Comparison of old vs. new data (Bst-ntuples):

old data: 1st 1.35 fb⁻¹ (*red* crosses) new data: from 1.35 to 2.8 fb⁻¹ (*black* histograms)

 $B_{s}^{0} \rightarrow J/\psi\phi$ distributions (except for obvious cases) are sideband subtracted.

Using a NN-with**out**-PID and a cut of 0.5

J/ψ

310

 $\mathbf{B}^{\mathbf{0}}_{\mathbf{s}}$

φ

Kaons from **\$**:

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

+ive muons from J/ψ :

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

Soft Muon Tagger

Order of variables: decision, dilution, likelihood, tag type

Soft Electron Tagger

Order of variables: decision, dilution, likelihood, tag type

Jet Charge Tagger

Order of variables: decision, dilution, jet-charge, tag type

JP, LL 20080617

Errors reflect the difference between the results obtained at two sets of Signal/SB windows

SB1: 5.2861-5.3131Signal: 5.3400-5.3940SB2: 5.4211-5.4481

SB1: 5.175 - 5.202Signal: 5.3400-5.3940SB2: 5.547 - 5.575

Same Side Tagger (NN – SSKT) Bst-ntuples, L<1.35 *red*, L>1.35 *black*

Order of variables: decision, dilution

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

⇒ The use of the bad-calibrated PID in the L>1.35 sample does produce a significant effect on $p_t(\phi)$

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

⇒ The use of the bad-calibrated PID in the L>1.35 sample does "apparently" produce an effect at low values of $d_0(\mu)$ (µ,s from J/ψ)

⇒ The use of the bad-calibrated PID in the L>1.35 sample does not produce a significant effect to the J/ ψ mass distribution

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

Bst, NN-without-PID, 0.5

Blt-ntuples, L<1.35 *red*, L>1.35 *black*

⇒ The use of the bad-calibrated PID in the L>1.35 sample does not produce a significant effect to the $d_0 J/\psi$ distribution

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

⇒ In addition, it seems that the lower L00 hit content of the μ tracks in L>1.35 is playing also no role in the d₀(J/ ψ) distribution

⇒ In addition, it seems that the lower L00 hit content of f the tracks in L>1.35 is playing also no role in the \$\phi\$ mass distribution

Blt-ntuples 0.26, L<1.35 *red*, L>1.35 *black*

Blt-ntuples, L<1.35 *red*, L>1.35 *black*

⇒ The use of the bad-calibrated PID in the L>1.35 sample does produce some, unclear, effect to the B_s^0 VTX probability distribution

Bst-ntuples, L<1.35 *red*, L>1.35 *black*

⇒ However, in the Blt-ntuple analysis it seems that the lower L00 hit content of the tracks in L>1.35 is playing some role in the B_s⁰ VTX probability distribution

END (for the time being)

Bst-ntuples

⇒ However, in the Blt-ntuple analysis it seems that the lower L00 hit content of the tracks in L>1.35 is playing some role in the B_s⁰ VTX probability distribution

