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An analytical description of the response properties of simple but realistic neuron models in the
presence of noise is still lacking. We determine completely up to the second order the firing statistics of a
single and a pair of leaky integrate-and-fire neurons receiving some common slowly filtered white noise.
In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are
obtained from an improvement of the adiabatic approximation introduced previously by Moreno-Bote and
Parga [Phys. Rev. Lett. 92, 028102 (2004)]. These two functions define the firing variability and firing
synchronization between neurons, and are of much importance for understanding neuron communication.

DOI: 10.1103/PhysRevLett.96.028101 PACS numbers: 87.19.La, 05.40.�a, 84.35.+i
The variability of the spike trains of cortical neurons and
their correlations might constrain the coding capabilities of
the brain [1], but they can also reflect the strategies the
brain uses to decipher the stimuli arriving from the world
[2]. Neurons in cortex fire with high variability resembling
Poisson spike trains [3] and nearby pairs of cortical neu-
rons fire in a correlated fashion [1], reflecting the presence
of some common source of noise. These variability and
correlation of the spike trains affect the firing statistics of a
neuron receiving those inputs [4,5]. It has been shown that
the large variability observed in vivo can be accounted for
by neuron models operating in a regime in which the mem-
brane time constant, �m, becomes shorter or comparable to
the synaptic decay constants, �s, due to spontaneous back-
ground activity (�s � �m) [6,7]. However, very little
progress has been made in providing analytical tools to
describe such variability and correlations found in cortex.

In this Letter we study analytically the variability and
correlations in the firing responses of pairs of leaky
integrate-and-fire (LIF) neurons receiving both common
and independent sources of white noise input filtered by
synapses in the regime �s � �m. For a single neuron we
obtain the firing rate, the autocorrelation function of its
output spike train (ACF), and the Fano factor of the spike
count, FN . For a pair of cells, we obtain the cross-
correlation function of their output spike trains (CCF)
and the correlation coefficient of their spike counts, �.
These results characterize completely the firing response
of these spiking neurons up to second order, and open the
possibility for a principled way of including synchrony
effects in the modeling of biologically plausible spiking
neural networks.

The neuron and input models.—The membrane potential
V�t� of a single LIF neuron with membrane time constant
�m and receiving an afferent current I�t� obeys

�m _V � �V � �mI�t�: (1)
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A spike is generated when V�t� reaches a threshold �, after
which the neuron is reset to H, from where it continues
integrating the current [8]. The external input is modeled
by a white noise with mean� and variance �2 [8], which is
filtered by synapses with decay time constant �s, resulting
in a current described by

�s _I�t� � �I�t� ��� ���t�; (2)

where ��t� is a Gaussian white noise with zero mean and
unit variance. We simplify Eqs. (1) and (2) by performing
the linear transformations I � �� z�=
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Ĥ �

���
2
p
�H ���m�=�

������
�m
p

.
The autocorrelation function.—To determine the ACF,

first we describe the time evolution of the probability
density of having the neuron in the state �x; z� at time t
given that initially the neuron has just fired (x � Ĥ) and
z � z0. The Fokker-Planck equation (FPE) for this density,
P�x; z; tjĤ; z0�, is [9]

�m
@
@t
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�
@
@x
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P��mJ�z;tjz0���x�Ĥ�;

(5)

where � � � �
�������������
�m=�s

p
and Lz �

@
@z z�

@2

@2z . J�z; tjz0� is
the probability density of having a spike at time t along
with a fluctuation z given that z � z0 at time t � 0. This
probability is expressed as a function of the density P as [9]
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J�z; tjz0� �
1

�m
���̂� �z�P��̂; z; tjĤ; z0�: (6)

Solving the FPE (5) with J�z; tjz0� as a source term at x �
Ĥ means that each time a spike is produced, the normalized
potential x is reset to Ĥ while z keeps its same value.

The integral
R
dzJ�z; tjz0� expresses the probability of

having a spike at time t conditioned to the fact that z � z0

at time t � 0. We define the ACF, C�t�, as the probability
density of firing a spike at time t > 0 conditioned to the
fact that at time t � 0 there was a spike. Therefore, C�t� is
the average of

R
dzJ�z; tjz0� with the distribution of z0

conditioned to the production of a spike at time t � 0,
B�z0�. Since B�z� is the distribution of z at the moment of a
spike, then B�z� � J�z�=	, where J�z� is the limit t! 1 of
J�z; tjz0�, and 	 is its normalizing factor [	 �

R
dzJ�z�]

and also the firing rate of the LIF neuron defined by
Eqs. (3) and (4). Therefore, the ACF is computed as

C�t� �
Z
dz0

J�z0�

	

Z
dzJ�z; tjz0�: (7)

The solution of the FPE (5) and Eq. (7) is simplified by
noticing that z is a pure Ornstein-Uhlenbeck process,
Eq. (4), and therefore its marginal distribution, P�z; tjz0�,
is (see, e.g., [8])

P�z; tjz0� �
1���������������������������������

2
�1� e�2t=�s�
q e���z�z0e�t=�s �2=2�1�e�2t=�s ��;

(8)

which broadens over time and for t	 �s approaches a
normal distribution, p�z� � e�z

2=2=
�������
2

p

.
The analytical solution.—We expand P�x; z; tjĤ; z0� and

J�z; tjz0� in powers of �2, as P � P0 � �
2P1 � 0��4� and

J � J0 � �
2J1 � 0��4�, following a technique introduced

in [9] for the stationary FPE. In this expansion, the pa-
rameter � in Eqs. (5) and (6) is assumed to be fixed. Only at
the end, when the leading orders of the expansion have
been found, � is given its true value � �

�������������
�m=�s

p
.

The solution at zeroth order of the FPE (5) satisfying
conditions (6) and (8) is

P0�x; z; tjĤ; z0� � P�z; tjz0���x� X�z; t��; (9)

where X�z; t� is the time evolution of the variable x ob-
tained from Eq. (3) with frozen z and initial condition Ĥ.
Notice that x � X�z; t� is a periodic function of t, because
whenever x � �̂, x is reset to Ĥ. Its period, T�z� �
�m ln�Ĥ � �z=�̂� �z� [T�z� � 1 for z < �̂=�], is the
interspike interval (ISI) of a LIF neuron receiving a frozen
z, and it is calculated from Eq. (3) as the first time T at
which X�z; T� � �̂. After expressing the delta functions in
terms of t, the probability density current, Eq. (6), at zeroth
order becomes

J0�z; tjz0� � P�z; tjz0�
X1
n�1

��t� nT�z��: (10)
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This expression has a simple interpretation. The sum of
delta functions in the index n represents a regular train of
spikes with ISI T�z�, as if z were fixed. Therefore, the
probability of having a spike along with a fluctuation z at
time t, J0, is given at a first approximation by the product of
both the probability of finding at time t a spike of the train
generated with frozen fluctuation z, and the probability of
having such a fluctuation z at time t starting from the initial
condition z � z0, P�z; tjz0�. Note that in Eq. (10) the noise
is allowed to evolve in time following the distribution
P�z; tjz0�. It has been proved that the stationary (frozen)
distribution of z can be employed to describe the firing rate
of LIF neurons [9,6], and used the approximation that z is
constant during the ISIs to describe the Fano factor of non-
LIF neurons with weak noise [10]. However, freezing
completely the noise z in Eq. (10) leads to very poor
predictions in our problem (not shown).

To determine the ACF, Eq. (7), at zeroth order, C0�t�, the
zeroth order J�z� is required, which is [9]

J0�z� � 	0�z�p�z�; (11)

where 	0�z� � 1=T�z� for z � �̂=� and 	0�z� � 0 other-
wise.C0�t� is computed, after using Eqs. (7), (10), and (11),
and evaluating the delta functions, as

C0�t� �
X1
n�1

Z dz0J0�z0���zn � Ĥ���zn � �̂�

	0�mn���̂� Ĥ�
P�zn; tjz0�;

(12)

where zn 
 zn�t� 
 ��1��̂� Ĥe�t=n�m�=�1� e�t=n�m�.
The zns are the roots of the equations t � nT�zn�, the zeros
of the delta functions in Eq. (10).

In Fig. 1 we plot the ACF for the output spike train of a
LIF neuron computed using Eq. (12) and compare it with
simulation results. The agreement is very good in both the
subthreshold (left) and suprathreshold (right) regimes. In
both regimes, the ACF shows a prominent peak after a
relative refractory period of about 10 ms (��m). This
means that the potential has to be integrated from reset to
threshold to emit the first spike. The prominent peak
indicates that the neuron is bursty, producing spikes that
are grouped within short time intervals of 20 ms (��s) [9].
After the prominent peak, the ACF decays to a steady-state
value either monotonically (left) or with a damped oscil-
lation (right). Damped oscillations are a robust feature in
the suprathreshold regime, as is their absence in the sub-
threshold regime. This reflects the fact that the neuron in
the suprathreshold regime fires more regularly, and there-
fore the output spikes tend to occur at integer number of
times the mean ISI (see the peaks of the oscillations in the
ACF). For long times (t	 �s) the memory of the spike at
time t � 0 has disappeared, and the ACF decays to the
unconditioned probability of having a spike, that is, the
firing rate of the LIF neuron.

The firing rate, Fano factor, and CV.—As it is clear, the
firing rate can be obtained from the ACF, Eq. (12), in the
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FIG. 2. The firing rate (left), the Fano factor (right), FN , and
the CV2 (right) for the output spike train of a LIF neuron are
plotted as a function of �s. The firing rate prediction (line) is
calculated using both Eq. (13) and 	0 �

R
dzJ0�z�, and it is

compared with simulation results (points). The FN predicted by
Eqs. (14), (12), and (13) (line), is compared with the FN
(squares) and CV2 (triangles) obtained from simulations.
Parameters values are as in the subthreshold regime of Fig. 1.
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FIG. 1. ACF of a LIF neuron in the subthreshold (left) and
suprathreshold regimes (right). The figures show the typical
shape in both regimes: no oscillations and a large peak in the
subthreshold regime (��m <�) and damped oscillations in the
suprathreshold regime (��m >�). Thick lines are the analytical
results obtained from Eq. (12) (the sum has been cut at n � 200
with t � 200 ms), and thin lines correspond to the numerical
simulations of the same LIF neuron. Parameters for the sub-
threshold (suprathreshold) neuron are � � 85 Hz (115 Hz),
�2 � 6 Hz (3 Hz). Other parameters are H � 0, � � 1, �m �
10 ms, and �s � 20 ms.
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limit of long times (t	 �s). This rate has the expression

	0 � lim
t!1

X1
n�1

��zn�t� � Ĥ���zn�t� � �̂��������
2

p

�mn���̂� Ĥ�
e�zn�t�

2=2: (13)

A different expression for the firing rate can be computed
using 	0 �

R
dzJ0�z� [9]. In fact, both expressions give

identical results when they are plotted as a function of �s
(continuous curve in Fig. 2, left). However, computation-
ally, Eq. (13) is much faster because it involves only a sum
that can be cut at n� 200 (using t � 200 ms). Naturally,
the number of terms needed to approximate the ACF and
the firing rate grows as t increases. Comparison of both
expressions of 	0 with simulation results shows that the
prediction is very good even when �s � �m.

The Fano factor of the output spike train, FN , defined as
the ratio between the variance of the spike count and its
mean evaluated for long time windows, is directly related
to the time integral of ACF as ([11] and see, e.g., Eq. (3) of
Ref. [5])

FN � 1� 2
Z 1

0
dt�C�t� � 	�: (14)

We have evaluated the zeroth order FN in Eq. (14) using
the zeroth order solutions of C�t� and 	, Eqs. (12) and (13).
The prediction fits very well the simulation results (right
panel of Fig. 2). We have also computed the coefficient of
variation of the ISIs, CV, of the neuron response using
simulations (same panel). It is known that for renewal
processes FN 
 CV2 [e.g., for a Poisson process FN 

CV2 � 1, and C�t� � 	]. Here we find that FN � CV2

even when the output response is not a renewal process.
This is because, although the synaptic time scale introdu-
ces correlations in the successive ISIs, for low (but typical)
02810
rates �s < 	�1 the correlation between successive ISIs is
small. We also find that the firing variability is large when
�s � �m [6,7].

The cross-correlation function and correlation coeffi-
cient.—A central issue to describe population dynamics
is to understand the way neuron activity synchronizes.
Here we study a pair of identical LIF neurons �k � 1; 2�

�m _Vk � �Vk � �m�Ik�t� � Ic�t��; (15)

receiving both an independent source of current, Ik�t�, and
a common source, Ic�t�. Each current is described by an
equation identical to Eq. (2), with mean �ind and variance
�2

ind for the independent components, and mean �c and
variance �2

c for the common component. Each neuron
receives a total mean current � � �ind ��c and total
variance �2 � �2

ind � �
2
c.

The CCF of the output spike trains of the two neurons
[denoted as CC���] can be obtained by an analysis similar
to that used for the ACF. The CCF is defined as the joint
probability density of having a spike of neuron 1 at a given
time and a spike from neuron 2 after a delay �. Here we
summarize only the main results. First, we define the
normalized fluctuations uk � �Ik � Ic ���=�, having
zero mean and unit variance. Notice that these are not
independent because of the common input Ic. Second, if
neuron 1 has a fluctuation u1, the probability density that
after a delay � neuron 2 has a fluctuation u2, P�u2;�ju1�,
is a Gaussian distribution with mean hu2��; u1�i �

u1e
��=�s�2

c=�
2 and variance Var�u2���� � 1�

e�2�=�s�2
c=�2. Then, for long �s

CC0���� lim
t!1

Z
du1du2P�u2;�ju1�p�u1�

�
X1
n;m�1

��t�nT�u1����t���mT�u2��; (16)
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FIG. 3. Left: Theoretical [thick line, Eq. (17)] and simulated
(thin line) CCFs normalized by the firing rate of one of the
neurons as a function of time lag. Here �2

c � 2 Hz. Right:
Theoretical [line, Eq. (18)] and simulated (points) correlation
coefficient, �, for the output spike trains of a pair of identical LIF
neurons as a function of the fraction of common noise, �2

c=�
2.

The numerical � is calculated using Eq. (18) integrating the
simulated CCF. Parameters for both figures are � � 85 Hz,
�2 � 9 Hz, and the others as in Fig. 1.
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where T�uk� � �m ln�Ĥ � �uk=�̂� �uk� [T�uk� � 1 for
uk < �̂=�] is the ISI of the neuron i receiving a constant
fluctuation uk, and p�u1� is a normal distribution describ-
ing the steady-state distribution of the fluctuations of neu-
ron 1. The quantities �, Ĥ, and �̂ are defined as before.
The two sums of delta functions in Eq. (16) can be inter-
preted as the product of two output spike trains with fixed
ISI (determined by the input fluctuations), quantity which
has to be averaged over all the possible fluctuations. The
result of such an average is the CCF when the limit t! 1
is taken to allow randomization of the initial conditions,
Eq. (16). This equation can be simplified by integration of
the delta functions, obtaining

CC0���� lim
t!1

X1
n;m�1

��an�Ĥ���bn�Ĥ�

nm�2
m�2��̂�Ĥ�2

���am��̂���bm��̂�P�bm;�jan�p�an�; (17)

where an 
 zn�t� and bm 
 zm�t� ��, with zn�t� as in
Eq. (12). The theoretical CCF matches very well the simu-
lated one (Fig. 3, left). Typically, the prediction under-
estimates the central peak at time lag zero (notice that
the CCF is symmetric around � � 0). The peak decays
within a time of the order of �s. This is because the
synaptic input, being slower than the neuron dynamics,
sets its own time scale in the dynamics of interactions of
the two neurons. The existence of a single peak is robust
for low values of �2

c in both the subthreshold and supra-
threshold regimes, but other side secondary peaks arise
when all the noise is essentially common. For long �,
the CCF converges to the product of the firing rates at
zeroth order, 	2

0 [see Eq. (13)], because the neurons fire
independently.
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The correlation coefficient, �, of the spike counts for
long time windows of the output spike trains of two iden-
tical neurons can be computed from their CCF ([11] and
see, e.g., Eq. (4) of Ref. [5])

� �
2

FN	

Z 1
0
ds�CC�s� � 	2�: (18)

For the two neurons in Eq. (15) it can be computed at
zeroth order using the zeroth orders of CC���, Eq. (17),
FN , and 	. We have compared the theoretical and simu-
lated � as the fraction of common noise increases (Fig. 3,
right). The prediction is good for low values of common
noise and departs from the simulations for larger values. As
the common noise increases, � increases monotonically
and reaches � � 1 when the common noise equals the total
input noise. Correlation coefficients of�0:1 as those found
in cortex [1] are predicted accurately, and they are obtained
when the common noise represents �20% of the total
synaptic noise entering into the neuron, which can be a
realistic value [1]. Therefore, the right plot at Fig. 3 pro-
vides a valuable tool to estimate the fraction of common
noise from the correlations of the spike trains of pairs of
neurons, a quantity that otherwise is not available
experimentally.
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