA 1306) et aux UniversiteS Paris VI et Paris VII. 
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The system extracts these components in an unsupervised way: it simply receives 
the data and updates its synaptic weights according to a given rule or by following an 
optimization principle. Several alternatives have been suggested. Oja 14,71 proposed a 
Hebbian updating modified in such a way that these cannot grow indefinitely. The rule 
for a single-output neuron gives, as the only stable solution for the synaptic couplings, the 
eigenvector with the largest eigenvalue. For p output neurons stability is restricted to the 
subspace spanned by the same number of principal components [SI. Sanger 151 has given 
a different rule that converges to a solution with a similar behaviour. 

An alternative method is to use optimization criteria based on information theory. For 
instance it has been argued [1,9] that the network builds an efficient coding by minimizing 
the redundancy in the data, a criterion that tends to decorrelate the output activities. A 
related procedure, the infomax principle, maximizes the information that the output has 
about the input [2] .  

Several authors [IC121 have considered the maximization of the muhlal information 
in a linear channel with output noise and, under some hypothesis, they exhibited a solution 
for the optimal couplings. These works, however, leave many questions open about the 
behaviour of the network under different or more general conditions. In our work we 
dropped some of these and solve for the optimal couplings under different constraints. 

More precisely, we still stick to a Gaussian source, although no assumption about 
translational invariance is made. Apart from this, the effect of both output and input noise 
is taken into account. Most importantly, the analysis of the solution is also more rigorous 
in that a full stability study is performed. This work generalizes a classical result on the 
optimal coding for a linear channel [13]. 

We will show that the following general picture emerges. In the presence of finite noise 
the network has to extract as many componenrs as possibIe, given its architecture and the 
noise level. As the noise level varies, there will appear threshold values of the noise where 
some of the principal componenti become unstable: the dimension of the space of optimal 
solutions will change each time that one ,of these thresholds is crossed. In fact, with p 
output neurons, we will have degenerate solutions that, for a given noise level, span a space 
of dimension m < p; when the next noise threshold is crossed, they will span a space of 
dimension m - 1. Among the degenerate solutions at a given noise level, there will be 
one that extracts the first m principal components, and in which only m output neurons are 
active; the optimal couplings converging to the other p - m output unit will be zero; all 
other solutions will be obtained from this one by convenient orthogonal transformations and 
they will make use of the whole set of p output neurons. As we will see, the details of 
this picture will depend on the condition imposed on the couplings to keep them finite. An 
exponential decay of the synaptic weights, for instance, will give only the trivial solution 
when the output noise is above a given threshold. On the other hand, a constraint imposed 
on the synaptic couplings will give a different and more complicated relation between the 
threshold value of the input and output noise and the dimension of the space spanned by 
the optimal solutions. 

The paper is organized as follows. In section 2 we briefly give some notions in 
information theory; in section 3 we show our model, and in sections 4 and 5 we show 
the results. Finally in section 6 we draw our conclusions. 

2. Information 

In this section we give some notions in information theory. There is no attempt of 
completeness in our exposition, and we only show the definitions that are relevant for 
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our study; there are several excellent books that treat the subject with all details; see, e.g., 

We begin by considering discrete random variables. If we have a random variable x that 
can take on some discrete values x , ,  . . . , x, with probabilities P ( x l ) ,  . . . , P(x,),  we denote 
by X the set of the possible values x i .  Then the following quantity defines the entropy H 
of the set X endowed with the given probability distribution P ( x ) :  

U41. 

n 

: H ( X )  = -~c P ( X i )  log P ( X i )  (2.1) 
i=l 

where the base of the logarithm defines the unit of H; with base 2 the entropy is measured 
in bits. As one can see from (2.1) the entropy cannot be negative, since it is the average 
value of the random non-negative variable, -log P(x) ;  besides, it can be shown that it 
cannot be larger than logn, and that it reaches this value.for a uniform distribution. The 
quantity - log P(x i )  is interpreted as the amount of information required to specify that the 
variable x has taken on the value xi,  and it is called the self-information of x i ,  and therefore 
the entropy is the average value of the self-information. It is intuitively satisfying that, on 
one hand, for P ( q )  = 1 the self-information vanishes, since we need not any information 
to specify the occurrence of an event that is certain, and that, on the other hand, the smaller 
P(xi )  the larger the self-information. 

A relevant concept in information theory, and the one which is most important in our 
study, is that of mutual information. It occurs when we have events specified by the values 
of two random variables, e.g., x and y. In this case one is interested in what the knowledge 
of the value of one of the two variables can tell about the value of the other. The event 
specified by the couple (x i ,  yj) (with i = 1,. . . , n, j = 1,. . . , m) occurs with the joint 
probability distribution P ( q ,  yj)t. The occurrence of a value of x ,  regardless of the value 
of y, is described by the probability function P(xi )  = cy==, P(xi ,  yj), i = 1,. . . , R ,  and in 
the same way the Occurrence of a value of y, regardless of the value of x ,  is described by 
the probability function P(yj) = Cy=, P(x i ,  yj), j = 1, . . .,, m. Given these definitions, the 
following quantity defines the mutual information provided about *e occurrence of x = x i  

by the occurrence of y = yj. or, symmetrically, provided about the occurrence of y = yj 
by the occurrence of x = xi : 

. 

The average value of this quantity over the joint probability distribution P ( x ,  y) is called 
the average mutual information (or mutual information for short): 

where we have denoted by X the set of possible values of x ( X I ,  . . . , xn) and by Y the 
set of possible values of y ( y ~ ,  . . . , ym). The mutual information can be shown to be a 
non-negative quantity, and also to be not larger than the smaller of the two entropies H ( X )  
and H ( Y )  given by P ( x )  and P(y), respectively. We also point out that, as one expects, 
for x and y independent one has I(X, Y )  = 0, since in that case P ( q ,  yj) = P(xi)P(yj). 

When one considers continuous variables the situation is more difficult. A continuous 
random variable x is described by the probability density p(x) .  If one tries to go to the limit 

t To avoid burdening the notation, we have used throughout the paper the same symbol P for different probability 
distributions for discrete variables, and the same symbol p for continuous variables. 
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of a continuous variable in (2.1), one gets an infinite quantity plus the following expression: 

(2.4) 

which is called the differential entropy of X with the probability density p ( x ) .  The entropy 
(i.e. the average value of the self-information) of a continuous variable is infinite since one 
needs an infinite amount of information to specify its exact value. The differential entropy 
does not have a definite sign as the entropy of discrete variables, and it is not invariant 
under change of variable. 

In contrast to the entropy, the mutual information is readily extendible to continuous 
variables, and equation (2.3) is replaced by 

h(X) = - / P(X) l ogp(x )  dx 

This non-negative quantity now has no U priori upper bound, since the entropies of X and 
Y are now infinite. 

A transmission channel is a relevant example in which one has events specified by 
the values of two random variables, and where the mutual information is an important 
characterization of the system. The first variable (say x )  is the input to the channeI, and the 
second variable is the output. If some kind of noise is present in the channel, the output y is 
not a deterministic function of the input x ,  but it is characterized by a conditional probability 
function p(y1x). The mutual information is then given by (2.5), with p ( x ,  y )  = p(x)p(ylx), 
where p ( x )  characterizes the distribution of the input. In the next section we describe our 
model and give the expression of the mutual information. 

3. The model 

We consider a situation in which the actual realization of the transmission channel is a 
neural model, that transforms an input set of variables [$I, . . . , b} into an output set 
V = [V,, . . . , Vp) .  In figure 1 we give a pictorial illustration of the network. We consider 
only the case p < N.  

The element Jij of the p x N matrix J is the connection from the jth input unit to the 
ith output unit; for later convenience we define the N-component vectors Ji, i = 1,. . . , p :  
the elements of Ji are the connections Jij ,  j = 1, . . . , N from all the input units to the ith 
output, and correspond to the matrix elements of the ith row of the matrix J. 

We assume that the input and output variables, E and V, take on continuous values, and 
that the output of the network is given by a linear transfer function plus a channel noise. 
More precisely, the value of each output unit, Vj, is given by cy==, JijB +channel noise. 
The noises in all output units are assumed to have the same Gaussian distribution, and to be 
uncorrelated among them. This is equivalent to have a conditional probability distribution 

where the parameter b characterizes the channel noise. This expression has to be modified 
if there is also an input noise. We assume that there is an additive Gaussian noise U 
in input, such that the input to the j th  input unit is ej + uj ,  with U uncomelated with 
5: (U&) = 0, (vi) = 0, (uiuj) = $a. In this case equation (3.1) is replaced by 
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p ( W :  output 

p(Vl<): noisy channel 

Input noise Y 

p(<): information source 

Figure 1. The neural nehvork~as informadon processor. See text for the explanation of the 
symbols. 

exp [ - (V - 15) . [bP, + b0JJ'I-l (V - J.91 (3.2) 1 
p(v's) = , /E, det[bl, + boJJT]  

where we have adopted matrix notation; tp is the unit matrix of dimension p, and JT is 
the N x p transpose matrix of J. 

At this point we make assumptions about the environment 6. If one assumes knowledge 
of only the first- and second-order correlations, (ti) and (t&), a natural strategy is that of 
choosing the p(6)  which has maximum differential entropy, equation (2.4), consistent with 
the values of the correlations. This gives a Gaussian distribution p(e). Since Z will not 
depend on (ti), we also assume for simplicity (e{) = 0. Therefore we have 

exp (-6. e-'<) (3.3) 
1 

VGTGiZ P(6) =~ 

with the positive definite correlation matrix C defined by (e&) = $ij. To compute Z 
we still need the expression of the output distribution p(V). This function can be easily 
obtained, and is given by 

(3.4) 

1 det[bn, + .I(bonN +C)JT]  
2 det[bP, + boJJT] 

= - log (3.5) 
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The base of the logarithm simply determines the scale of Z; we can therefore take the 
natural logarithm. 

As we mentioned in the introduction, we are interested in the J configuration that 
maximizes the mutual information Z. We will give details of the properties of these 
configurations, focusing in particular on the effects of both input and channel noise. Several 
authors (see, e.g., 131 and references therein, and 121) have discussed a possible biological 
relevance of maximizing the mutual information. 

The first thing to note is that, in presence pf channel noise 6, the J’s need some kind of 
constraint, since, if we simply maximize Z, they will grow without limits. This can be seen 
from (3.4) if there is only channel noise, i.e. if b # 0 and bo = 0; in this case Z + 00 if 
the J’s tend to infinity. In the general case, b, bo # 0, it can be inferred from the property 
Cij gJij 0 (which in turn comes from the positivity of the p x p matrices J J T  and 
JCJ’), where the equality holds only when the J’s go to infinity. It is clear that in presence 
of channel noise the mutual information grows with the J’s, since increasing the J’s the 
signal to (channel) noise ratio becomes larger and larger. When there is b alone, Z tends to 
the entropy of the input <, which is infinite since the t ’ s  are continuous variables. When 
there is also bo, that can be interpreted as a sort of discretization of <, Z is bounded, but 
still it is increased by the p w t h  of the signal to noise ratio. 

In contrasL when there is only the input noise, i.e. when b = 0 and bo # 0, Z is a 
bounded function of the J’s (it is invariant under global rescaling of the J’s). 

As expected, if b, bo + 0, Z tends to infinity for any finite J .  However, one can also 
attempt to give a meaning to this case (see 1151 where a short summary of the results with 
bo = 0 is given). 

Here we study the general case, b, bo # 0; therefore we need to limit the J’s. A possible 
way of limiting the J’s is to redefine the cost function of OUT optimization problem, adding a 
‘penalty’ (or damping) term to Z of the form - $ p  Tr(J J T ) ,  where p is a positive parameter. 
This added term can he interpreted as a tendency of the connections Jij to forget. 

However, it is interesting to see to what extent the features of the optimal solutions 
that we find depend on the particular strategy that chosen to limit the growth of the J’s. 
Therefore we also analyse the case in which a real constraint is imposed on the J’s ,  namely 
a global constraint of the form Cij J i  = 0, where U is a constant. In the next section we 
will treat the first case in detail; in section 5 we will consider the other case, but will show 
only the differences with the first case, going into less detail. 

4. Results: the damped case 

The function to be maximized is now 

1 1 det[bIl, + ~ ( b ~ n ~  + C ) J T ]  I f = Z - -pTr(JJ’) = -log - -pTr(JJ’) .  (4.1) 2 2 det[bIl, + boJJT]  2 

We note the important property that both Z and f are invariant under a i y  orthogonal 
transformation J -+ AJ, where A is &y orthogonal p x p matrix. This means that the points 
corresponding to a given value of f cover an hypersurface in the (N x p)-dimensional space 
of the J’s, and that they are connected by orthogonal transformations. We remark that the 
transformations A are not rotations in the space of the N-dimensional vectors Ji, but act on 
the p-dimensional space of the columns of the matrix J .  This invariance property is used 
throughout all the derivation of the results. To find the maxima o f f  we first look for its 
fixed points, and then, with a stability analysis, we determine which of these fixed points 
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are maxima. Each fixed point is really an hypersurface, and later we will determine the 
dimension of the hypersurfaces corresponding to the maxima. 

4.1. Fixed points 

The fixed points are given by *e following matrix equation: 

Computing the derivative of Z we find 

[bap+ J ( b o ~ ~ + C ) J T ] - ' J ( b o ~ ~ + C ) - [ b n p f b o J J T ] - l J b o - p J  =O. (4.3) 

J C =  (bn,+boJJT)pJ+ JCJT(bl ,  fboJJT)- 'Jbo+ JCJ'pJ. 
This equation can be put in the form 

~ 

(4.4) 
From this equation one can infer a first property of the fixed points: define r as the subspace 
of RN spanned by the vectors J,, i = 1, . . . , p at a fixed point (the dimension of r so 
far being unspecified); then consider an N-component vector X E r' and right-multiply 
equation (4.4) by X :  
JCX = (bn, +bo J J T ) p J X  + JC JT(bn, +bo J JT)- 'boJX + JC J T p  J X  = 0 (4.5) 
where the last equality comes from the fact that J X  = 0 by definition. Then 

J C X  = 0 * c x  E rl. (4.6) 
This means that rL is an invariant subspace of C; since C = CT this also means that r is 
an invariant subspace of C. So our first result is that at the fixed points the vectors Ji lie 
in a subspace spanned by (a so far unknown number of) eigenvectors of C. This property 
continues to hold after, in particular, any orthogonal transformation J + AJ, since, if 
JX  = 0, then obviously A J X  = 0. 

Note now that J J T  and J C J T  are both symmetrical p x p matrices, so they can be 
diagonalized by an orthogonal transformation. Besides, it can be proved that they can 
be simultuneously diagonalized at the fixed points (see appendix A). Therefore, in any 
hypersurface in J space where f is an extremum, there is a point (apart from permutations 
of the vectors Ji), where the matrices J J T  and J C J T  are both diagonal; we can loosely 
say, for short, that when we are at this point we are in the diagonal base. We continue the 
study of the properties of the extrema o f f  in the diagonal base. We right-multiply (4.4) by 
JT to obtain 

J C J T  = (b l ,+boJJT)pJJT+ JCJT(bU, +boJJT)- 'bodJT+ J C J T p J J T .  (4.7) 

J J ~  + v J C J ~  + v' (4.8) 
We then diagonalize J JT and J C J T  

where V and V' are diagonal p x p matrices; we denote their elements by 

p.. >, -6.. - fi D& = &j(Yi .  (4.9) 

We note that fi = 11 J, [ I 2  in the diagonal base. Equation (4.7) becomes 

D' = (bn, + b0V)pZ) + V'(b1,  +boV)-'boV + pV'V. (4.10) 
It can be proved that in the diagonal base the vectors Ji are eigenvectors of C corresponding 
to eigenvalues hk(i) (see appendix B), and that 

ai = h ( i ) f i .  (4.11) 
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We suppose that the numbering of the eigenvalues of C, all positive, is such that AI  z A2 z 
. . . > Ax 0. The-value k( i )  is so far arbitrary, the only condition being that different i 
are associated with different k, since JJT is diagonal. Now we rewrite the generic diagonal 
element of (4.10) as 

(4.12) 

This equation always admits the solution fi = 0; the other solutions are determined by the 
following second-order equation: 

pbo(bo + 4 ( i ) ) f i 2  + pb(2b0 + At ( i ) ) f i  + b(pb -AX( ; ) )  = 0. (4.13) 

The two solutions are always real; one of them is always negative, while for the other to 
be positive we must have 

pb <A&.  (4.14) 

If this expression is satisfied, the positive solution of (4.13) is 

(4.15) 

Since negative solutions for fi are not acceptable, we are left, for each i ,  with a choice 
between the solution fi = 0 and the positive solution of (4.13), provided equation (4.14) is 
satisfied. The appropriate choice to be made will be determined by the stability analysis, to 
which we turn in the next subsection. 

If the additional hypothesis of eanslational invariance of the input data is made, these 
results can be directly compared with those in [3,12,16]. We make comments about these 
point in section 6. 

At the end of this subsection, we would like to give a feeling of why, as we can see 
from (4.14), the noise thresholds which determine the positivity condition for ]]Jll depend 
only on the channel noise b, and not on the input noise bo; we do that considering the 
simplest situation, N = p = 1. In this case becomes 

- 1 b+(bo+A)f 1 
z = - l o g  - p f  

2 b f b o f  

where f = J 2 ;  we then have 

(4.16) 

(4.17) 

If pb < A we have 
the other hand, if pb > A and f z 0, then 

z 0, and therefore the maximum o f f  cannot be at f = 0. On 

z=- log I+- - p f  < -  log 1+-. -- CO. 
2 '[ ( b:'bof> I :.[ ( 3 ?I (4.18) 

since log(l+ x )  < x for x z O; therefore the maximum of f is at f = 0. 
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4.2. Stability analysis 

To determine, the maxima o f f  from between the fixed points, we perform a stability 
analysis. More precisely, we write the mahix expression 

(4.19) 

where AJ is a finite variation of J in which each element Jij changes by a quantity 
equal to the component of the gradient o f f  on the axis labelled by (i. j )  of the (N x p ) -  
dimensional space of the J's. In (4.19) we substitute for J the generic fixed point plus a 
small perturbation, and we rewrite it keeping only first-order terms in the perturbation, thus 
obtaining a linear equation; we then project the variation of J onto the possible directions 
in J space and establish in this way whether that fixed point is stable. 

We denote by JO the generic " fixed point solution, and by E the perturbation, so that 
J -+ JO + E ;  we also put C boUN + C. Then, to first order in E ,  equation (4.19) 
becomes, after some algebra 

A& = -(bU, + JocJ:)-'(&EJ: + Jo&T)(bl, + Jo?J,')-'Jof 

+(bap + Jo~J:)-'E~- (bP, + boJoJ:)-'&bo 

+(bB,+ boJoJ~)-'(&boJ,T+ Jobo&T)(bB, +boJoJ:)-'boJo --PE. (4.20) 

Now we turn to the diagonal base. Note that the same stability properties that we find 
in this base, hold in all the basis reached from the diagonal one through an orthogonal 
transformation (see the discussion at the beginning of this section); this also implies, as we 
will see later, the existence of zero modes. Equation (4.20) now reads (for convenience we 
will keep the symbols E and JO unchanged in the new base) 

A& = -(bn, + 2)' + boD)-'(&fJ: + JoEtT)(bUP + 2)' + bo'D)-'~oc 

+(bap + 2)' + boD)-'&E - ( b l ,  + bo'D)-!boz 

+(bap + boD)-'(&boJ,T + Jobo&T)(bU, +boD)-'boJo - P E .  (4.21) 

As we mentioned above, the main point of the stability analysis is to project this equation 
onto all the directions in J space. The number of this directions is N x p .  and we have 
proceeded in the following way: we have multiplied (4.21) by N-components vectors X ,  
thus projecting each time onto p directions. So, multiplying by a complete base of the 
N-dimensional space, we~exhaust all the possible directions in the J ,  (N x p)-dimensional 
space. For convenience we divide the process in two steps: first we project onto a complete 
base of and then onto one of rt. 

4.2.1. Stability in r'. For the first part, multiplying equation (4.21) by any X 6 rL, and 
noting that ?X E r' implies JoEX = 0, the equation becomes 

A(&X) = ( b l ,  + 2)' + boD)-'&EX - ( b l ,  + boz))-'bo&X - P S X .  (4.22) 

At this point it is convenient to adopt vector notation, introducing, analogously to the vectors 
Ji,  the vectors si, where &i is the ith row of the matrix E . ~  As a base for rL we choose X 

t nis  technique has been previously used in the stability analysis of the noiseless Oja algorithm in [SI. 
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to be in turn one of the eigenvectors Vy of C spanning rL, y = 1, . . . , d i m P .  The ith 
element of (4.22) is 

Now we have to consider two cases. 

(i) fi = 0. In this case the above equation becomes 

A ( E ~  . V,) = (2 - p)  (si . Vy). (4.24) 

The stability condition, that the coefficient of (si . Vy) is negative, implies that pb > A,. 

(ii) fi > 0 in this case we can use equation (4.13) to transform the denominator in the last 
line of (4.23), obtaining 

Now the stability condition is 

A y  < Ak(i ) .  

(4.25) 

(4.26) 

In subsection 4.1 we have seen that if p b  < Ax([) w e  have the freedom to choose fi = 0 
or f;: > 0, otherwise only the solution A- = 0 exists. Now we introduce the number m 
which will be used throughout what follows; m is determined by the number of eigenvalues 
of C which are greater than pb: if this number is not larger than p. m is equal to this 
number, otherwise m = p. Then suppose we make the following choice for the f ' s :  

(4.27) 

where r < m is arbitmy. Of course if m = p the third group in (4.27) does not exist, and 
the second group ends at p (and r < p). Any fixed point, in the diagonal base, can be put 
in this standard form, since the numbering of the .7i is irrelevant. 

Now we observe that for the set of eigenvalues A.qi) associated with the non-zero fi, 
the indices k(l), . . . , k(r)  must be a permutation of (1,. . . , r ) ;  if this were not the case, 
there would exist at least one eigenvalue A,, corresponding to a direction in rL, for which 
A, 5. &(i) for at least one i, in contradiction with (4.261, and the fixed point would not be 
stable. Therefore at the stable fixed point the r non-zero fi must be associated with the 
first r eigenvalues of C. For the fi with i = r + 1, . . . , m, which have been chosen to be 
zero, the stability condition, together with the above observation, requires in particular that 
pb > A-1; since, on the other hand, we have by hypothesis pb < A,,,. we see that this 
choice leads to unstable solutions. Therefore it must be r = m, which in turn means that, 
while from the fixed-point equations we have the freedom to choose f = 0 or f 0, the 
stability criterion forces us to choose f z 0. For fi with i = m + 1, . . . , p. which have 
to be chosen to be zero (group that does not exist if m = p ) ,  we see that they are stable, 
since the condition pb > h,+l is satisfied by hypothesis. 

We have so far perturbed the fixed-point solutions along directions in rL; we turn now 
to perturbations along the directions in r. 
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4.2.2. Sfubilify in r. To study the stability with respect to perturbations along directions 
in r, we start again from (4.21), and multiply it by vectors spanning r; for convenience 
we choose them as the fixed-point vectors Jk, k = 1 , .  . . , h (with fk # 0 because. of the 
definition of r) which in the diagonal base are, as we saw, eigenvectors of C. Note that for 
ease of notation, in what follows we will drop the subscript '0' denoting the fixed points 
of J. 

Recalling the results obtained for the stability in FA, we see that we can now write 
Akcj, = A j  (renumbering, if necessary, the vectors A), and we make use of the fact: 

Jj . Jk = fi&* CJ, = &Jk. . . (4.28) 

After some algebra, for the ith element we get 

(4.29) 

Analogously to the previous case, we have to distinguish between two cases, the first of 
which exists only if m e p. 

(i) fi = 0. In this case, after substituting fi = 0 and using (4.13) for fk, equation (4.29) 
gives 

(4.30) 

This means that along these directions in J space the value of 3 does not change to this 
order in the perturbation. One should then perform a higher-order perturbation expansion 
to decide the stability properties along these directions. We will come back to @is point 
shortly. 

A(&j . Jk) = 0. 

(ii) fi > 0. We consider two subcases: 

(a) i = k. Now, after using (4.13) for fi, equation (4.29) reads 

The coefficient of (&j. Jj) between~square brackets can be seen to be always negative, thus 
proving stability. 

(b) i # k. In this case, again using (4.13) for fi and fk, equation (4.29) becomes 

+ [ i  H kl (EX . Jj) . (4.32) t 
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We see from this equation that, to first order in E,  A ( E ~  . Jx)  depends only on ( ~ i  . Jw) and 
( Q .  Jj). Therefore, writing the analogue of (4.32) for A ( E ~ .  Jj), we obtain a closed linear 
system, that in addition is of the following particular form: 

(4.33) 

in which A and E are the coefficients that appear in square brackets in (4.32). For (4.33) 
we have the two eigenvalues 0 and A + E ;  it can be easily verified that 

(4.34) 

Since it can be seen that df/dh > 0, and then that larger Ai corresponds to larger fi ,  
then the first term on the right-hand side of (4.34) is also negative. Thi implies that the 
directions in J space corresponding to the eigenvalue A + E of the system (4.33), for each 
couple (i, k), are,directions of stability. The eigenvalues that are equal to 0 correspond to 
directions along which the value of Z does not change to this order in the perturbation. 
As in point (i), one should then perform a higher-order perturbation expansion to find the 
stability properties. 

However, we now show that the directions for which we have found a first-order zero 
variation of AJ,  are directions belonging to the hypersurface of constant f passing through 
the maximum, thus proving the (marginal) stability. We give the proof in three steps. 
First, we determine, as we said at the beginning of this section, the dimension of this 
hypersurface. We write an infinitesimal orthogonal transformation as A = lp  + L, where L 
is an infinitesimal antisymmetric matrix, and we apply thii transformation to the fixed point 
J in the diagonal base; the number of the relevant elements Lij will give the dimension of 
the hypersurface of constant 2 at the fixed point. Since in the diagonal base only JI  , . . . , J, 
are different from zero, and since L is antisymmetric, the elements L which are relevant 
are those with j = 1,.  . . , m and, for a given j ,  with i = j + 1,. . . , p ;  their number is 
i m ( 2 p  - m - l), and this is the dimension of the hypersurface of constant 3. Second, we 
note that in our analysis we have found exactly the same number of independent directions 
of first-order zero variation of AJ.  In fact, each of the systems (4.33) gives one direction, 
and their number is $m(m - I); each of the (4.30) gives another direction, and their number 
is m ( p  - m); the sum of these two numbers is exactly i m ( 2 p  - m - 1). The directions for 
which we have found stability are: p ( N - m )  for the stability in I'l, and i m ( m + 1 )  for the 
stability in r; adding these two numbers to i m ( 2 p  - m - 1) we have Np,  the dimension 
of J space. Thud, we show that by applying the infinitesimal orthogonal transformation 
d p  + L to the fixed point J in the diagonal base we obtain the vectors &I. .  . . , cP for 
which, in our stability analysis, we have found first-order zero variation of A J. In fact 
we find immediately that E{ . Jk = Ljk fk, i = 1, . . . , p ,  k = 1,. . . , m (we recall that L is 
infinitesimal). For i = m + 1, . . . , p we are in case (i) above (that exists only if m = p ) .  
and this proves that any perturbation of the zero vectors, along directions in r, belongs to 
the hypersurface of constant 3; for i = 1, . . . , m we have, since L is antisymmetric, 

A + E = -bbo(fi - h ) ( A i  - Ak) + (negative terms). 

(4.35) 

and this is exactly the relation found in case (ii) above, in correspondence with the zero 
eigenvalue of the system (4.33); in fact, for the zero eigenvalue equation (4.33) gives 

(4.36) 
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However, it is easy, using (4.13), to see that 

This concludes the proof. 

4.3. Summary of results 

We summarize here the main points illustrated in the above discussion. 

following properties: 

The vectors Ji, i = 1,. . . , p lie in a subspace r spanned by the first m eigenvectors 
of C, where m = dim r is determined by the number of eigenvalues h of C satisfying 
the relation p b  < h: if this number is not larger that p .  m is equal to this number; 
otherwise m = p .  
From the invariance property of z under arbitmy p x p orthogonal transformations, 
it can be seen that a particular base can be chosen in r space, in which m vectors 
Ji are non-zero, and are eigenvectors of C, the other p - m being zero. All the 
other J configurations where 3 is maximum can be reached performing an orthogonal 
transformation J -+ AJ. In a generic base, p - m vectors Ji are linearly dependent 
on the other m. We also note that in the diagonal base the output distribution p ( V )  is 
factorized, and the non-zero J: produce at the output the projection onto the principal 
components of the input distribution. 

a ~ When the channel noise b increases, higher and higher principal components are 
destabilized: in the diagonal base more and more vectors Ji go to zero, while in a 
generic base the decrease of dim r shows up by the decrease of the number of linearly 
independent vectors. In particular, when pb > I,, all the vectors Ji are zero. The input 
noise bo is not relevant in the determination of the thresholds, but only in the value of 
T. in particular at ttie maximum. 

The maximization of f leads to stable, fixed-point J configurations that have the 

5. Results: the global constraint 

Now the function to be maximized is Z itself, but under the constraint Cij J$ = U, meaning 
that the sum of the square moduli of the vectors 51, . . . , Jp is constant. We note immediately 
that the analysis and the results are similar to the previous case; therefore we show only 
the differences. 

The expression which is to be kept constant can also be written as TI J J T ;  from here 
we see that this quantity, like Z, is invariant under any orthogonal transformations A. This 
creates the possibility of studying the fixed points in the diagonal base, as in the damped 
case. 

5.1. Fixed points 

To find the fixed point we have to solve the equation 

aZ 
- - p J = O  ar 

where p is now a Lagrange multiplier, needed to satisfy the constraint. It is convenient 
to write an explicit expression for p .  which will be useful later. This can be obtained by 
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writing an expression analogous to (4.19) 
ax 

AJ = - - p J  
a J  

and finding the expression for the Lagrange multiplier p that makes AJ belong to the 
hypersurface defined by the constraint. This happens if p J  is equal to the projection of 
on the direction perpendicular, at that given point in J space, to the hypersurface defined 
by the constraint. We then find that 

p =  - ~ [ ( b l , + b o J J T ) - ' - ( b ~ , + J ~ J T ) - ' ] .  b 
0 

(5.3) 

Starting from (5.1) we can perform exactly the same steps (although p is no longer a 
fixed parameter) as from equations (4.3) to (4.6) in the previous section, proving that at the 
fixed point the vectors .Ti lie in a subspace spanned by eigenvectors of C. 

The diagonalization procedure shown in (4.8) can also be performed, for the property 
noted at the beginning of the section. Therefore we still find, for the square moduli of the 
vectors Jj  in the diagonal base (which are still eigenvectors of C), the possible solutions 
fi = 0 or fi given by (4.15); as before, this solution is acceptable only if the condition 
(4.14) is satisfied. But now p has to be determined by the consistency relation 

i=l 

As in' the damped case, the choice between the positive and the zero solution for fi is 
determined by the stability analysis. 

5.2. Stability analysis 

The matrix equation (5.2), analogous to (4.19) but now with p being a function of the J's 
through (5.3), is expanded around the tixed point. We obtain matrix equations analogous 
to (4.20) and (4.21). but with an extra term on the right-hand side, due to the expansion of 
the Lagrange multiplier p .  To first order in the perturbation this added term is 

(5.5) 

Denoting the quantity in parenthesis by Sp we have, in the diagonal base, the equation 
corresponding to (4.21) 

A& = - (b lp  + D' + boV)-'(&EJ,T + JoEET)(blp + D' + boD)-'JoE 

+(bPp + D' + b?D)-'&E - ( b l ,  + boD))-'bo& 

+(bap + boD)-'(&boJ,'+ Jobo&T)(bnp + bo'D)-'boJo - p c  - (8p)J .  

(5.6) 
We will see that the extra term is relevant only in one step of the stability analysis, which 
is therefore very similar to the previous case. 

It should be noted that, in contrast to the damped case, the elements of the matrix 
E cannot be chosen independently, since the perturbed matrix J also has to satisfy the 
constraint. Since the constraint is E:=, .& . .& = cr, we see that, to first order, the constraint 
imposes E:.] &i . Jj = 0, where the .Ti are the fixed point vectors. Therefore the constraint 
acts as a limitation on the choice of the elements of E only in the study of the stability in r. 



Mutual information in a linear noisy network 463 

5.2.1. Stabiliry in r'. Multiplying (5.6) by any X E rL, the term with Sp does not 
contribute; therefore the analysis is as in the damped case, with a difference conceming the 
determination of the noise thresholds, as we will see. 

We again introduce the number m determined as in the damped case. Then stability 
requires that f i ,  . . . , fm are given by (4.15) (with h ~ j )  =hi ) ,  while f , + i , .  . . , f p  are zero 
(if m = p we have only fl, . . . , fp given by (4.15)). However, while in the previous case m 
was determined simply by the value of the noise b, once the parameter p had been chosen, 
now it has to be found using the consistency relation (5.4), that determines the value of p, 
for given b and bo. and therefore the value of pb. However, if we insert the expression of 
fi in (5.4) we obtain a complicated irrational equation. We have therefore proceeded in the 
following way. In the diagonal base the expression (5.3) for p becomes 

If we insert the expression for fi we obtain an identity; but if'we set p = % in the left-hand 
side, and we insert the expression of fi after having made the same substitution, then we 
obtain an equation which gives the expression of the noise thresholds. After some algebra 
we obtain the following relation between the noises b and bo that holds when pb = A,, and 
therefore when the subspace spanned by the vectors Jj at the maximum, from m-dimensional 
becomes (m - 1)-dimensional 

1 
(5.8) 

42b0 +hi) + ,/W 9 bo +hi b 2boo j=l 

_ = -  

The Erst thing to note is that the thresholds now depend on both b and bo; the simple 
argument shown at the end of subsection 4.1 is no longer valid, since the different fj are 
now related by the constraint. It can easily be computed that when bo increases, b (as 
given by (5.8)) also increases. Furthermore, if (5.7) is regarded as an expression giving 
pb as a function of b and bo, it can be computed that a(pb)/ab > 0 and a(pb)/abo < 0. 
Therefore one can infer the following properties. At fixed bo, increasing b starting from 
b = 0 (or from an arbitrarily small positive value if bo = 0), one crosses p - 1 thresholds ' 

successively, in each one of which the dimension of the space spanned by the vectors Jj 
decreases by one, starting from p; at the end $e dimension of the space is one (as expected, 
at least fi must remain positive to satisfy the constraint, and in fact the last threshold in 
(5.8). for m = 1, gives b equal to infinity, independently of the value of bo). The value of 
b at these thresholds is higher, the higher is bo. At fixed b, and increasing bo starting from 
bo = 0, the situation is the following. For bo = 0 the dimension of the space spanned by 
the vectors Jj depends on the value of b; it can be computed from (5.8) that the dimension 
is p if b c (uhp) / (p  -.hp E,!=, i). Increasing bo, one successively crosses the thresholds 
at which the dimension of the space increases by one up to the value p. 

5.2.2. Stabilify in r. Now we multiply (5.6) hy the fixed-point vectors Jk, k = 1, . . . , m, 
as for the damped case, to obtain the equation analogous to (4.29). expressing A(&j . Jk). 
The term with Sp contributes. It is not difficult to write the explicit expression for it. We 
find that 

- ( ~ j .  Jj). (5.9) 
[b + bofi]' 
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In the damped case we had, in the stability analysis in r, the two cases (i) and (ii), and 
case (ii) was divided in~the two subcases’(a) and (b). Since Sp multiplies J ,  and since 
6p has the form given by (5.9), we see that the term with Sp gives different expressions 
from the damped case only in subcase (a) of (ii). Using both equations (4.31) and (5.9), 
we obtain 

When we consider this expression for i = 1,. . . , m, we obtain a system of m equations in 
them variables (E; .A), i = 1, . . . , m. According to what was noted at the beginning of this 
subsection concerning the constraint, these variables cannot be considered to be independent. 
However, we can exploit this dependence to simplify the system, and to show that for all 
the permitted choice of the variables we obtain stability. This is done in appendix C. 

We finally note that the dimension of the hypersurface in J space, where Z is at its 
maximum, is the same as in the damped case and for the same value of pb,  the dimension 
of the hypersurface where f is at its maximum. 

In summary, the maximization of Z under the global constraint leads to J configurations 
that have the same general properties described, for the damped case, in subsection 4.3. The 
main difference is in  the determination of the noise thresholds, where the dimension of r 
changes. Now both the channel and the input noise, b and bo, are relevant, and the thresholds 
are given by expression (5.8). 

6. Discussion and conclusions 

In this paper we have examined in detail ‘the features characterizing the synaptic 
configurations that maximize the input-output mutual information in a linear neural network, 
in presence of both input and synaptic noise. 

Several authors have clarified the relationship between the maximization of the input- 
output mutual information in a linear network and the extraction of the principal components 
of the input data distribution at the output of the network, in the absence of noise (see, e.g., 
[2]).  The analysis for the noisy case was then treated mostly on the basis of qualitative 
arguments, and it was not clear to what extent the picture survives after the introduction of 
noise; our work is intended to fill this gap. 

It turns out that it is necessary to impose some limitations on the admissible synaptic 
configurations: we have examined two strategies for doing this: (i) a penalty term, quadratic 
in the J’s, is introduced in the function to be maximized; (ii) a global constraint is imposed 
on the admissible J configurations. 

It is useful to make a comparison, as we anticipated in section 4, between our work and 
the results obtained in [3,12,16].  First of all we stress the fact that our results do not rely 
on the hypothesis of translational invariance of the input signals, in contrast to the works 
just cited. Besides, we give an explicit proof of the stability condition for this more general 
case. If we specialize our work to the translational invariant case, OUT equation for the fi 
can be viewed as an equation for the Fourier components of the receptive field, since in this 
case the eigenvector decomposition can be shown to be equivalent to the Fourier expansion. 
In particular, our equation (4.15) can be directly compared with [12,equation (22)l; in that 
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work a different choice is made for the constraint on thc neural filter. In our notation the 
constraint would read 

(6.1) 
which would lead to an equation for the f i  equal to [lZ,equation (ZZ)], up to notational 
changes. The difference in the constraints leads to quantitatively different results for the $, 
which, however, share the property of filtering out some components in the input signals. 
This shows up as the restriction of admissible solutions due to the positivity of fi. 

Up to now inputs without translational invariance have been considered only in the 
particular context of colour vision, where the three-dimensional colour field (two or three 
cone types), not translationally invariant, is coupled to the spatia-temporal contrast field [17]. 

We now turn to a summary of our main results. 

The values of the synaptic weights pointing to each one of the p output units are, for 
the optimal configurations, the componenis of vectors lying in the subspace spanned by 
the first m principal components of the input distribution. The value of m is determined 
by the amount of noise present in the input data and in the synaptic channel. 
The way in which the noises b and bo determine the number m of stable principal 
components, is different, depending on the choice we make between the above- 
mentioned options (i) and (ii). 
In case (i). m changes as b crosses some threshold values, irrespective of the value 
of bo;  however, the value of the mutual information attained for the optimal synaptic 
configurations depends on both b and bo. In case (ii), m changes when b and bo are 
related by (5.8). 
The optimal solution is degenerate, in that the function to be maximized enjoys, in 
both cases (i) and (ii), a symmetry under suitably defined orthogonal transformations. 
A particular base can be chosen, in which the output distribution is factorized; this 
relates to the factorial code proposed by Barlow [l] as an unsupervised strategy suited 
to implement a biologically plausible redundancy reduction scheme. 

Future deveIopments include numerical simulations involving non-Gaussian input 
distributions and different architectural choices, with possibly non linear processing. We 
have seen that a large degeneracy exists when infomax is performed with a linear processing 
on a Gaussian distribution. However, we know &om studies in the low-noise limit that 
processing of non-Gaussian distributions and/or nonlinear processing will essential remove 
this degeneracy, leading, whenever it exists, to a factorial representation [18]. We thus 
intend to investigate which statistical features of the environment are extracted by the 
network when maximizing the mutual input-output information, also in the presence of 
noise, in these more general cases. 

Tr[bn, + boJJr+  J U T ]  =constant 

Appendix A 

We prove here that J J T  and JCJT  can be simultaneously diagonalized at the fixed point, 
Suppose we diagonalize J J T  + V by J + A J ,  with A an orthogonal matrix; then 

from (4.7), we obtain 

AJCJTAT = (b + b o D ) p D + A J C J T A T ( b  + boV)-‘boV + A J C J T A T p V  - (AA) 

Putting [ A J C J T A T ] i j  = aij; ’Dij = $&j ,  and writing the element ( i j )  of the above equation 
we get 

“ij tb - P A @  + bofi)l = (b + h f i ) ’ P f i & j .  (A.3  
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The term in square brackets on the left-hand side is always non-zero. Therefore we see that 
ajj cx Si j  thus proving the result; also, in particular, aii = 0 if fi = 0. In the text we have 
denoted ai = a;i. 

Appendix B 

Here we prove (4.11). Given that the vectors Jj span an invariant subspace of C, we can 
decompose the vector C J j  as follows: 

In the diagonal base, where both J J T  and J C J T  are diagonal, equation (4.11) is trivially 
satisfied for the indices for which fi = 0, since in' appendix A we have shown that a. - 0 
if fi = 0. For the other indices we can use (€3.1) in the diagonal base, with the sum running 
only on the indices different from j for which fk # 0. Then, multiplying (B.l) by Ji, with 
i # j and with fi # 0, and taking into account that Jj . JX = fi&, we obtain 

'T 

Thus y,' = 0, and therefore only the first term appears on the right-hand side of (B.l), 
which in turn implies that yj is equal to a certain eigenvalue of C: yj = At,,; furthermore 

aj = At(i)fi .  (B.3) 

Appendix C 

Here we prove that from (5.10) we obtain stability. Let us denote by -ai the coefficient 
of (E! . Jj) in the first term on the right-hand side of (5.10), and with hj the coefficient 
of $(ej . Jj) in the second term. We have seen in section 4 that ai > 0. By denoting 
( ~ i  . Ji) = x i  in addition, equation (5.10) hecomes 

In this system of m equations the permitted values of the xi are those that satisfy the 
constraint E;"=, xi = 0. We suppose to study the system only under this condition, and 
then we can transform the coefficients. In fact, from C;"=, xi = 0 and from ELi fi = U 
we obtain 

m m 

(C.2) 

Therefore we can rewrite (C.l) as 
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At this point we make a change of variables: xi = Gyi. We then have 

We study the eigenvalues p of this system; at the end we will come back to the problem 
of the dependence of the y;. Then we compute the determinant of the following system: 

m 

j=1 
-(ai + p)yj + g a j y j  = 0. 

The determinant can be computed by a recursive calculation. Denoting ci 
given by 

%ai + p,, it is 

This determinant is zero if p = 0 or if the sum on the right-hand side is zero. But this sum 
can be zero only if at least one of the c; is not positive. Therefore, when the sum is zero, 
we choose one of these ci and we then have 

(C.7) 
U U 

p, = C' - -a. < ---ai < 0. 
' 5 ' '  fi 

Thus we have one zero eigenvalue and all the other eigenvalues are negative. At this point 
we come back to the dependence of the yi, or of the xi .  We see that, by construction of 
the system (C.3). the eigenvalue equal to zero is associated with Cy=, x i .  But this quantity 
has to be kept equal to zero to satisfy the constraint Therefore all permitted values of the 
xr are associated with the negative eigenvalues, and this concludes the proof of stability. 
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