Quantum Information: Theory and Experiments

J IGNACIO CIRAC
MAX-PLANCK INSTITUT FÜR QUANTENOPTIK

Universidad Autónoma de Madrid
January 13, 2010

BASIC CONCEPTS SUPERPOSITIONS

- The properties of objects are not well defined.
- They become defined when we measure them.

ELECTRONIC SPIN

10〉

|1)

- It can be manipulated: Magnetic field
- and measured: Fluorescence

One could store a bit of information in the spin

BASIC CONCEPTS SUPERPOSITIONS

- The properties of objects are not well defined.
- They become defined when we measure them.

ELECTRONIC SPIN

|0〉

|1>

- It can be manipulated: Magnetic field
- and measured: Fluorescence

superposition

One could store a bit of information in the spin
superposition

superposition

BASIC CONCEPTS
 ENTANGLEMENT

- If we have two objects:

or we can have an „entangled state":

Those states can be created by letting the atoms interact with each other.

- If we have two objects: $|0,0\rangle+|1,1\rangle$

If we measure one and obtain 0 , then the other one is also projected

„spooky action at a distance"

- If we have MANY objects:

$$
\begin{aligned}
& \text { 禺 } \\
& c_{1}|000 \ldots 0\rangle+c_{2}|000 \ldots 1\rangle+\ldots+c_{2^{N}}|111 \ldots 1\rangle
\end{aligned}
$$

- We have a superpostions of 2^{N} states.
- We can manipulate the superpositions, make them interfere, measure, etc

We have new laws at hand, thus we can do new things

QUANTUM INFORMATION SCIENCE

Quantum computation

Quantum communication

- Simulations
- Precission measurements
- Sensing

OUTLINE

- Algorithms
- Circuit model
- Decoherence and error correction
- Experimental situation
- Other approaches to Quantum Computing:
- Measurement-based QC
- Dissipation-driven QC
- Topological QC

QUANTUM COMPUTING: ALGORITHMS

QUANTUM ALGORITHMS

- Black Box:
input:

$$
x, y \in\{0,1\} \quad f:\{0,1\} \rightarrow\{0,1\}
$$

- Four kinds of boxes:

$$
\begin{aligned}
& \text { one-to -one constant } \\
& f_{b, 1}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 1
\end{array} \quad f_{b, 2}:\left\{\begin{array}{l}
0 \rightarrow 1 \\
1 \rightarrow 0
\end{array} \quad f_{c, 1}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 0
\end{array} \quad f_{c, 2}:\left\{\begin{array}{l}
0 \rightarrow 1 \\
1 \rightarrow 1
\end{array}\right.\right.\right.\right.
\end{aligned}
$$

- Example:

- We can use the box once.
- We have to find out if it is constant or one-to-one

QUANTUM ALGORITHMS
EXAMPLE
(Deutsch, 89)

Imposible: Every outcome is compatible with the two kinds of boxes

By using quantum superpositions, it is possible

The existence of quantum superpositions gives us new possibilities and allows us to solve certain tasks in a more efficient way

new laws
new algorithms

more efficient

QUANTUM ALGORITHMS COMPUTATIONAL COMPLEXITY

Quantum computers are more efficient than classical computers:

Mathematical problems can be classified according to their difficulty: i.e. scaling of the computation time with the size of the input.

QUANTUM ALGORITHMS COMPUTATIONAL COMPLEXITY
(Shor, 94)
Example: multiplication and factoring:

$$
\begin{aligned}
& 3980750864240649373971 \\
& 2550055038649119906436 \\
& 2342526708406385189575 \\
& 946388957261768583317
\end{aligned}
$$

4727721461074353025362 2307197304822463291469 5302097116459852171130 520711256363590397527

> 18819881292060796383869723946165043 98071635633794173827007633564229888 59715234665485319060606504743045317 38801130339671619969232120573403187 9550656996221305168759307650257059

N $=$ QUANTUM ALGORITHMS COMPUTATIONAL COMPLEXITY

Classical computational complexity:

$$
\mathrm{P}=\mathrm{NP} ?
$$

N $=$ QUANTUM ALGORITHMS COMPUTATIONAL COMPLEXITY

Quantum computational complexity:

$$
\mathrm{P}=\mathrm{BQP} \text { ? } \mathrm{BQP}=\mathrm{NP} \text { ? }
$$

QUANTUM ALGORITHMS COMPUTATIONAL COMPLEXITY

Quantum computational complexity:

There are other problems for which the gain is polynomical

QUANTUM ALGORITHMS

Algorithms:

- Factoring (94)
- Discrete Log (94)
- Database search (96)
- Pell's equation (02)
- Transversal graph (03)
- Special search (03)
- Element distinction (03)
- Other graph problems (04)
\square Tests matrix products (04)
- Jones' polynomials (05)
- Matrix powers (06)
- NAND trees (07)

ㅁ Differential equations (08)

- Hidden subgroups:
- Abelian (95)
- $\square_{2}^{n} \times \square_{2}$ (98)
- Normal (00)
- Quasi-Abelian (01)
$-\square_{p^{n}} \times \square_{2}$ (02)
- Quasi-Hamiltonian (04)
- q-hedrics (04)
$-\square_{p}^{n} \times \square_{p}$ (04)
- Heisenberg type (05)

QUANTUM COMPUTING:

 CIRCUIT MODEL
QUANTUM COMPUTING CIRCUIT MODEL

(Deutsch, 85)

Classical computer:

1. Bits

$$
\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0
\end{array}
$$

2. Logical gates

$$
0 \rightarrow 1
$$

3Initialization and measurement

$$
0 \begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array} 0
$$

Quantum computer:

1. Qubits

$$
|0\rangle|1\rangle|1\rangle|1\rangle|0\rangle|1\rangle
$$

o superposiciones
2. Logical gates

$$
|00\rangle \rightarrow|00\rangle+|11\rangle
$$

3. Initialization and measurement

000000

QUANTUM COMPUTING CIRCUIT MODEL

Manipulation: Universal quantum gates

- 1-qubit gates:

1. Phase: - -

$$
\begin{aligned}
& |0\rangle \leftrightarrow \\
& |1\rangle \leftrightarrow e^{i \varphi} \mid \\
& |0\rangle \\
& |1\rangle
\end{aligned}
$$

2. Hadamard: - H

$$
\begin{aligned}
& |0\rangle \leftrightarrow|0\rangle+|1\rangle \\
& |1\rangle \leftrightarrow|0\rangle-|1\rangle
\end{aligned}
$$

- 2-qubit gates:

1. Control-NOT

$$
\begin{aligned}
& |00\rangle \leftrightarrow|00\rangle \\
& |01\rangle \leftrightarrow|01\rangle \\
& |10\rangle \leftrightarrow|11\rangle \\
& |11\rangle \leftrightarrow|10\rangle
\end{aligned}
$$

Requirements:

- Identify qubits.
- Initialization.
- Controlled manipulation:

Logic gates:

+ single-qubit
+ 2-qubit
- Read-out.
+ Scalable

QUANTUM COMPUTING:
 DECOHERENCE AND ERROR CORRECTION

QUANTUM COMPUTING DECOHERENCE

- Interaction with the environment destroys the computation.

1 error messes up the outcome.

- Probability:
qubit: $\left\{\begin{array}{l}\text { Prob. } p: \text { nothing happens } \\ \text { Prob. } 1-p: \text { error }|0\rangle \leftrightarrow|1\rangle\end{array}\right.$

Success probability: p^{N}
Número of repetitions: $\frac{1}{p^{N}}$

We have lost the exponential speed-up!

QUANTUM COMPUTING ERROR CORRECTION

(Shor, Steane, 95)

- Redundant codes:
$|0\rangle \rightarrow|000\rangle$
$|1\rangle \rightarrow|111\rangle$

- We detect if all the qubits are in the same state
- If not, we use majority vote to correct the one which is different.

It fails if there are two or more errors
Error probability: $(1-p)^{2} \ll(1-p)$ for small p

- Continuous measurement: Repeating the detection-correction procedure very often the errors can be kept arbitrarily small.

- QUANTUM COMPUTING ERROR CORRECTION

- Fault-tolerant error correction:
- There are errors during the logical gates.
- There are errors while correcting errors...
- Error threshold:

Probability: $10^{-3}-10^{-4}$ for each elementary step.

QUANTUM COMPUTING: EXPERIMENTAL SITUATION

QUANTUM SYSTEMS

EXPERIMENTAL PROGRESS

- Atomic, molecular, and optical systems

- Solid-state systems

EXPERIMENTAL SITUATION IONS

(Innsbruck, Boulder, Munich,
Oxford, Barcelona, Maryland, ...)

- Mechanism:

- Achievements:
- Crystals: 1-1.000-100.000 ions
- Single and two-qubit gates: > 99\% fidelities
- Detection: 99.99
- Entanglement of up to 8 ions.

EXPERIMENTAL SITUATION IONS

- Scalable versions:

- Mechanism:

- Achievements:
- Motion, simpathetic cooling, etc
- Violation Bell's inequalities
- Teleportation
- Distant entanglement
- Precission measurements
- Simulation

EXPERIMENTAL SITUATION NEUTRAL ATOMS IN TRAPS

- Achievements:
- From single atoms to condensates
- BEC ... optical lattices ...
- Single qubit gates: > 90\% fidelities
- Two atoms: Rydberg blockade/collisions
- Detection: 99.99\%
- Moving atoms
- Quantum simulations
- Mechanisms:
(Paris, Vienna, Hannover, London, Winsconsy, Boulder, Munich, ...)

OTHER APPROACHES:

mEASUREMENT-BASED QUANTUM COMPUTING

OTHER APPROACHES MEASUREMENT BASED QC
(Raussendorf and Briegel, 01)

- Create an entangled-state (cluster):

- Perform local measurements:

OTHER APPROACHES

 MEASUREMENT BASED QC(explanation: Verstraete and IC, 03)

- Teleportation-based gates:

can be carried out as follows:

OTHER APPROACHES

 MEASUREMENT BASED QC(explanation: Verstraete and IC, 03)

- Teleportation-based gates:

can be carried out as follows:

OTHER APPROACHES

 MEASUREMENT BASED QC(explanation: Verstraete and IC, 03)

- Teleportation-based gates:

can be carried out as follows:
$|0\rangle$
$|0\rangle$

phase and Hadamard gates

OTHER APPROACHES

 MEASUREMENT BASED QC(explanation: Verstraete and IC, 03)

- Teleportation-based gates:

can be carried out as follows:
$|0\rangle$
$|0\rangle$

OTHER APPROACHES

 MEASUREMENT BASED QC(explanation: Verstraete and IC, 03)

- Teleportation-based gates:

can be carried out as follows:
$|0\rangle$
$|0\rangle$
$-$
Controlled-not gate
- In a 2D lattice

In a 2D lattice

$$
P_{n}: C^{D} \otimes C^{D} \otimes C^{D} \otimes C^{D} \rightarrow C^{2}
$$

OTHER APPROACHES:

DISSIPATION-DRIVEN QUANTUM COMPUTING

OTHER APPROACHES DISSIPATIVE QC

(Verstraete; Wolf and IC, 09)

Quantum computing:

i) Initialization!:00...07
ii) Gontrolled mannipulation. $\left.\left.1 \Psi_{M}\right\rangle=U_{M} \cdots U_{2} U_{1} 100 \ldots 0\right\rangle$
iii) Detection.

- Avided decoherence/dissipation:| $\Psi\rangle \rightarrow \rho$ use

OTHER APPROACHES DISSIPATIVE QC

(Verstraete; Wolf and IC, 09)
N qubits:

$$
\left|\Psi_{M}\right\rangle=U_{M} \ldots U_{2} U_{1}|00 \ldots 0\rangle
$$

M gates

$$
\begin{array}{cc}
\dot{\rho}= & =-i[H, \rho]+\sum_{k} L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left[\sum_{k} L_{k}^{\dagger} L_{k}, \rho\right]_{+} \\
\text {no coherent } \\
\text { interaction } & \text { local } \\
\text { traceless }
\end{array}
$$

- Unique steady state: $\rho_{s s}$
- The steady state is reached after a time $\mathrm{O}\left(M^{-2}\right)$

$$
\kappa=\pi^{2}(3+2 M)^{-2}
$$

- Ψ_{M} can be obtained from $\rho_{s s}$ with prob. $1 / M$
- The Liouvillian can be engineered by coupling pairs of qubits to a local environment

OTHER APPROACHES DISSIPATIVE QC

Main Idea:
(Verstraete; Wolf and IC, 09)
\square Standard QC:

- e e e e e e - $\left|\Psi_{M}\right\rangle=U_{M} \ldots U_{2} U_{1}|00 \ldots 0\rangle$
- With dissipation: Use Feynman construction:
„time-register": M-level system

$$
\dot{\rho}=\sum_{k} L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left[\sum_{k} L_{k}^{\dagger} L_{k}, \rho\right]_{+}
$$

- Define: $\left|\Psi_{t}\right\rangle=U_{t} \ldots U_{2} U_{1}|00 \ldots 0\rangle$
- Assume we start out with: $|00 \ldots 0\rangle \otimes|0\rangle$
- We take $L_{t}=U_{t} \otimes|t+1\rangle\langle t|+U_{t}^{\dagger} \otimes|t\rangle\langle t+1|$ as Lindblad operators
- The evolution takes place in the subspace spanned byl $\left|\Psi_{t}\right\rangle \otimes|t\rangle$
- For $t \rightarrow \infty$ one ends up in $\rho_{0}=\frac{1}{(1+M)} \sum_{t=0}^{M}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right| \otimes|t\rangle\langle t|$
- By measuring the second register we obtain the right state with prob. $1 /(1+\mathrm{M})$

OTHER APPROACHES:
TOPOLOGICAL QUANTUM COMPUTING
(Kitaev 97)
Main Idea:

- Gates are performed by „braiding"
- Gates are robust against imprecisions
- The state is „topologically proctected" against decoherence

Search for systems with (universal) non-abelian excitations!

OUTLOOK

- Multi-disciplanary area:

- Applications:
- Communication
- Computation
- Precission measurement
- Sensors
- Materials science
- ...
- Main distinctive feature: coherent quantum phenomena.
- Common objectives.
- Next step after nano-science.
- Preparation of the „second quantum revolution"
- Goal: control of quantum systems
- A theory to be developed ...

