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Reconstructing images from their most singular
fractal manifold

Antonio Turiel and Angela del Pozo

Abstract—Real world images are complex objects, difficult to describe voted to review the multifractal scheme. In Sectidohthe re-
butdat t[h]e san;]e time_pc_;sslessing a highfdegreelo_f redundancy.| A xery recentconstruction procedure is issued, and in Sectighe quality of
study [1] on the statistical properties of natural images reveals that natu- P . p
ral images can be viewed through different partitions which are essentially the m(_athOd over real natural Images IS teSte,d and discussed. The
fractal in nature. One particular fractal component, related to the most ~ Statistics about the computer implementation of the new tech-
singular (sharpest) transitions in the image, seems to be highly informative nigues issued are presented in Sectibn In SectionVIl we

about the whole scene. In this paper we will show how to decompose the jise\ 55 the results and some of the possible improvements. Fi-
image into their fractal components. We will see that the most singular ’

component is related to (but not coincident with) the edges of the objects Nally, the conclusions are presented in Sectitin

present in the scenes. We will propose a new, simple method to reconstruct

the image with information contained in that most informative component. Il. NOTATION AND METHODS

We will see that the quality of the reconstruction is strongly dependent on

the capability to extract the relevant edges in the determination of the most

singular set. We will discuss the results from the perspective of coding,  We will denote the recorded field of luminance intensities as

proposing this method as a starting point for future developments. ](f) We will work with an additive normalization of it, the
Keywords—Reconstruction, coding, edge detection, fractal, multifractal global contrast field, which is defined as

EDICS: 1-STIL: Still Image Coding.
o(Z) = I(Z) — Io 1)

wherel is the average luminosity over the image. So, the aver-

DGE dectection is a common feature of the mammals’ vige ofc(Z) over any image vanishes.

sual neural systerfi], [3]. It has been proposed that edge As monochrome test images we will make use of several pic-
detectors could be used to provide efficient coding algorithriiges taken from Hans van Hateren's web database (sge [
[4], and in fact maximization of the information transfer lead téor technical details). In all the cases we will work on sev-
orientational edge-dectecting filters|[ However, providing a eral512 x 512 patches from those scenes. We will also use
reasonable, non-conventional definition of “edge” is more cothe 512 x 512 resolution greylevel version of Lena’s picture to
troversial p]. ilustrate several examples.

A different strategy to produce efficient coding can be that of The determination of the multifractal structure of each image
the statistical analysis of imageg[[8]. This kind of analysis Was made by means of wavelet analysi$[[16] using wavelets
implies to identify the origin of redundancies (like that of théom the family ¥ (%) = (- imy [1] for v = 1,...,4 and av-
power spectrumd]) to devise redundancy-reducing codes (as ieraging the resulting coefficients. The distribution of exponents
[10], [1]] for the case of the power spectrum). was computed for each image recording the relative frequen-

In the last years a new statistical study has arisen, that of mgies. The most singular exponent was computed as the mean
tifractals in natural imageslp], [1]. The multifractal scheme of the 1% and 5% quantils. The dispersion around this value
provides a richer framework than that of the simple charactei$-conventionally fixed in a convenient value, depending on the
zation of the power spectrum. This scheme makes possiblgrtage.
split any image into a collection of fractal sets, from which one
of them is suppossed to be the most informatiie Not sur-
prisingly, that set is usually edge-lik&][ [13].

In this paper we will make use of the multifractal scheme There are several equivalent ways to show that natural images
to obtain the most informative component. We will propose possess multifractal structure. One possibility consists of con-
method to reconstruct all the image just using information costructing a positive measuyeg which assigns a positive value to
tained in this set. We will design this method by requiring it tany setd. The measure can be defined by its dengityz) as:
have several reasonable features. We will study its theoretical
properties and discuss its experimental performance over real w(A) = / du(Z) 2)
data. A

The paper is organized as follows: In the following Sectiowe will define a measure which takes into account the sharp
some notations and the methods are defined. Sefitiogs de- transitions found inside each area. Followingy fve will define

the measure density as:
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I. INTRODUCTION

Ill. FRACTAL DECOMPOSITION OF IMAGES
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to use it to characterize the behaviour of any particular pBintOver real images, a direct numerical estimatiofgf.) for each

by observing the evolution of the measure of balls centered orfractal component is possible once the multifractal decomposi-
By B,.(Z) we will denote the ball of radius centered orX’. The tion is performed. However, some popular techniques as that of
measurey is said to define a multifractal if at each poifhin the  box-counting dimension (se&{] and references therein) lead to
image, the measure can be characterized by a local singulaoigrestimated values of the dimension because fractal compo-

exponent.(Z) in the way: nents are usually topologically dense. For that reason, in many
B . contexts P(] it is preferred to analyse the statistical structure
(B (T)) = o) r?Hh@ 4 o(pdth@) (4) with wavelet-based techniques to obtained the cor&éi).

whereo(r*+1() means a term which is neglicible in compari- Fortunately, for wide collections of natural images the ob-
son withr4+2@ for small values of- andd — 2 is the dimen- S€rved multifractals belong to the class of the log-Poisson mul-

sion of the space. For a multifractal measure, épdétermines t|fri';1ch[aIs [ ]’t[ ] [ﬂ]' Tge.funcnonﬁlgh) Eulsually lc):allotladsm.-b d
uniquely the coefficient(Z) and the exponerti(Z): they can gularity spectrumof log-Poisson multifractals can be describe

be obtained by linear regressionlof 1i( B, (#)) vs. log r. The in terms of only two free parameters and so no complicated tech-

coefficienta (&) depends on some arbitrary choices, like the parll.lques are necessary in its de_termmanon. _Thg gef‘e,ra' expres-
ticular metrics used to define the balPs and the scale unit for sion for a log-Poisson singularity spectrum is given by [

r, and it provides no information about the changes in scale. On

the contrary, the exponert(%) is independent of the metrics h— heo h—he

and scaling unit, and gives all the information about the evo- D(h) = Do + {1 — log <M)] (8)
lution under changes in scale (changes:;irsee [] for a full

discussion of the interpretation 4fz)). We will see that there Wherey = —log[1 + hoo /(d — D )]. The two required free pa-
exist better choices tham(Z) to complement the information rameters are the minimum possible exporiegtand the dimen-
provided byh (&) (for instance, the value ¥ c| over a particu- sion of the fractal component associated tdit, = D(h)

lar subset). [17], [1]. That fractal component, denotéd, = F},_, is called
Natural images have been shown to exhibit multifractal béhe Most Singular Manifold (MSM). _
haviour with the measure defined in e8) (see [], [ 12]). How- The MSM plays a fundamental role in the context of multi-

ever, in practice, a direct application of log-log linear regressidfactals in natural images. Itis usually observed [[1], [13] to
on eq. ¢) yields rather coarse discrimination of the exponentgg of dimension 1.0 but with non-integer singularity exponent.
specially due to discretization of the values in the radider Visual inspection of this set reveals a structure which resembles
the balls (seel[7] for a discussion about how to deal with disthe “edges” or contours present in the scen [13], which
crete circles). The standard technique used to circumvent thiguld take account of the dimensionality 1.0 of the set (Lena’s
difficulty involves the use of wavelet projections as singularitynage has als® .., ~ 1.0; see figurel). For that reason, we will
analizers. Letl be an appropriate function and let us definalways assume thd?., = 1, so to define completely the multi-
the wavelet projectioff’y (%, r) of i over¥ at the pointr and fractal we will just need to calculate,, (which is estimated as
scaler as: explained in Sectioi).

As log-Poisson multifractals can be described in terms of the
/du(ﬁ) idq,(f— 27) (5) Parameters defining the MSM, it was proposed ihtpat the

.

T MSM could contain the majority of or all the information con-

It can be proven 5], [16] that for multifractal measures (i.e.,veyed by the image. This would imply, for instance, that the

those verifying eq.4)) the wavelet projection®y () also second and third manifolds represented in bottom of figure
scale as power laws m name|y: could in fact be calculated from the first (tOp rlght) We will see

in the next section that it is possible to propose a propagator for
Top(Z,z) = ag(@) @ + o(r"®) (6) reconstructing the images from information which is contained

. . in the MSM.
whereh(Z) is the same as in egd) but oy () depends on the

choice of U. The exponent&(Z) are obtained as the slope of IV. DETERMINISTIC RECONSTRUCTION
the linear regression dbg Ty (2, x) vs. logr. This method

has very good performance in practidg, [13]. . . I
The existence of a multifractal measure implies a strong hi-We will propose a simple, deterministic propagator for the

. A o . N multifractal measure from its restriction to the MSM. So, we
erarchical organization in images. This “multiple-fractal” charx

. . o ; .~ should consider the measure den$Wy:|(Z) and reconstruct it
acter shows up Wh_en the image is split n the (_jn‘ferent smgwf%m its values over,,. The choice of the propagator is made
compor)entth_, being these formed by the points sharing thl(Janderthe requirement of verifying the following five conditions:
same singularity exponent . Itis deterministic
. o Itislinear.

Fp = {h(@) = h} @) « Itis translationally invariant.
The component$), are observed to have non-trival fractal di» It is isotropic.
mensionsD(h) [1], which can be predicted from statisticale It leads to the observed power spectrum.
properties of the images §]. For that reason those sets are usu- Under this set of assumptions, which we will next explain,

ally called the fractal components of the image (see fidire there exists only one possible propagator. This theoretical prop-

T\I/N(i'a T) =
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G(Z,9)Ve(y) can be represented also by its coordinates
(w1,ws) where:

2
wil@,5) = Y Gij(Z,7) 9ie() (11)
j=1
The vectord(Z, i) represents the vectorial density of the gra-
dient, because when integrated over the MSM it turns out the
valueVe(Z).

Thetraslational invariance is a usual requirement in image
statistics, meaning that there is not a preferred place in which
objects could be expected to be found at natural scenes. Its ex-
perimental extent is limited due to the finite size of images. In
terms of the integral representation, et)( it implies that the
operator density is in fact a function @f— ¢, that is,

Ve(@) = /F A G - Hve@ — (12)

In fact this equation can be simplified to a scalar equivalent: the
left hand side is a gradient (perhaps in a distributional sense, as

Fig. 1 the contrast is discontinuous), so its curl vanishés Ve = 0.
(FROM TOP TO BOTTOM AND FROM LEFT TO RIGH}: LENA'S IMAGE, This property is translated to the reconstrudirin the way:
MSM (TAKEN AS THE SET OF POINTS FOR WHICH: = —0.5 4 0.05;
D(—0.5) = 1.0 ACCORDING TO LOG-POISSON MODEL), SECONDMSM 01G2;(Z) — 0:G1;(Z) = 0 (13)

(h = —0.4£0.05, D(—0.4) = 1.42) AND THIRD MSM

(h = —0.3 4 0.05, D(—0.3) = 1.65) which implies:

Gi(Z) = 0ig; (%) (14)
) _ ) thatis,G is the gradient of a vectaf. So eq. {2) can be simply
agator (that we will also call “reconstructor”) will or will not re- expressed as:
construct the image from the data, which should be experimen-
tally checked. Now, we will construct the propagator following
the properties we have required.
The deterministic character of the reconstruction allows tor . : : .
. : e above equation can be rewritten in a very useful form defin-
consider the propagator not as a random variable at each p0|r[1}, e
. . . Ing’'the fieldv, as
but as an actual function of its arguments. The following expres-
sion holds:

(@) = /F A 3@ — ) - Ve(@) (15)

oo

(%) = Ve(Z)or., (T) (16)

|Ve|(Z) = G[|Vel,_] (9) Wwheredp, (Z) stands for the density of the proper Hausdorff
measure restricted to the géf, (a delta function over the lines
that is, the value ofV¢| at any point is a funtioidr of the values defining F..). In this way, eq. {5) becomes a convolution, be-
of |V¢| over the MSM. cause now the integration is performed over all the space and no
The linearity of the propagator forces us to work with thdonger over the lines of the MSM (the restriction is indeed still
gradient of the contrasY/ ¢, instead of its modulus (the moduluspresent, but now it is introduced by the figlg), that is
is a non-linear operator). Anyway, the gradient itself contains
more information than its modulus, so if the reconstruction is o(F) = /dg‘g’(f_ 7) - Go(§) = G*vo(F) (17)
possible from the modulus, it is also possible from the gradient.
Hence it follows that there exists an integral representation fgherex stands for the convolution operator. So, the reconstruc-
the functionG in the way: tion formula is elegantly expressed in the Fourier space as

Ve(d) = / di() G, §)Veld) (10) &(f) = (F) - o) (18)
Foe which is an integral equation equivalent to e5) let us no-
Whereme dl(j) means line integration along the MSM. We ardice that “” means the scalar product of the complex vectors.
representing the linear operator by means of its density, denokgfall that now the boundary conditions are contained in the
G(Z, 7). That density is & x 2 matrix; we will represent the vector fieldd,, which depends on the particular image to be re-
matrix element as7;; (7, y) wherei,j = 1,2. If we denote consErugted. The reconstructor is defined by the complex vector
by 9;c, j = 1,2 the components oVc, the vectord(Z,y) = field g(f).
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It is thus natural to require the reconstructor toigmropic, 7. The complex number so obtained is multiplied by the imagi-
as the particularities of the image are already containeg,in nary uniti = /—1 and divided byf? = f2 +fy2 to obtainé(f).
and we think thag is an universal propagator. This implies thatAn anti-Fourier transform provides the reconstructed).
. The reconstruction formula has a very interesting property:
ﬁ(f) _ g(f)i (19) no matter the image considered, €2@3)(allows reconstructing
f the correcte(%) provided that the sef,,, (which defines) is

whereg( f) stands for the modulus of the propagator. Becaul@9€ enough: iff.. is taken as the whole image, = Ve

of the isotropyg(f) can only be a function of the modulysof and eq. 23) turns out to be a trivial identity. The question is if
the frequency vector. natural images allows reconstruction considering a rather sparse

To define completely the propagator, we recall a well esta®€tf =" the MSM.

lished property of natural images, namely the scaling of their

—

power spectrumS(f) (see P]), which is:

—

S =P ~ 75

wheren is a non-universal, small exponent which depends on | ‘
the particular image ensemble considered (see for instaape [

The simplest possiblgis then given by (f) = 1/f, that is, m ,
(1)

(20)

i =%
where byi we denote the imaginary unit,= /—1. The mod- Fig. 2
ulus of the Fourier transform of the contrast is then given Byft: RECONSTRUCTING MANIFOLD FORLENA'S IMAGE. IT WAS TAKEN AS
|@(f)‘ - g(f)A(f), WhereA(f) - |{j’0(f) ) ﬂ/f has a weak THE SET OF POINTS WITH EXPONENT: = —0.5 £ 0.2
dependence Ofl and varies from one image to another. Hencé:\:ightl RECONSTRUCTION OFLENA'S IMAGE FROM ITS RECONSTRUCTING
according to the definiton of the power spectrum MANIFOLD (PSNR: 24.528)
S(f) = ¢*() 4°(f) (22)

so the termy?(f) gives rise to the factof =2 while the factor

AQ(f) introduces the particular anisotropies of the image and
would give rise to the weak dependen@en eq. 0). So finally . o ] .
eq. 1) defines our propagator, and the reconstruction formula, The experimental application of the reconstruction formula is

V. EXPERIMENTAL PERFORMANCE

eq. (L9), reads: very simple. First, the singularity exponemt&r) are computed
for each pointZ in the image analyzed. Then, the least exponent
. if ;70( *) heo is found and the associated MSM is isolated. To compute
e(f) = = (23)  the field#,, we compute the gradiec; according to eq.1(6)

7p equalsVe over the MSM and) outside. The application of
the reconstruction formula, e23), in the Fourier space is then
straightforward.

Practical application of eq2@) on discretized images is quite
simple. The procedure goes as follows.

1. The singularity exponents() at each poini on the image In Figure2 we show the field:(Z) which was obtained from

are computed asin I‘. . . g coarse version of the MSM. It is rather unclear which should
2. From the distribution of singularity exponents the value . o o
Tae the appropriate quantization noidé in h.,, and we have

the most singular exponent,, is calculated as the average o : .
: ) : . .__taken the one which allows a reasonable reconstruction out of
the 1% and 5% quantils. The dispersith around this value is i . S
. . . . the MSM; the central valug,., however, is well determined: it
conventionally fixed40.2 is usually a good choice). o . . i .
: : : > : is fixed by the 1%-5% quantils average described in Sedtion
3. We define the density functiofl,, () as1 if the exponent X .

- . : . It could be argued that in fact there is no a sparse MSM capable
h(¥) associated to the poirt can be considered as the most ' : . )
: . o of reconstructing via the reconstruction formula, but a collection
singular one (1.e2oo — Ah < h(T) < hoo + Ah) and0 other- of sets of increasing size obviously reconstruct better and better
wise (i.e.,1() > hoo + AR OF h(Z) < hoo — AR). g y '

4. We compute the gradieNic and we obtain the essential VeC_However the problem seems to be the quality of the edge detec-

e . - S - “tion. In Figure3 the error image for Lena’s picture is shown.
tor field 0y astiy(Z) = Ve(F)doo (Z) (that is, it equals the gradi- . ) ! . -
ent over the MSM and it vanishes outside the MSM) The error image is defined as the diference between the origi

5. The bidimensional vector fielth (Z) is Fourier transformed nal contrast(x) and the one generated reconstructing from the

. . _ e MSM, cr(Z). This error image seems rather fuzzy, and the only
to obtain the complex bidimensional vector fielg(f) = recognisible features are, precisely, the edges that were not pre-

(0z0(f), Dyo(f)) . ~ ~ viously detected.
6. The scalar product with the frequency vecfor (fz, f,)is  The performance of the reconstruction over Lena’s image
computed:f - Uo(f) = fobz0(f) + fy0y0(f) seems good, but the quality is probably lowered by the (un-
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Fig. 3
Left: ERROR IMAGE FORLENA'S PICTURE THIS IMAGE CAN ALSO BE
GENERATED FROM THE COMPLEMENTARY OF THE RECONSTRUCTING
MANIFOLD. THE LEVEL OF CONTRAST OF THIS IMAGE HAS BEEN
LINEARLY INCREASED TO ENHANCE THE DETAILS
Right: RATIO POWER SPECTRUM OF THE ERROR IMAGE POWER
SPECTRUM OF THE IMAGE FORLENA'S IMAGE (CONTINUOUS LINE) AND
ITS AVERAGE OVER THE512x512 CENTRAL PATCHES OF1L000RANDOM
VAN HATEREN'S IMAGES (DASHED), IN SEMI-LOG PLOT. THE POWER
SPECTRA WERE RADIALLY AVERAGED. THE ERROR CONCENTRATES IN
THE HIGHER AND THE LOWER FREQUENCIES

Fig. 4
FIRST ROW. (FROM LEFT TO RIGHT) 512x512 PATCHES FROMHANS VAN
HATEREN'S IMAGES IMK01964IMC, IMK 04089IMC AND IMK 03322IMC.
SECOND ROW THEIR MOST SINGULAR MANIFOLDS(h = —0.5 4+ 0.15).
THIRD ROW: THEIR RECONSTRUCTIONgPSNRS: 31.30, 31.79AND 27.03
DB , RESPECTIVELY)

known) filters applied on that particular image. This is reason-
able because filtering damages the natural propagation of light,
thus the reconstruction is likely to work much better on non-

pr_ocessed naturgl imag.es. In this spir?t we repeated the Proc&ath (the vector field) took 10 s and 9 Mb of memory usage.
with other, non-filtered images (see Figuréor several exam- he reconstruction out the vector fieliy took an insignicant

ples). The general performance is good, although if one bor Shount of time, under 3 s, and a memory usage of 9 Mb.

is lost (at the time of edge detection) so it is all the structure The MSMs were recorded as two-color images (e.g., black for
associated to it, which seems quite reasonable. This probl MSM, white for its complementary). A measure -of.ihe com-
could have also to do with fluctuations in the multifractal Stru‘b’lexity of'the MSM was given by its deﬁsity, that is, the number
ture [21]. _ _ of points belonging to the MSM with respect to the total num-

The quality of the reconstruction thus varies largely from one, - ¢ points. We will call that density “edge density”. The edge
place to the other in the image: at those places in the neighbQytz <itias range from 10 % for simple images to 40% for very

hood of a lost edge the differences between the reconstructe plicated images, the values ranging from 25 to 30 % being
contrast(z) and the original one;(7), are large; at the places;

ined inside of Il defined obi he. diff a@l ical. According to the mentioned values of density, a naif
contained inside of a well defined object, the difterences alfing of the vector, is then almost unuseful from the point of

small. To give a reasona_tble measure of this inhomogeneus, gLy, of compression, as this vector involves two humbers (two
ror we computed the ratio of the power spectrum of the errgy, inates) for location of the MSM (however, the vecigr
image to the power spectrum of the original contrast; the 15 a5 smoothly along the edges and it is almost perpendicular
sult is shown in Figure. It seems that the error is iNhOmogey, them: two facts we will use to devise better codings in next
nously distributed accross the frequencies, being more 'mch')rks)

tant at lower and higher frequencies. This fact could correspondyy . pbsNRs of the reconstructions ranged from 20 to 40 dB
to raylight spreading effects caused by the loss of some edges 16 57.35 dB being typical. This values are not obviously

(Iower'frequencies) and the loss of the edges itself (higher fr|%1ated to those of the edge densities, being observed low edge
quencies). density images with excelent PSNRs and high edge density im-

ages with poor PSNRs. We concluded that the quality of the

VI. COMPUTATION STATISTICS reconstruction is apparently independent of the edge density.

We ran all our programs over a DEC WorkStation at 500 Mhz VII. Discussion

working under UNIX, and always fo§12 x 512 images. All This description of the image out of the MSM seems to be,
the programs are writen in C but they are not optimized. Tl least, a reasonable first order approximation. There are three
programs used to isolate the fractal components (the MSMpnssible interpretations for the observed deviations and so three
particular) took 27 s to produce the output files, with a peak pbssible ways to correct them.

memory use of 13 Mb. The computation of the reconstructidn The reconstruction formula is correct and the deviations are



due to lack of accuracy in the computation of the MSMthe
computation of the MSM should be improved.

2. The reconstruction formula is correct, the MSM is correctlg?]
computed, but the MSM alone does not describe completely the
image=> the other informative structures should be identified.[0!
3. The reconstruction formula is not correct, but the MSM con-
tains all the relevant informatios> an improved reconstructor [11]
should be proposed.

The first possibility implies that better techniques of edge dg2]
tection should be devised to take all the potential out of this
technique. The second possibility would probably mean a deElig]
ation from the Log-Poisson model, which is contadictory wit
the present experimental evidence (s&d,[[1]), unless those
deviations are very small but significant in the context of eaghﬂ']
image. The third possibility could be interesting to start a new
program. (15]

(8]

[16]
VIII. CONCLUSIONS
[17]
In this paper we have reviewed the multifractal formalism a?l's
: ; : : . T18]
plied to real world natural images, which allows to split the im-
age into a collection of fractal sets. These fractal components
can be described using just one of them, namely the Most Sﬂﬂ;’]
gular Manifold (MSM). We have proposed a propagator to re-
construct the whole image using the gradient over the MSIA0]
We have discussed the validity of this method and its quality
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to improve the performance.

The relevance of the MSM as the most informative set in thg,
image (already proposed in]j emphasizes the role of the con-
tours and the objects in natural images, which could be con-
nected to other coding algorithms] and with biological obser-
vations P, [3].

The possible applications of the method presented here go
from coding schemes for real world images to image processing
and analysis.
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