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Because of intense synaptic activity, cortical neurons are in a high conductance state. We show that this
state has important consequences on the properties of a population of independent model neurons with
conductance-based synapses. Using an adiabaticlike approximation we study both the membrane potential
and the firing probability distributions across the population. We find that the latter is bimodal in such a
way that at any particular moment some neurons are inactive while others are active. The population rate
and the response variability are also characterized.
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Under in vivo conditions cortical neurons receive a per-
sistent bombardment of presynaptic action potentials com-
ing from a few thousand neurons [1]. This synaptic activity
has an important effect on the membrane properties of the
postsynaptic neuron. Synaptic ion channels open upon the
arrival of these events and the total membrane conductance
increases considerably. Even in the absence of sensory
stimulation, the neuron is affected by the background
activity from other neurons in the population, producing
a fivefold increase of its conductance [2]. If the neuron is
recorded in vivo under sensory stimulation, its conductance
doubles relative to that at rest [3]. Since the cell membrane
behaves as an RC circuit, this increase in conductance
produces a drastic reduction in its effective membrane
time constant, �m [4]. As an example, if a cortical neuron
in vitro has a membrane time constant �m � 20 ms, back-
ground activity would reduce it to �m�4ms, a value which
is further reduced by the stimulus to �m�2ms. Therefore,
�m can become shorter than the time constant of both ex-
citatory (�AMPA�3ms) and inhibitory (�GABAA�10ms)
synapses. Even when �m does not become so short, its
value in vivo is presumably smaller than �GABAA .

Here we employ a novel technique to study the popula-
tion properties of model neurons in the high conductance
state (HCS). This allows us to derive the membrane voltage
and firing probability distributions of model neurons,
showing that these exhibit quite different properties from
neurons in a low conductance regime. For the sake of
simplicity we present both the mathematical solution and
the corresponding numerical analysis in the particular
situation in which all the synaptic time scales become
longer than �m. However, we will see that a similar solution
exists if some synaptic channels contribute with fast noise,
provided that there is a slow synaptic type.

Neurons are of the integrate-and-fire type [5]: the mem-
brane potential V follows the equation

Cm _V�t� � �gL�V � VL� � Ibg�t� � Is (1)

Ibg�t� � gE�t��V � VE� � gI�t��V � VI�; (2)

but whenever V reaches a threshold value 	 an action
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potential is fired and V is reset at a value H. The capaci-
tance Cm, the leak conductance gL, and the rest reversal
potential VL describe the passive properties of the mem-
brane. Is denotes the total synaptic current produced by the
stimulus: Is � gs�V � Vs�, where the total sensory con-
ductance gs and reversal potential Vs are assumed to vary
in a time scale much slower than the synaptic time con-
stants. Ibg�t� denotes the total synaptic current generated
by excitatory (E) and inhibitory (I) contributions of the
background activity. The Vk’s are the reversal potentials
and the gk�t�’s the conductances of the excitatory and
inhibitory background synapses (k � E; I). These conduc-
tances are modeled by filter equations with synaptic time
constants �k [6]

�k _gk�t� � �gk�t� � gk;0 �
��������
2�k

p
�k�k�t�; (3)

producing fluctuating conductances with mean gk;0 and de-
viation �k (gk�t� � 0). The �k�t� are white noises of zero
mean and unit variance.

We start by rewriting Eqs. (1)–(3) in a more convenient
way. First, we will use normalized conductance fluctua-
tions zk�t� instead of the conductances gk�t� themselves.
We then replace Eq. (3) by

gk�zk� � �gk;0 � zk�k��; (4)

_z k�t� � �
zk�t�
�k

�

�����
2

�k

s
�k�t�; (5)

where the second equation is an Ornstein-Uhlenbeck pro-
cess and �x�� � x if x > 0 and zero otherwise. The steady
state probability density of the conductance fluctuations is
Gaussian; denoting ~z � �zE; zI� and j z j2� z2E � z

2
I this

density reads

p� ~z� �
e�jzj2=2

2�
: (6)

Second, we make explicit the effect of presynaptic activity
on �m by rewriting Eqs. (1) and (2) as

Cm
gtot�~z�

_V � �m�~z� _V � �V � VR� ~z�; (7)
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gtot�~z� � gL � gs �
X
k�E;I

�gk;0 � zk�k�
�; (8)

VR�~z� �
gLVL � gsVs
gtot�~z�

�
X
k�E;I

Vk
�gk;0 � zk�k�

�

gtot�~z�
; (9)

where gtot�~z� is the time dependent total conductance
and VR�~z� is the effective reversal potential. Equation (7)
reveals that the voltage evolves with an effective mem-
brane time constant �m�~z� � Cm=gtot�~z�. Since typically
�k=gk;0 < 1 (see, e.g., [6]), the mean values of gtot�~z� and
VR�~z� can be computed as if the rectifying functions in
Eqs. (8) and (9) were not present:

gtot � gL � gs � gE;0 � gI;0 (10)
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VR � g�1
tot �gLVL � gsVs � gE;0VE � gI;0VI�: (11)

Then the mean value of the membrane time constant is
�m � Cm=gtot. As we said above, �m becomes quite small
in the presence of intensive synaptic activity.

Our aim is to understand the properties of a large popu-
lation of independent neurons, each receiving a common
stimulus Is and an independent realization of background
activity. We describe a stationary population by the joint
probability density P�V; ~z� of having a neuron with poten-
tial V and a background fluctuation ~z. The stationary
density P�V; ~z� associated with Eqs. (5) and (7) obeys the
Fokker-Planck equation (FPE) [7]
�
@
@V

�
V � VR� ~z�
�m�~z�

�
�
Lz;E
�E

�
Lz;I
�I

�
P�V; ~z� � �p� ~z�"�~z�#�V �H�; (12)
where Lz �
@
@z z�

@2

@2z
. The quantity "�~z� is the firing

probability density (instantaneous rate) of a neuron receiv-
ing a background fluctuation ~z. It can be computed in terms
of the driving force at threshold and the probability density
P�	j~z� � P�	; ~z�=p�~z� that the potential is at its threshold
value, conditioned to a conductance fluctuation ~z:

"�~z� �
�
VR� ~z� �	

�m�~z�

�
P�	j ~z�: (13)

On the right-hand side of Eq. (12) the instantaneous rate
is reinjected at V � H to reset the neuron after firing.
Equations (12) and (13) have to be solved self-consistently
with some additional constraints: (1) P�	j ~z� has to be zero
when VR�~z�<	; otherwise "�~z� would be negative. (2)
P�V; ~z� must adequately vanish at large ~z and at large
negative V to guarantee its normalizability. Once "�~z� is
known, the population firing rate is computed by aver-
aging "�~z� over a the region � defined by the condition
VR�~z�>	,

"pop �
Z
�
d~zp�~z�"�~z�: (14)

Since in a HCS �m can be shorter than the synaptic time
constants, we look for an approximation of P�V; ~z� and
"�~z� valid in the limit of large �k. As �m is quite short, the
potential is driven very rapidly to its stationary value. The
contribution to the FPE coming from the time evolution of
the membrane potential, Eq. (7), should then be treated
exactly. Our strategy is to deal with the first term on the left
side of Eq. (12) exactly, while the next two terms are
treated perturbatively, for large �k. Therefore, we expand
both the probability density and the instantaneous firing
rate as P�V; ~z� � P0�V; ~z� �O�1=�k� and "�~z� � "0�~z� �
O�1=�k�, obtaining the zeroth order of Eq. (12):

@
@V

�
V � VR�~z�
�m� ~z�

�
P0�V; ~z� � �p� ~z�"0�~z�#�V �H�: (15)

This expansion corresponds to an adiabatic approximation
where the voltage state of the neurons is computed exactly
at a fixed level ~z of background activity. This technique
was first introduced in [8] to study the effect of synaptic
filtering by a model neuron without reversal potentials.
Solving Eq. (15) for V 
 	 leads to

P0�V; ~z��
�
�m�~z�"0�~z�H �V�H�

VR�~z��V
�#�V�VR�~z��

�
p�~z�;

(16)

where H �x� � 1 for x > 0 and zero otherwise. Besides

"�1
0 �~z� � �m�~z� log

�
VR�~z� �H
VR� ~z� �	

�
(17)

if VR�~z�>	 and "0�~z� � 0 otherwise. This is the firing
probability density of an integrate-and-fire neuron, as in
Eq. (7), with effective membrane time constant �m�~z� and
reversal potential VR�~z�, in a constant background ~z.

The joint distribution P0�V; ~z� [Eq. (16)] has two terms,
originated from different subpopulations. Neurons charac-
terized by a conductance fluctuation ~z such that VR�~z� � 	
contribute only to the first term. These neurons are active,
fire with an instantaneous rate "0�~z�, and their membrane
potential is distributed spanning the range between the
reset and the threshold potentials. The intuitive interpreta-
tion of this result is simple: after the neuron fires and the
potential is reset atH, the potential undergoes a continuous
depolarization until it reaches again its threshold value. In
contrast, those neurons where VR�~z�<	 contribute only
to the second term. These are inactive and their membrane
potential is clamped at VR�~z�. The distribution of mem-
brane potentials across the total population, P0�V�, is
obtained by integration of P0�V; ~z� over ~z.

We have simulated a population of neurons [9] using
Eqs. (5) and (7) and compared the simulated distribution
with the analytical result in Fig. 1. The top picture also
shows the contributions to P0�V� from the active and
inactive subpopulations, which come from integration over
~z of either the first or the second term in Eq. (16), respec-
tively. The first term in P0�V; ~z� becomes important when
the population spends most of the time firing. This cor-
responds to a population in the suprathreshold regime
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FIG. 1. Membrane potential distribution. The analytical re-
sults, P0�V�, (full thick lines) are compared with the simulated
distributions (dashed lines). Top: relatively short synaptic time
constants, �E�I� � 10 ms, in a subthreshold condition with gs �
30 nS, Vs � �60 mV (giving VR � �56:7 mV) and �E �
3:95 nS, �I � 5:59 nS. The contributions from the active (thin
line) and the inactive (dotted line) subpopulations are also
shown. Middle: as before but in two different conditions: sub-
threshold with gs � 25 nS, Vs � �72 mV (left, VR �
�59:6 mV) and suprathreshold with gs � 37:5 nS, Vs �
�48 mV (right, VR � �52:8 mV). Bottom: same as the middle
graphs but for longer synaptic time constants, �E�I� � 50 ms.
Besides �E � 1:77 nS, �I � 2:5 nS. In this case the prediction
is much better and the distributions become narrower. The other
parameters are: Cm � 0:25 nF, gL � 12:5 nS, gE;0 � 20 nS,
gI;0 � 40 nS, 	 � �54 mV, H � �60 mV, VL � �65 mV,
VE � 0 mV, and VI � �80 mV. With these values �m � 3 ms.
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(VR >	), in which the distribution of V is close to the
threshold potential (right curves). In contrast, when the
population is in the subthreshold regime (VR <	), the
voltage fluctuates around the effective reversal potential
for long periods before any neuron fires. Now the second
term in Eq. (16) gives the largest contribution (left curves).
Predictions are good except very close to the threshold,
where the adiabatic approach predicts a sharp edge which
is absent in the simulations. However, the predicted value
at V � 	 is accurate.

The population rate is obtained from Eqs. (6), (14), and
(17),

"pop �
Z
�

d~z
2�
e�jzj2=2"0�~z�: (18)

This expression can be understood qualitatively: since in
the HCS the synapses have a slower dynamics than the
membrane, for any given ~z the firing probability takes the
value "0�~z� corresponding to a neuron receiving a constant
fluctuation. Equation (16) can be explained in similar
terms. Notice that this argument can be used to justify an
equation similar to (18) when synapses faster than �m are
present, provided that there is at least one slow synaptic
type. Now, while the slow synapses produce the required
slow fluctuation ~z, the membrane dynamics reaches its
stationary state in the presence of the fast noise of variance
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�f, producing spikes with firing probability density
"0�~z; �f� (e.g., the one given in [5]). We analytically
checked that Eq. (18) is still valid by just replacing the
instantaneous rate "0�~z� given in Eq. (17) by this "0�~z; �f�.
Because of the fast noise, the integration domain � is
simpler: all values of ~z may give some contribution. If
the fast noise is weak, "0�~z; �f� � "0�~z�, it will not affect
much the properties of the population. Here we will only
analyze the case without fast noise.

Equation (18) can also be interpreted as the firing rate of
a single neuron bombarded by intense presynaptic activity.
Since this neuron responds whenever VR� ~z� � 	, it be-
haves as a detector of fluctuations ~z satisfying this condi-
tion. This property is also present in neurons with synapses
described as simple slow filters [8]. Although Eq. (18) can
be used to compute "pop, we will now derive a simpler
equation. Let us define u and v as linear combinations of zE
and zI,

u � �)�1��E�	� VE�zE � �I�	� VI�zI�

v � )�1��I�	� VI�zE � �E�	� VE�zI�

)2 �
X
k�E;I

�2
k�	� Vk�

2:

(19)

Under natural conditions (VI < H;	< VE and VI < VL <
VE), the region � is transformed into u � umin � gtot�	�
VR�=) and, for large gtot, v can be taken in the interval
��1;1�. Thus, Eq. (18) becomes

"pop �
Z 1

umin

du�������
2�

p e�u
2=2"0�u�; (20)

where "�1
0 �u� � �eff�u� log��u� uH�=�u� umin��, uH �

gtot�H � VR�=)H, ��1
eff �u� � gtot=Cm � u

P
k�E;I�

2
k�	�

Vk�=Cm), and )H � )�1P
k�E;I�

2
k�	� Vk��H � Vk�.

In Fig. 2 the population firing rate and the coefficient of
variation (CV) of the inter-spikes-intervals (ISI’s) are plot-
ted as a function of gtot. The variances of the background
synaptic conductances have been taken to vary linearly
with gtot. The prediction is quite good for intermediate
gtot and improves for larger values. The population rate
reaches a maximum for intermediate values of gtot, after
which it decreases because a shorter �m reduces the voltage
fluctuations. Asterisks indicate two populations, one in a
low conductance state and another in a HCS. Both fire with
the same rate, but the CV is higher for the second. This
shows that high CV’s, as observed in cortical neurons [10],
are a natural characteristic of populations in the HCS [11].

We can wonder how the instantaneous rate is distributed
across the population. Since fluctuations last for a time
O��k� [this is also true for u, see Eqs. (5) and (19)], neurons
make transitions between the active and inactive subpopu-
lations. However, in the stationary regime, the fraction of
neurons firing at a given instantaneous rate " remains con-
stant. We then proceed to evaluate the probability density
f�"� of having a neuron with firing probability density ".
Since f�"�d" � p�u�du, with u normally distributed,
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FIG. 2. Population firing rate and CV as a function of gtot.
Input noises are changed as �2

E � 6:25� 10�4Cmgtot=�E, �2
I �

125� 10�4Cmgtot=�I , and VR � �55:7 mV remains fixed.
Besides �E � 3 ms, �I�10:5ms, VI � �70 mV, and the other
parameters are as in Fig. 1. Triangles are the results from
simulations and full curves the prediction of Eq. (18).
Asterisks in the left graph correspond to a population with low
conductance (left) and another with high conductance (right)
firing with approximately the same rate. Asterisks in the right
graph indicate their CV’s.
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f�"� �
��������du�"�d"

��������e
�u�"�2=2�������
2�

p � #�"�
Z umin

�1

ds�������
2�

p e�s
2=2;

where u�"� is the inverse of "0�u�. Figure 3 shows that this
distribution is bimodal. Here the population is in the sub-
threshold regime (VR <	) and then a large fraction of
neurons is inactive. This is because in the subthreshold
regime umin is positive and in the HCS it is large (then
umin > 1), so that for most neurons u < umin and they stay
silent. This subpopulation is represented with a vertical bar
at " � 0. However, there is a small fraction of neurons
having high probability of firing (those with u > umin, i.e.,
VR�~z�>	). As gtot increases, keeping the input variances
fixed, the right peak becomes lower and shifts to higher
instantaneous rates (data not shown).
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FIG. 3. Distribution of firing probability densities across a
population of neurons in the HCS. The example shown is in
the subthreshold regime. Although most neurons are silent
(vertical bar) a small subpopulation fires (smooth curve). The
probability of a neuron being in the latter is 0.05. The membrane
potentials of an inactive (top inset) and of an active (bottom
inset) neuron are plotted for 60 ms (simulations). Parameters are
as in the top panel of Fig. 1 except �E � 2:5 nS, �I � 3:95 nS.
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We computed an estimator "est of the instantaneous
firing rate of neurons in a simulated population as the
inverse of the ISI’s. Although the distribution of this esti-
mator, f0�"est�, does not provide a good fit of the true
instantaneous rate distribution, it does have a bimodal
shape when the population is in the HCS. In contrast,
f0�"est� loses the bimodality in the low conductance re-
gime, suggesting that it is characteristic of the HCS.

While we have considered the case in which synapses
are slower than the neuron dynamics, the situation actually
occurring in nature might be more complex. For not too
strong presynaptic activity, the total conductance of the
neuron could be such that �m lies between the fast AMPA
(excitatory) and the slower GABAA (inhibitory) receptors.
As we have already discussed, this can be described by an
equation similar to Eq. (18) and therefore even in this case
the neuron response is as described here, if the noise comes
mainly from GABAA. The same is true if the noise is
mainly produced by NMDA (slow excitatory) receptors.
Overall, a neural system in which slow noise dominates
over fast noise will exhibit the properties discussed in this
work.
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