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Information transmission by stochastic synapses
with short-term depression: neural coding
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Abstract

The ability of dynamic synapses with short-term depression to transmit the information present
in the presynaptic spike train to the postsynaptic neuron is discussed. Both by minimizing the
estimation error and by maximizing the information transmitted to the postsynaptic neuron it
is found that for Poisson inputs dynamic synapses are not able to estimate the rate better than
static ones. However, short-term depression becomes relevant when more realistic temporally
correlated spike trains are used as an input. For the simple model of vesicle depletion considered
here the optimal vesicle recovery time is rather low, about a hundred milliseconds for realistic
values of the input parameters. All these questions are addressed by computing analytically the
distribution of intervals between consecutive synaptic responses for arbitrary renewal processes.
c© 2002 Published by Elsevier Science B.V.
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1. Introduction

The short-term synaptic dynamics of cortical neurons has received considerable at-
tention [5,6] during the last few years. It has been suggested that this dynamics could
be used to transmit the information in the presynaptic spike train to the postsynaptic
neuron e;ciently [3]. If the input train has positive correlations within a time scale
�c, spikes will carry some redundancy that should not be transmitted if the synaptic
resources are to be used optimally. Given the statistical properties of the input trains
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the synaptic parameters could be chosen in such a way that, e.g., the input redundancy
is reduced, a condition that would Cx their values.
In this work we explore the consequences that requirements of optimal transmission

have on the synaptic response. This is done for a simple synaptic model with a single
vesicle release site. At any time either zero or one vesicle is available for release. After
the arrival of a presynaptic spike, if a vesicle is docked, neurotransmitter is released
with probability U and transmission takes place. After depletion, a time period elapses
before a new vesicle docks which leads to depression of the synapse. The time required
for the docking of a new vesicle after release is governed by a Poisson process with
mean time �. This is one of the simplest models [2] which when averaged over trials or
over synapses reduces to the phenomenological models of Refs. [5,6], which account
for the experimental results.
Two diDerent optimization criteria are implemented: maximization of the precision

with which the input rate can be estimated from the observation of synaptic re-
sponses and maximization of the information that these responses have about the input
rate.

2. Statistics of the synaptic response

The input trains to this synapse are taken as a general renewal process with ISI
distribution �ISI(t) and constant rate �. Since there is only one vesicle and the docking
mechanism is renewal, the synaptic responses will also be a renewal process. Then the
distribution �e(�) of the time interval � between consecutive EPSPs can be evaluated,
obtaining

�̃e(s) = U
[�̃ISI(s)− �̃ISI(s+ 1=�)]

[1− �̃ISI(s)(1− U )][1− �̃ISI(s+ 1=�)]
; (1)

where the tilde denotes Laplace transforms. All the relevant quantities for this work
can be obtained from this distribution.
We have considered exponentially correlated input trains characterized by the rate

�, the coe;cient of variation of the ISIs CV and the correlation time �c: C(t; t′) =
�(CV 2 − 1)=(2�c)e−|t−t′|=�c .
The CV sets the amplitude and the sign of the correlation function. It is easily

checked that the ISI distribution of the only renewal process with this correlation is
�ISI(t) = (1− �)1e−1t + �2e−2t . The parameters [1; 2; �] are functions of the three
physical input parameters [�; CV; �c]. Eq. (1) gives the distribution �e(�) as a sum of
four exponentials which amplitudes and characteristic times are functions of the input
parameters [�; CV; �c] and of the synaptic parameters [�; U ].
We plot in Fig. 1(right) the dependence of the CVe (the coe;cient of variation of

�) on �. An increase in � initially causes a decrease in the CVe making the output train
more regular. The value of � for which the minimum is reached increases with the input
CV . The EPSP’s rate takes the form �e = �U [1+ ��U + �U (CV 2− 1)=2(�+ �c)]−1. As
Fig. 1(left) shows, it saturates to 1=� as the input rate � increases. This occurs above a
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Fig. 1. Left: the EPSPs rate vs. the input rate �. � = 0:2 s. Right: CVe vs. � for several values of CV and
� = 10 s−1. Legend applies to both plots. Other parameters are U = 0:8 and �c = 0:05 s.

frequency �sat such that U�sat�=1+ �U (CV 2− 1)=2(�+ �c) indicating that correlations
shift the saturation frequency towards larger values.

3. Information analysis

Now we have arrived at one of the main issues of this work which is to determine
whether depressing synapses are optimal to transmit information about the input rate.
This is done with two diDerent criteria: the Crst is to optimize the accuracy with
which the input rate is estimated; this requires the evaluation of the Fisher information
for a given output (synaptic response) code. The second is to get at the postsynaptic
terminal as much information (again about the input rate) as possible; this is carried out
by optimizing the mutual information. Although related to the latter, another criterion
considered here is the minimization of EPSP’s autocorrelations [3].

3.1. Estimation of the input rate �

The inverse of the Fisher information provides a lower bound on the mean squared
error in the estimation of the input rate. We have computed it for the EPSP count
code given by the number of EPSPs in a large time window T (denoted by ne(T )),
and for the EPSP time code provided by the observation of the time intervals �. The
Crst J (�|ne), can be evaluated for large T as

J (�|ne) = T
CV 2

e �e

(
@�e
@�

)2
: (2)

The second, J (�|�), was obtained from: J (�|�)) =− ∫∞
0 �e(�)(@2=@�2) log(�e(�)) d�.

We deCne �opt as the value of � for which J is maximal. The Fisher information as
a function of � is exhibited in Fig. 2(left) for the two codes. J (�|ne) is represented per
EPSP by dividing it by the mean number of synaptic responses in T; �eT . Likewise
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Fig. 2. Left: Fisher information about the input rate � conveyed in one interval between EPSPs, J (�|�)
(dashed lines), and in the EPSP count per EPSP, J (�|ne)=〈ne(T )〉 (solid lines), vs. the recovery mean time
� for several values of CVs, with � = 10 Hz. Right: the optimal recovery time �opt which maximizes J vs.
the input CV , for several values of the input rate �. In both plots U = 0:5 and �c = 0:1 s.

J (�|�) is the Fisher information given an interval between EPSPs. �opt is exhibited in
Fig. 2(right) as a function of the CV for diDerent values of �s. For Poisson inputs the
Fisher information is maximal for �=0, that is, when there is no depression. For CV ¡ 1
�opt is also 0 (data not shown). As the CV increases �opt also increases, showing that
for positively correlated inputs depressing synapses are eDective in improving the input
rate estimation. The fact that �opt¿ 0 for CV ¿ 1 for J (�|ne) can be traced back to
the dependence of CVe and @�e=@� on � (Eq. (2)). CVe decreases as � increases from
0 (Fig. 1(right)). This factor contributes to increase �opt. On the other hand, increasing
� also causes a decrease in the factor @�e=@� in Eq. (2). For large enough values of �,
�¿�sat, and both J (�|ne) and J (�|�) decrease (Fig. 2(left)). The smaller the input �
is, the bigger � has to be to made �¿�sat, and therefore a larger �opt can be obtained
(Fig. 2(right)). Notice that J (�|ne) and J (�|�) are very similar.

3.2. Mutual information and autocorrelations

We now consider the information that a population of depressing synapses has about
the input rate. This is done for the time code deCned by the set of the EPSP inter-
vals of those synapses. These variables are conditionally independent because they are
generated from diDerent realizations of the process.

I =
∫

d�̃ d��e(�̃|�)f(�) log2
�e(�̃|�)
�e(�̃)

: (3)

The input rate distribution f(�) is chosen to be a Gaussian with mean L� and variance
L�. The vector �̃ is the set of the EPSPs intervals deCning the time code. For a large
number of (conditionally) independent output variables I can be obtained from the
Fisher information [1]:

I =−
∫

d� �(�) log2

(√
2�e

NJ (�|�)�(�)
)
; (4)
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Fig. 3. Top: mutual information I vs. � for several values of the input CV (time code with N = 100).
Bottom: autocorrelations measured in terms of the average of K (Eq. (5)) over input frequencies vs. �. In
both Cgures U = 0:2; �c = 0:1 s; L� = 10 s−1 and L� = 5 s−1.

where N is the number of output variables and J (�|�) the Fisher information given one
�. I is given in Fig. 3(top) as a function of � for several values of the input CV . Again
for Poisson input trains the mutual information is maximal for �=0, that is, in the ab-
sence of depression. The same holds for CV ¡ 1. However, for input CV ’s larger than
one �opt becomes non-zero and depressing synapses become advantageous to transmit
information. An identical conclusion is reached from the analysis of autocorrelations.
DeCning

K =
∫ ∞

0
dt
(
�e(t|tsp = 0)− �e

�e

)2
; (5)

where �e(t|tsp) is the rate of the EPSPs at time t given that there was a spike at time
0. As can be seen in Fig. 3(bottom), 〈K〉, where the average is over the distribution of
input �, is minimum for approximately the same values of � that optimize the mutual
information. Although this issue deserves further analysis, this is an example of the
fact that redundancy can be minimized by maximizing the mutual information [4].
To conclude, depressing synapses are better than static ones to transmit information

when the CV of the input train is larger than 1, for the two diDerent optimization
approaches used in this work. Below saturation the best estimation of the input rate
is almost equally good for the two codes considered here. Optimization of the mutual
information agrees with the minimization of the two-point correlation. While for the
estimation of the rate the optimal solution is related to the minimum of the EPSP
coe;cient of variation (at least for the count code) for information transmission and
decorrelation the optimum occurs for CVe ∼ 1. The optimal recovery time can reach
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values around 100 ms for realistic values of the input parameters, but to achieve higher
values it may require to consider models with a larger number of vesicles.
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