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Reconstructing images from their most singular
fractal manifold

Antonio Turiel and Angela del Pozo

Abstract— Real world images are complex objects, difficult to describe
but at the same time possessing a high degree of redundancy. A very recent
study [1] on the statistical properties of natural images reveals that natu-
ral images can be viewed through different partitions which are essentially
fractal in nature. One particular fractal component, related to the most
singular (sharpest) transitions in the image, seems to be highly informative
about the whole scene. In this paper we will show how to decompose the
image into their fractal components. We will see that the most singular
component is related to (but not coincident with) the edges of the objects
present in the scenes. We will propose a new, simple method to reconstruct
the image with information contained in that most informative component.
We will see that the quality of the reconstruction is strongly dependent on
the capability to extract the relevant edges in the determination of the most
singular set. We will discuss the results from the perspective of coding,
proposing this method as a starting point for future developments.

Keywords—Reconstruction, coding, edge detection, fractal, multifractal

EDICS: 1-STIL: Still Image Coding.

I. I NTRODUCTION

EDGE dectection is a common feature of the mammals’ vi-
sual neural system[2], [3]. It has been proposed that edge

detectors could be used to provide efficient coding algorithms
[4], and in fact maximization of the information transfer lead to
orientational edge-dectecting filters [5]. However, providing a
reasonable, non-conventional definition of “edge” is more con-
troversial [6].

A different strategy to produce efficient coding can be that of
the statistical analysis of images [7], [8]. This kind of analysis
implies to identify the origin of redundancies (like that of the
power spectrum [9]) to devise redundancy-reducing codes (as in
[10], [11] for the case of the power spectrum).

In the last years a new statistical study has arisen, that of mul-
tifractals in natural images [12], [1]. The multifractal scheme
provides a richer framework than that of the simple characteri-
zation of the power spectrum. This scheme makes possible to
split any image into a collection of fractal sets, from which one
of them is suppossed to be the most informative [1]. Not sur-
prisingly, that set is usually edge-like [1], [13].

In this paper we will make use of the multifractal scheme
to obtain the most informative component. We will propose a
method to reconstruct all the image just using information con-
tained in this set. We will design this method by requiring it to
have several reasonable features. We will study its theoretical
properties and discuss its experimental performance over real
data.

The paper is organized as follows: In the following Section
some notations and the methods are defined. SectionIII is de-
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voted to review the multifractal scheme. In SectionIV the re-
construction procedure is issued, and in SectionV the quality of
the method over real natural images is tested and discussed. The
statistics about the computer implementation of the new tech-
niques issued are presented in SectionVI . In SectionVII we
discuss the results and some of the possible improvements. Fi-
nally, the conclusions are presented in SectionVIII

II. N OTATION AND METHODS

We will denote the recorded field of luminance intensities as
I(~x). We will work with an additive normalization of it, the
global contrast field, which is defined as

c(~x) ≡ I(~x)− I0 (1)

whereI0 is the average luminosity over the image. So, the aver-
age ofc(~x) over any image vanishes.

As monochrome test images we will make use of several pic-
tures taken from Hans van Hateren’s web database (see [14]
for technical details). In all the cases we will work on sev-
eral 512 × 512 patches from those scenes. We will also use
the512 × 512 resolution greylevel version of Lena’s picture to
ilustrate several examples.

The determination of the multifractal structure of each image
was made by means of wavelet analysis[15], [16] using wavelets
from the familyΨ(~x) = 1

(1+|~x|2)γ [1] for γ = 1, ..., 4 and av-
eraging the resulting coefficients. The distribution of exponents
was computed for each image recording the relative frequen-
cies. The most singular exponent was computed as the mean
of the 1% and 5% quantils. The dispersion around this value
is conventionally fixed in a convenient value, depending on the
image.

III. F RACTAL DECOMPOSITION OF IMAGES

There are several equivalent ways to show that natural images
possess multifractal structure. One possibility consists of con-
structing a positive measureµ, which assigns a positive value to
any setA. The measure can be defined by its densitydµ(~x) as:

µ(A) ≡
∫

A

dµ(~x) (2)

We will define a measure which takes into account the sharp
transitions found inside each area. Following [1], we will define
the measure density as:

dµ(~x) ≡ |∇c|(~x)d~x (3)

The measureµ gives an idea of the local distribution of the gra-
dient ofc and its inhomogeneities across the image. It is possible
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to use it to characterize the behaviour of any particular point~x
by observing the evolution of the measure of balls centered on~x.
By Br(~x) we will denote the ball of radiusr centered on~x. The
measureµ is said to define a multifractal if at each point~x in the
image, the measure can be characterized by a local singularity
exponenth(~x) in the way:

µ(Br(~x)) = α(~x) rd+h(~x) + o(rd+h(~x)) (4)

whereo(rd+h(~x)) means a term which is neglicible in compari-
son withrd+h(~x) for small values ofr, andd = 2 is the dimen-
sion of the space. For a multifractal measure, eq. (4) determines
uniquely the coefficientα(~x) and the exponenth(~x): they can
be obtained by linear regression oflog µ(Br(~x)) vs. log r. The
coefficientα(~x) depends on some arbitrary choices, like the par-
ticular metrics used to define the ballsBr and the scale unit for
r, and it provides no information about the changes in scale. On
the contrary, the exponenth(~x) is independent of the metrics
and scaling unit, and gives all the information about the evo-
lution under changes in scale (changes inr; see [1] for a full
discussion of the interpretation ofh(~x)). We will see that there
exist better choices thanα(~x) to complement the information
provided byh(~x) (for instance, the value of|∇c| over a particu-
lar subset).

Natural images have been shown to exhibit multifractal be-
haviour with the measure defined in eq. (3) (see [1], [13]). How-
ever, in practice, a direct application of log-log linear regression
on eq. (4) yields rather coarse discrimination of the exponents,
specially due to discretization of the values in the radiusr for
the balls (see [17] for a discussion about how to deal with dis-
crete circles). The standard technique used to circumvent this
difficulty involves the use of wavelet projections as singularity
analizers. LetΨ be an appropriate function and let us define
the wavelet projectionTΨµ(~x, r) of µ overΨ at the point~x and
scaler as:

TΨµ(~x, r) ≡
∫

dµ(~y)
1
rd

Ψ(
~x− ~y

r
) (5)

It can be proven [15], [16] that for multifractal measures (i.e.,
those verifying eq. (4)) the wavelet projectionsTΨµ(~x, r) also
scale as power laws inr, namely:

TΨµ(~x, x) = αΨ(~x) rh(~x) + o(rh(~x)) (6)

whereh(~x) is the same as in eq. (4) but αΨ(~x) depends on the
choice ofΨ. The exponentsh(~x) are obtained as the slope of
the linear regression oflog TΨµ(~x, x) vs. log r. This method
has very good performance in practice [1], [13].

The existence of a multifractal measure implies a strong hi-
erarchical organization in images. This “multiple-fractal” char-
acter shows up when the image is split in the different singular
componentsFh, being these formed by the points sharing the
same singularity exponenth:

Fh = {h(~x) = h} (7)

The componentsFh are observed to have non-trival fractal di-
mensionsD(h) [1], which can be predicted from statistical
properties of the images [18]. For that reason those sets are usu-
ally called the fractal components of the image (see figure1).

Over real images, a direct numerical estimation ofD(h) for each
fractal component is possible once the multifractal decomposi-
tion is performed. However, some popular techniques as that of
box-counting dimension (see [19] and references therein) lead to
overestimated values of the dimension because fractal compo-
nents are usually topologically dense. For that reason, in many
contexts [20] it is preferred to analyse the statistical structure
with wavelet-based techniques to obtained the correctD(h).

Fortunately, for wide collections of natural images the ob-
served multifractals belong to the class of the log-Poisson mul-
tifractals [12], [1], [21]. The functionD(h) (usually calledsin-
gularity spectrum) of log-Poisson multifractals can be described
in terms of only two free parameters and so no complicated tech-
niques are necessary in its determination. The general expres-
sion for a log-Poisson singularity spectrum is given by [1]:

D(h) = D∞ +
h− h∞

γ

[
1− log

(
h− h∞

γ(d−D∞

)]
(8)

whereγ = − log[1+h∞/(d−D∞)]. The two required free pa-
rameters are the minimum possible exponenth∞ and the dimen-
sion of the fractal component associated to it,D∞ ≡ D(h∞)
[12], [1]. That fractal component, denotedF∞ ≡ Fh∞ , is called
the Most Singular Manifold (MSM).

The MSM plays a fundamental role in the context of multi-
fractals in natural images. It is usually observed [12], [1], [13] to
be of dimension 1.0 but with non-integer singularity exponent.
Visual inspection of this set reveals a structure which resembles
the “edges” or contours present in the scene [1], [13], which
would take account of the dimensionality 1.0 of the set (Lena’s
image has alsoD∞ ≈ 1.0; see figure1). For that reason, we will
always assume thatD∞ = 1, so to define completely the multi-
fractal we will just need to calculateh∞ (which is estimated as
explained in SectionII ).

As log-Poisson multifractals can be described in terms of the
parameters defining the MSM, it was proposed in [1] that the
MSM could contain the majority of or all the information con-
veyed by the image. This would imply, for instance, that the
second and third manifolds represented in bottom of figure1
could in fact be calculated from the first (top right). We will see
in the next section that it is possible to propose a propagator for
reconstructing the images from information which is contained
in the MSM.

IV. D ETERMINISTIC RECONSTRUCTION

We will propose a simple, deterministic propagator for the
multifractal measure from its restriction to the MSM. So, we
should consider the measure density|∇c|(~x) and reconstruct it
from its values overF∞. The choice of the propagator is made
under the requirement of verifying the following five conditions:
• It is deterministic.
• It is linear.
• It is translationally invariant.
• It is isotropic.
• It leads to the observed power spectrum.

Under this set of assumptions, which we will next explain,
there exists only one possible propagator. This theoretical prop-
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Fig. 1

(FROM TOP TO BOTTOM AND FROM LEFT TO RIGHT): LENA’ S IMAGE,

MSM (TAKEN AS THE SET OF POINTS FOR WHICHh = −0.5± 0.05;

D(−0.5) = 1.0 ACCORDING TO LOG-POISSON MODEL), SECONDMSM

(h = −0.4± 0.05, D(−0.4) = 1.42) AND THIRD MSM

(h = −0.3± 0.05, D(−0.3) = 1.65)

agator (that we will also call “reconstructor”) will or will not re-
construct the image from the data, which should be experimen-
tally checked. Now, we will construct the propagator following
the properties we have required.

The deterministic character of the reconstruction allows to
consider the propagator not as a random variable at each point,
but as an actual function of its arguments. The following expres-
sion holds:

|∇c|(~x) = G[|∇c|
F∞

] (9)

that is, the value of|∇c| at any point is a funtionG of the values
of |∇c| over the MSM.

The linearity of the propagator forces us to work with the
gradient of the contrast,∇c, instead of its modulus (the modulus
is a non-linear operator). Anyway, the gradient itself contains
more information than its modulus, so if the reconstruction is
possible from the modulus, it is also possible from the gradient.
Hence it follows that there exists an integral representation for
the functionG in the way:

∇c(~x) =
∫

F∞

dl(~y) G(~x, ~y)∇c(~y) (10)

where
∫

F∞
dl(~y) means line integration along the MSM. We are

representing the linear operator by means of its density, denoted
G(~x, ~y). That density is a2 × 2 matrix; we will represent the
matrix element asGij(~x, ~y) wherei, j = 1, 2. If we denote
by ∂jc , j = 1, 2 the components of∇c, the vector~ω(~x, ~y) ≡

G(~x, ~y)∇c(~y) can be represented also by its coordinates~ω =
(ω1, ω2) where:

ωi(~x, ~y) =
2∑

j=1

Gij(~x, ~y) ∂jc(~y) (11)

The vector~ω(~x, ~y) represents the vectorial density of the gra-
dient, because when integrated over the MSM it turns out the
value∇c(~x).

The traslational invariance is a usual requirement in image
statistics, meaning that there is not a preferred place in which
objects could be expected to be found at natural scenes. Its ex-
perimental extent is limited due to the finite size of images. In
terms of the integral representation, eq. (10), it implies that the
operator density is in fact a function of~x− ~y, that is,

∇c(~x) =
∫

F∞

dl(~y) G(~x− ~y)∇c(~y) (12)

In fact this equation can be simplified to a scalar equivalent: the
left hand side is a gradient (perhaps in a distributional sense, as
the contrast is discontinuous), so its curl vanishes:∇∧∇c = 0.
This property is translated to the reconstructorG, in the way:

∂1G2j(~x)− ∂2G1j(~x) = 0 (13)

which implies:

Gij(~x) = ∂igj(~x) (14)

that is,G is the gradient of a vector~g. So eq. (12) can be simply
expressed as:

c(~x) =
∫

F∞

dl(~y) ~g(~x− ~y) · ∇c(~y) (15)

The above equation can be rewritten in a very useful form defin-
ing the field~v0 as

~v0(~x) = ∇c(~x)δF∞(~x) (16)

whereδF∞(~x) stands for the density of the proper Hausdorff
measure restricted to the setF∞ (a delta function over the lines
definingF∞). In this way, eq. (15) becomes a convolution, be-
cause now the integration is performed over all the space and no
longer over the lines of the MSM (the restriction is indeed still
present, but now it is introduced by the field~v0), that is

c(~x) =
∫

d~y ~g(~x− ~y) · ~v0(~y) = ~g ? ~v0(~x) (17)

where? stands for the convolution operator. So, the reconstruc-
tion formula is elegantly expressed in the Fourier space as

ĉ(~f) = ~̂g(~f) · ~̂v0(~f) (18)

which is an integral equation equivalent to eq. (15); let us no-
tice that “·” means the scalar product of the complex vectors.
Recall that now the boundary conditions are contained in the
vector field~v0, which depends on the particular image to be re-
constructed. The reconstructor is defined by the complex vector
field ~̂g(~f).
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It is thus natural to require the reconstructor to beisotropic,
as the particularities of the image are already contained in~v0,
and we think that̂~g is an universal propagator. This implies that:

~̂g(~f) = g(f)
~f

f
(19)

whereg(f) stands for the modulus of the propagator. Because
of the isotropy,g(f) can only be a function of the modulusf of
the frequency vector.

To define completely the propagator, we recall a well estab-
lished property of natural images, namely the scaling of their
power spectrumS(~f) (see [9]), which is:

S(~f) ≡ |ĉ(~f)|2 ∼ 1
f2−η

, (20)

whereη is a non-universal, small exponent which depends on
the particular image ensemble considered (see for instance [22]).
The simplest possiblê~g is then given byg(f) = 1/f , that is,

~̂g(~f) =
i ~f

f2
(21)

where byi we denote the imaginary unit,i ≡
√
−1. The mod-

ulus of the Fourier transform of the contrast is then given by
|ĉ(~f)| = g(f)A(~f), whereA(~f) = |~̂v0(~f) · ~f |/f has a weak
dependence onf and varies from one image to another. Hence,
according to the definiton of the power spectrum

S(~f) = g2(f) A2(~f) (22)

so the termg2(f) gives rise to the factorf−2 while the factor
A2(~f) introduces the particular anisotropies of the image and
would give rise to the weak dependencefη in eq. (20). So finally
eq. (21) defines our propagator, and the reconstruction formula,
eq. (18), reads:

ĉ(~f) =
i ~f · ~̂v0(~f)

f2
(23)

Practical application of eq. (23) on discretized images is quite
simple. The procedure goes as follows.
1. The singularity exponentsh(~x) at each point~x on the image
are computed as in [1].
2. From the distribution of singularity exponents the value of
the most singular exponenth∞ is calculated as the average of
the 1% and 5% quantils. The dispersion∆h around this value is
conventionally fixed (±0.2 is usually a good choice).
3. We define the density functionδ∞(~x) as1 if the exponent
h(~x) associated to the point~x can be considered as the most
singular one (i.e.,h∞ −∆h ≤ h(~x) ≤ h∞ + ∆h) and0 other-
wise (i.e.,h(~x) > h∞ + ∆h or h(~x) < h∞ −∆h).
4. We compute the gradient∇c and we obtain the essential vec-
tor field~v0 as~v0(~x) = ∇c(~x)δ∞(~x) (that is, it equals the gradi-
ent over the MSM and it vanishes outside the MSM)
5. The bidimensional vector field~v0(~x) is Fourier transformed
to obtain the complex bidimensional vector field̂~v0(~f) =
(v̂x0(~f), v̂y0(~f))
6. The scalar product with the frequency vector~f = (fx, fy) is
computed:~f · ~̂v0(~f) = fxv̂x0(~f) + fy v̂y0(~f)

7. The complex number so obtained is multiplied by the imagi-
nary uniti ≡

√
−1 and divided byf2 = f2

x +f2
y to obtainĉ(~f).

An anti-Fourier transform provides the reconstructedc(~x).
The reconstruction formula has a very interesting property:

no matter the image considered, eq. (23) allows reconstructing
the correctc(~x) provided that the setF∞ (which defines~v0) is
large enough: ifF∞ is taken as the whole image,~v0 ≡ ∇c
and eq. (23) turns out to be a trivial identity. The question is if
natural images allows reconstruction considering a rather sparse
setF∞: the MSM.

Fig. 2

Left: RECONSTRUCTING MANIFOLD FORLENA’ S IMAGE. IT WAS TAKEN AS

THE SET OF POINTS WITH EXPONENTh = −0.5± 0.2

Right: RECONSTRUCTION OFLENA’ S IMAGE FROM ITS RECONSTRUCTING

MANIFOLD (PSNR: 24.52DB)

V. EXPERIMENTAL PERFORMANCE

The experimental application of the reconstruction formula is
very simple. First, the singularity exponentsh(~x) are computed
for each point~x in the image analyzed. Then, the least exponent
h∞ is found and the associated MSM is isolated. To compute
the field~v0, we compute the gradient∇c; according to eq. (16)
~v0 equals∇c over the MSM and0 outside. The application of
the reconstruction formula, eq. (23), in the Fourier space is then
straightforward.

In Figure2 we show the fieldc(~x) which was obtained from
a coarse version of the MSM. It is rather unclear which should
be the appropriate quantization noise∆h in h∞, and we have
taken the one which allows a reasonable reconstruction out of
the MSM; the central valueh∞, however, is well determined: it
is fixed by the 1%-5% quantils average described in SectionII .
It could be argued that in fact there is no a sparse MSM capable
of reconstructing via the reconstruction formula, but a collection
of sets of increasing size obviously reconstruct better and better.
However the problem seems to be the quality of the edge detec-
tion. In Figure3 the error image for Lena’s picture is shown.
The error image is defined as the diference between the origi-
nal contrastc(~x) and the one generated reconstructing from the
MSM, cR(~x). This error image seems rather fuzzy, and the only
recognisible features are, precisely, the edges that were not pre-
viously detected.

The performance of the reconstruction over Lena’s image
seems good, but the quality is probably lowered by the (un-
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Left: ERROR IMAGE FORLENA’ S PICTURE. THIS IMAGE CAN ALSO BE

GENERATED FROM THE COMPLEMENTARY OF THE RECONSTRUCTING

MANIFOLD . THE LEVEL OF CONTRAST OF THIS IMAGE HAS BEEN

LINEARLY INCREASED TO ENHANCE THE DETAILS.

Right: RATIO POWER SPECTRUM OF THE ERROR IMAGE- POWER

SPECTRUM OF THE IMAGE, FOR LENA’ S IMAGE (CONTINUOUS LINE) AND

ITS AVERAGE OVER THE512X512 CENTRAL PATCHES OF1000RANDOM

VAN HATEREN’ S IMAGES (DASHED), IN SEMI-LOG PLOT. THE POWER

SPECTRA WERE RADIALLY AVERAGED. THE ERROR CONCENTRATES IN

THE HIGHER AND THE LOWER FREQUENCIES.

known) filters applied on that particular image. This is reason-
able because filtering damages the natural propagation of light,
thus the reconstruction is likely to work much better on non-
processed natural images. In this spirit we repeated the process
with other, non-filtered images (see Figure4 for several exam-
ples). The general performance is good, although if one border
is lost (at the time of edge detection) so it is all the structure
associated to it, which seems quite reasonable. This problem
could have also to do with fluctuations in the multifractal struc-
ture [21].

The quality of the reconstruction thus varies largely from one
place to the other in the image: at those places in the neighbour-
hood of a lost edge the differences between the reconstructed
contrastcR(~x) and the original one,c(~x), are large; at the places
contained inside of a well defined object, the differences are
small. To give a reasonable measure of this inhomogeneus er-
ror we computed the ratio of the power spectrum of the error
image to the power spectrum of the original contrast; the re-
sult is shown in Figure3. It seems that the error is inhomoge-
nously distributed accross the frequencies, being more impor-
tant at lower and higher frequencies. This fact could correspond
to raylight spreading effects caused by the loss of some edges
(lower frequencies) and the loss of the edges itself (higher fre-
quencies).

VI. COMPUTATION STATISTICS

We ran all our programs over a DEC WorkStation at 500 Mhz
working under UNIX, and always for512 × 512 images. All
the programs are writen in C but they are not optimized. The
programs used to isolate the fractal components (the MSM in
particular) took 27 s to produce the output files, with a peak of
memory use of 13 Mb. The computation of the reconstruction

Fig. 4

FIRST ROW: (FROM LEFT TO RIGHT) 512X512 PATCHES FROMHANS VAN

HATEREN’ S IMAGES IMK01964.IMC , IMK 04089.IMC AND IMK 03322.IMC .

SECOND ROW: THEIR MOST SINGULAR MANIFOLDS (h = −0.5± 0.15).

THIRD ROW: THEIR RECONSTRUCTIONS(PSNRS: 31.30, 31.79AND 27.03

DB , RESPECTIVELY)

data (the vector field~v0) took 10 s and 9 Mb of memory usage.
The reconstruction out the vector field~v0 took an insignicant
amount of time, under 3 s, and a memory usage of 9 Mb.

The MSMs were recorded as two-color images (e.g., black for
the MSM, white for its complementary). A measure of the com-
plexity of the MSM was given by its density, that is, the number
of points belonging to the MSM with respect to the total num-
ber of points. We will call that density “edge density”. The edge
densities range from 10 % for simple images to 40% for very
complicated images, the values ranging from 25 to 30 % being
typical. According to the mentioned values of density, a naif
coding of the vector~v0 is then almost unuseful from the point of
view of compression, as this vector involves two numbers (two
coordinates) for location of the MSM (however, the vector~v0

varies smoothly along the edges and it is almost perpendicular
to them; two facts we will use to devise better codings in next
works)

The PSNRs of the reconstructions ranged from 20 to 40 dB,
the range 27-35 dB being typical. This values are not obviously
related to those of the edge densities, being observed low edge
density images with excelent PSNRs and high edge density im-
ages with poor PSNRs. We concluded that the quality of the
reconstruction is apparently independent of the edge density.

VII. D ISCUSSION

This description of the image out of the MSM seems to be,
at least, a reasonable first order approximation. There are three
possible interpretations for the observed deviations and so three
possible ways to correct them.
1. The reconstruction formula is correct and the deviations are
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due to lack of accuracy in the computation of the MSM⇒ the
computation of the MSM should be improved.
2. The reconstruction formula is correct, the MSM is correctly
computed, but the MSM alone does not describe completely the
image⇒ the other informative structures should be identified.
3. The reconstruction formula is not correct, but the MSM con-
tains all the relevant information⇒ an improved reconstructor
should be proposed.

The first possibility implies that better techniques of edge de-
tection should be devised to take all the potential out of this
technique. The second possibility would probably mean a devi-
ation from the Log-Poisson model, which is contadictory with
the present experimental evidence (see [12], [1]), unless those
deviations are very small but significant in the context of each
image. The third possibility could be interesting to start a new
program.

VIII. C ONCLUSIONS

In this paper we have reviewed the multifractal formalism ap-
plied to real world natural images, which allows to split the im-
age into a collection of fractal sets. These fractal components
can be described using just one of them, namely the Most Sin-
gular Manifold (MSM). We have proposed a propagator to re-
construct the whole image using the gradient over the MSM.
We have discussed the validity of this method and its quality
over real data. Besides, we have proposed three different ways
to improve the performance.

The relevance of the MSM as the most informative set in the
image (already proposed in [1]) emphasizes the role of the con-
tours and the objects in natural images, which could be con-
nected to other coding algorithms [5] and with biological obser-
vations [2], [3].

The possible applications of the method presented here go
from coding schemes for real world images to image processing
and analysis.
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