Laguna and the LSC

Luis Labarga, University Autonoma Madrid
IMFP2011
Canfranc, 20110210

- 1. What is LAGUNA?
- 2. Feasibility study for LAGUNA at the LSC
- 3. What is next?

What is LAGUNA?

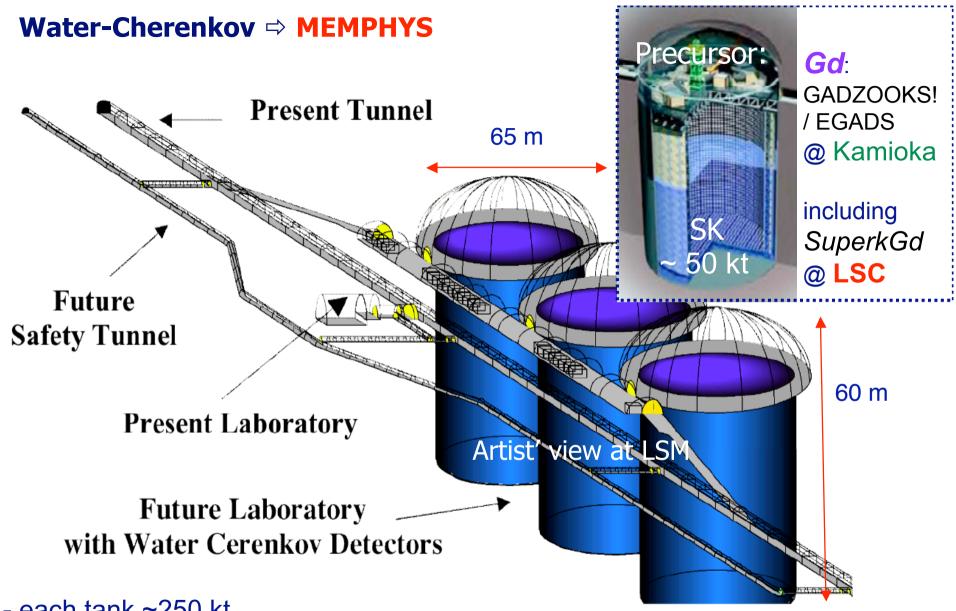
- The current European approach to the next generation, liquid [Mt-like], p-decay and neutrino detectors
- It considers seven candidate sites:

CUPP @ Pyhäsalmi mine, Finland IUS @ Boulby mine, UK SUNLAB @ Sieroszowice mine, Poland IFIN-HH @ Unirea mine, Romania LSM @ Frejus tunnel, France New-Italian-Site @ CNGS beam halo, Italy LSC @ Canfranc RW tunnel, Spain

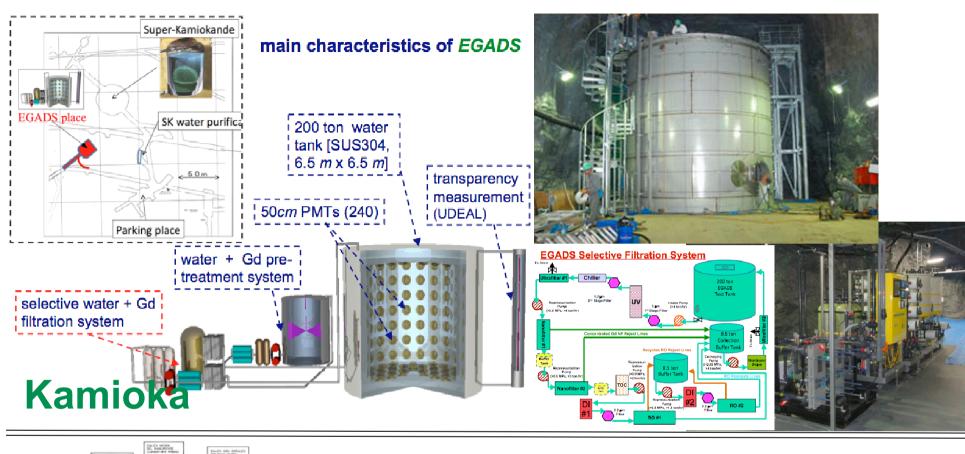
- It considers three different detector technologies:
 - Water-Cherenkov: ~ 1 Mt
 - Liquid-Argon TPC: ∼ 0.1 Mt
 - Liquid-Scintillator: ~ 0.05 Mt

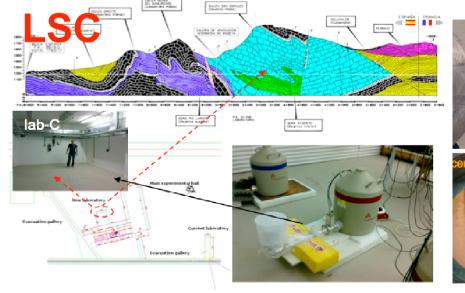
LNGS is not there (i!)

The LAGUNA Cosortium


 a pre-Collaboration was formed It did apply for 5 M€ funding to the EU within the program FP7-INFRASTRUCTUES-2007

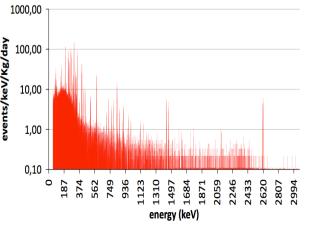
Only 1.7 M€ were granted.
 The explicit request by the EU was to focus in the Feasibility Study (FS), mainly Geotechnic, of the 7 candidate sites.

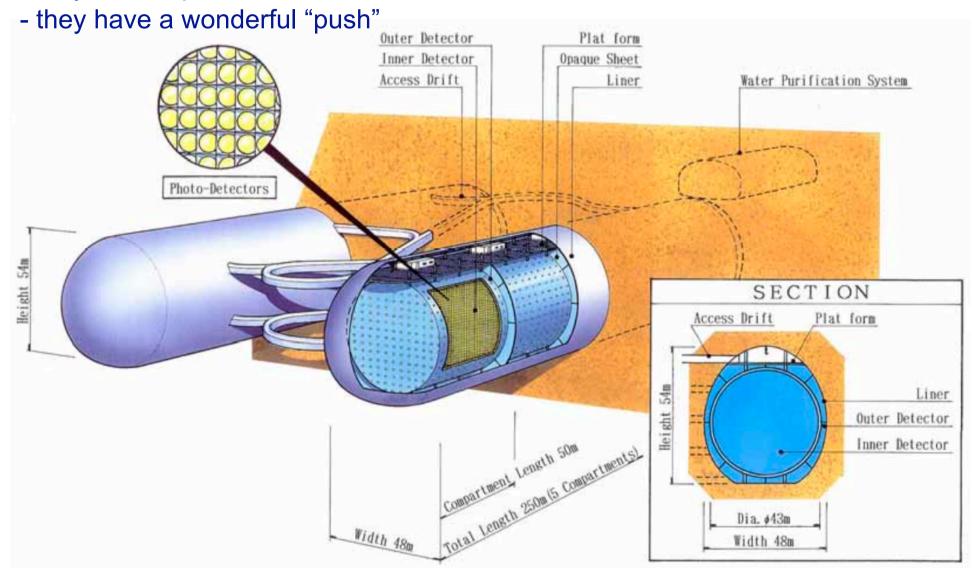

LAGUNA Governance structure v2.0 / 14/10/08 Coordinator A. Rubbia **Deputy-Coordinator Governing Board** Coordinator A. Rubbia Deputy-coordinator Administrator F. Petrolo WG2 coordinator E. von Feilitzsch WG3 coordinator N. Spooner WG4 coordinator A. Zalewska Academic partners' representatives ETH Zurich A. Marchionni U-Bern A. Ereditato U-Jyväskylä J. Maalampi UOULU T. Enqvist CEA M. Zito IN2P3 Th. Patzak MPG M. Lindner TUM L. Oberaurer IFJ PAN Jan Kisiel - US (for IFJ PAN) LSC A. Bettini L. Labarga UAM **UDUR** S. Pascoli **USFD** P. Lightfoot ΑU H. Fynbo IFIN-HH R. Margineanu Industrial partners' representatives (ex-officio) Rockplan G. Nuijten KGHM CUPRUM W. Pvtel K. Slizowski IGSMIE PAN Technodyne J. Thompson M. Temussi AGT Lombardi P.F. Bertola


Italy (INFN) is not there (i!)

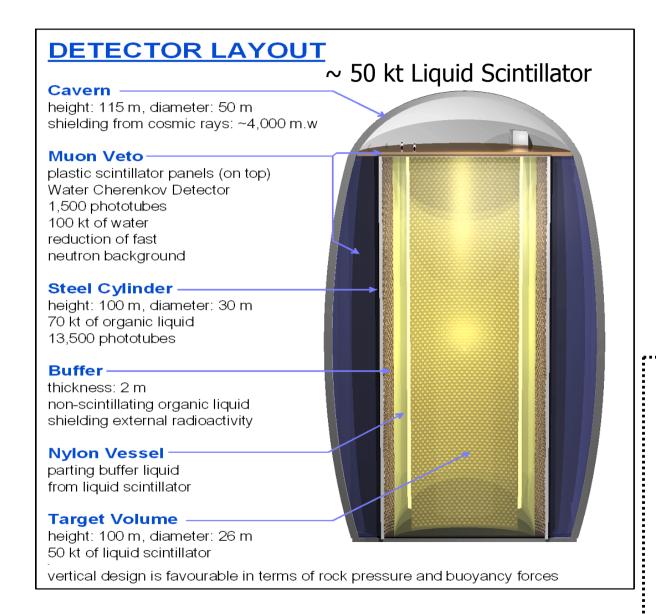
The **LAGUNA** detector-technology approaches

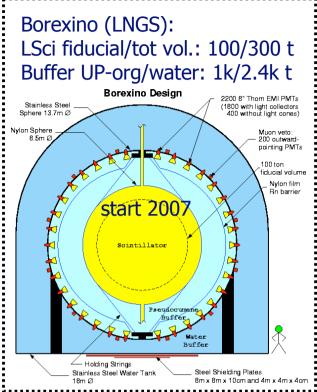
- each tank ~250 kt
- tank size limited by light attenuation length ($\lambda \sim 80$ m) and pressure on PMTs
- readout : ~3 x 81K 12" PMTs, 30% geom. Cover
- hopefully with matter-flavour/neutron tagging ⇒ *Gd* solute

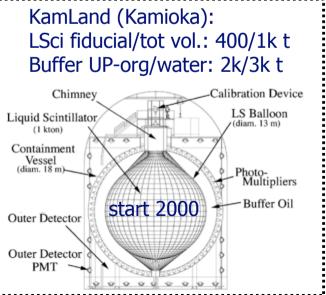




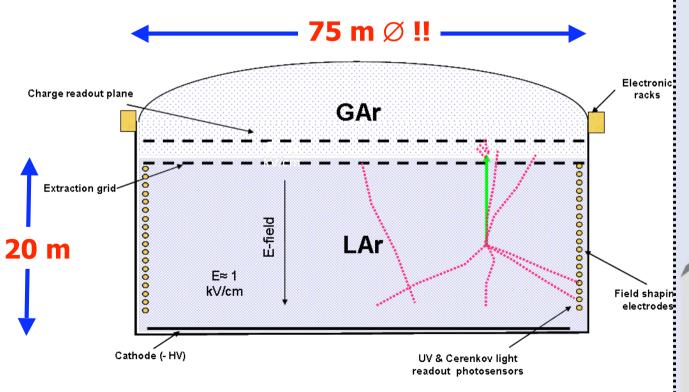
Gd batch 200904, GeOroel, run20101224-20110104, bkg (run20101214-22) corrected




LAGUNA (MEMPHIS) is the European "competitor" of SuperKamiokande's successor: HyperKamiokande


- they have the expertise
- they have a powerful v beam

Liquid Scintillator ⇒ **LENA**



Liquid Argon ⇒ **GLACIER**

- LAr storage based on LNG tank tech
- Double Phase LEM readout (gain $\sim 10^4$)
- Cockroft-Walton [Greinacher]
 Voltage Multiplier (~ 1 kV/cm)
- Very Long drift distances (~ 20 m !!)
- ~ 100 kt

"Precursor" ArDM-LSC 1 t LArg

Rough Comparison of Potentialities:

Table 12. Summary of the physics potential of the proposed detectors for astroparticle physics topics. The (*) stands for the case where gadolinium salt is added to the water of one of the MEMPHYS shafts.

to the water of one of the	D. Autiero et al.; JCAP11(2007)011			
	GLACIER	LENA	MEMPHYS	
Topics	100 kton	50 kton	440 kton	
Proton decay				
$e^+\pi^0$	0.5×10^{35}		1.0×10^{35}	
$\bar{ u}K^+$	1.1×10^{35}	0.4×10^{35}	0.2×10^{35}	
SN ν (10 kpc)				
\mathbf{CC} or inverse β	$2.5 imes 10^{4} (u_e)$	$9.0 imes 10^3 (ar{ u}_e)$	$2.0 \times 10^5 (\bar{\nu}_e)$ (*)	
NC	3.0×10^{4}	3.0×10^{3}	_	
ES	$1.0 \times 10^{3}(e)$	$7.0 \times 10^{3}(p)$	$1.0 \times 10^{3}(e)$	
DSNB ν (S/B 5 yr)	40-60/30	9-110/7	43–109/47 (*)	
Solar ν (evts. 1 yr)				
⁸ B ES	4.5×10^{4}	$1.6 imes 10^4$	1.1×10^{5}	
⁸ B CC		360	_	
$^7\mathrm{Be}$		2.0×10^{6}	_	
pep	_	7.7×10^{4}	_	
Atmospheric ν (evts. 1 yr)	1.1×10^4	_	4.0×10^4 (1 ring only)	
Geo ν (evts. 1 yr)	Below threshold	≈1000	Need 2 MeV threshold	
Reactor ν (evts. 1 yr)		$1.7 imes 10^4$	6.0×10^4 (*)	

⇒ "~ similar" physics output in "~ similar" periods of time

We must bear in mind, always, a possible new v beam, of some kind, from CERN

[explicitly addressed in LAGUNA-LBNO, see end of the talk]

 \Rightarrow what is θ_{13} ?

Feasibility Study for Laguna at the LSC

Some items about this first period LAGUNA-LSC

- The coordinator of the Feasibility Study (FS) for the LSC was L. Labarga (UAM); he had the help of LSC staff
- For the FS, LAGUNA-EU assigned ~145 K€ to the LSC, and 31 K€ to the the UAM, the LSC and UAM contributed with ~100 K€ and 7 K€ respectively (the later from the AC FPA2008-03002-E)
- The LSC has not Geotechnic Dept.; technical part had to be subcontracted
- July 2008 --> March 2009
 - Contact, discussions and (private) pre-selection of Geotechnic Companies candidate to carry out the FS for the LSC
 - Administrative and legal procedure to select the Company.
 - Select Company (got a "dream team", see next slide), sign contract, Company starts working
- June 2010: the main document basis of WP2's "Interim Report for the LSC" is delivered
 [final version is at http://www.lsc-canfranc.es/ links activity → LAGUNA]

PROJECT TEAM

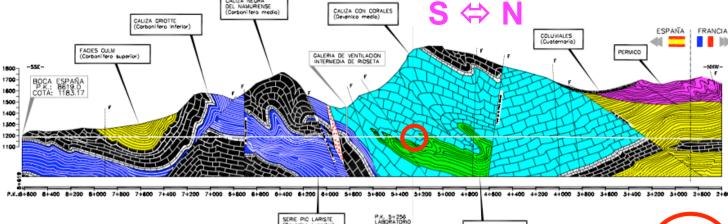
leader: Manuel Romana (STMR)

co-leader: Clemente Saenz (Iberinsa)

Companies involved:

Main work

Help work

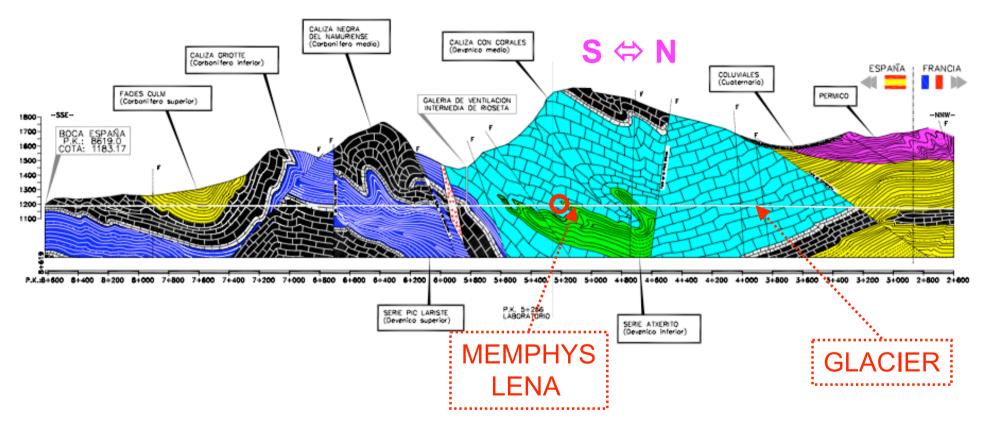

Iberinsa: big Spanish consulting firm

- Geological-geotechnical work (General)
- Numerical modelling
- Environmental questions
- Auxiliary installations. Buildings
- Cost estimates

STMR: small Spanish geotechnical and tunnelling firm

- Project managing and coordination
- Geologic-geotechnical work (Rock Mechanics problems)
- Construction processes and work methods
- Obras Subterraneas (OSSA): Biggest Spanish firm for underground works contruction
 - Construction processes and work methods
 - Cost estimates
- Itasca Spain: Local branch of Itasca network of firms
 - Numerical modelling
- Individual consultants
 - Site knowledge (project and construction Manager for Somport Tunnel)
 - Tectonic stresses and seismicity (Madrid Geology Faculty Professor)

General I:


best compromise between overburden, rock quality, knowledge (within FS) and expectations of rock quality, centralization of services ...:

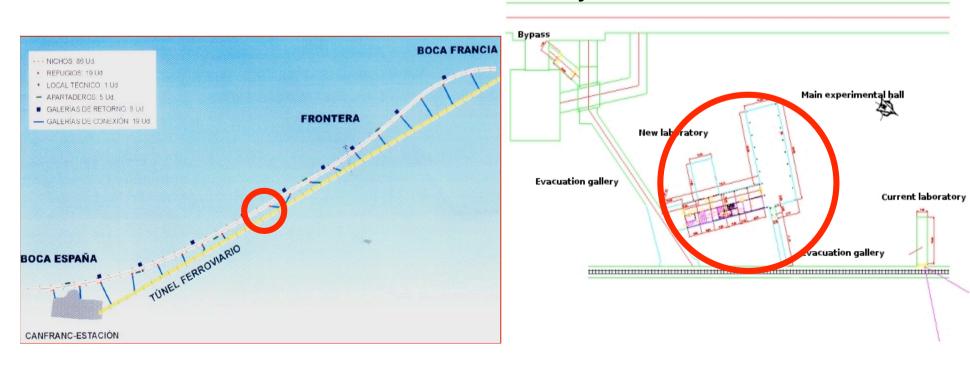
P.K. 5+256 LABORATORIO

⇒ the LAGUNA experiment should be close to the current LSC location.

General II:

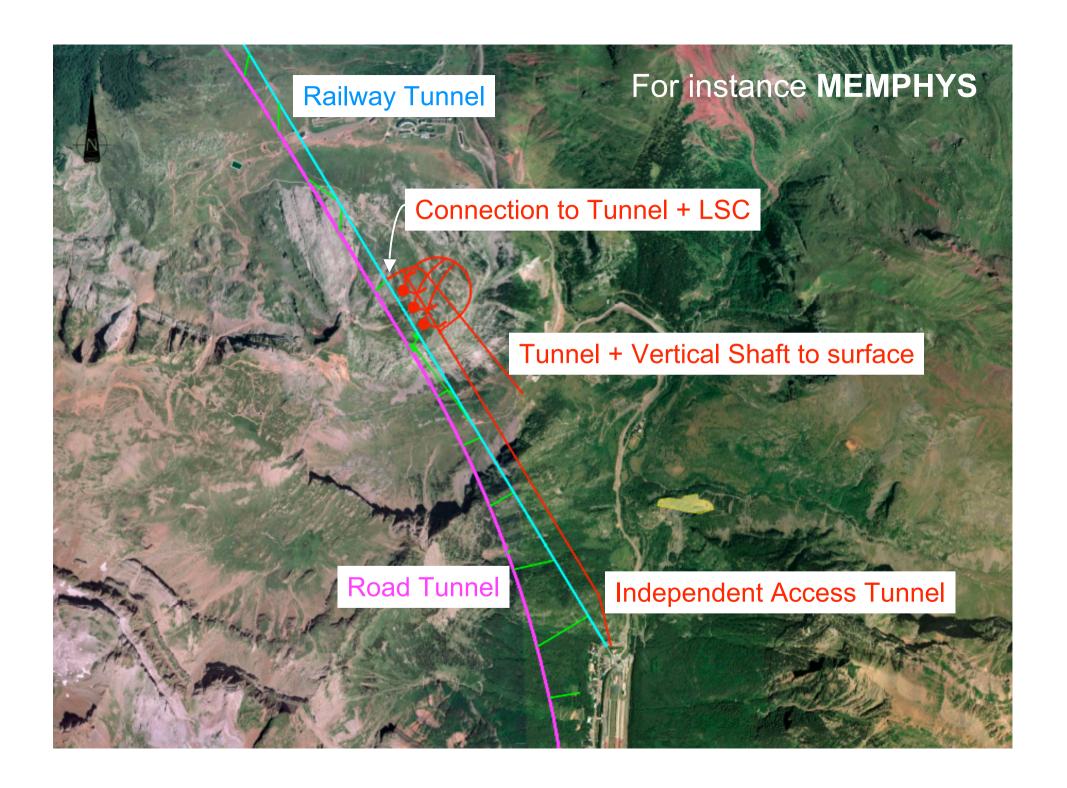
⇒ place MEMPHYS and LENA where overburden is largest

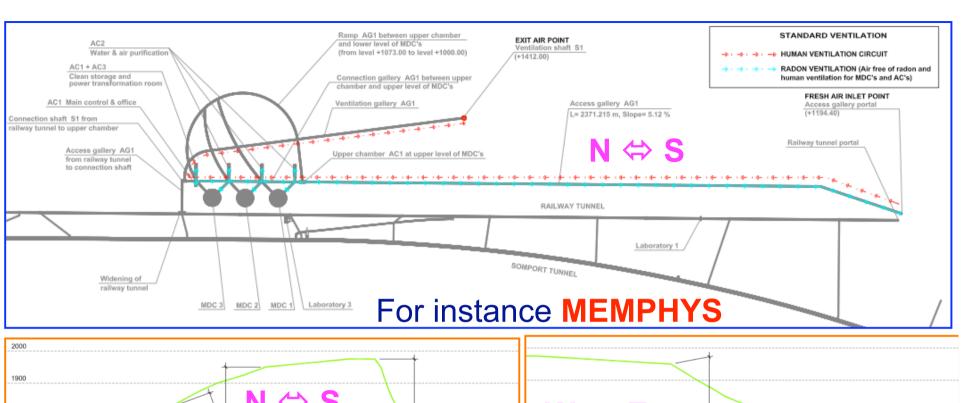
- GLACIER can work at shallower locations.
- Its 75 m Ø dome (!) is a geotechnic challenge; less overburden and best rock quality will be of big help.
- There is a region along the tunnel shallower and of better rock
 ⇒ place GLACIER there

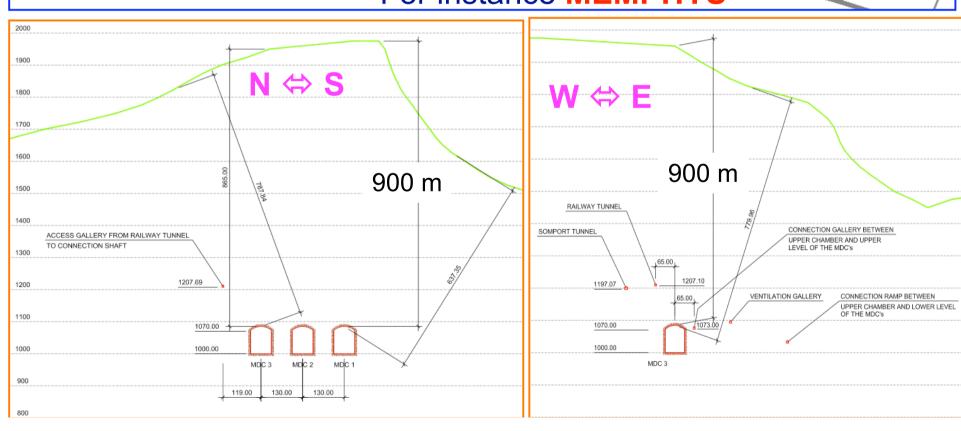

The LSC lies physically in between:

a New Road Tunnel (Somport tunnel, opened 2003)

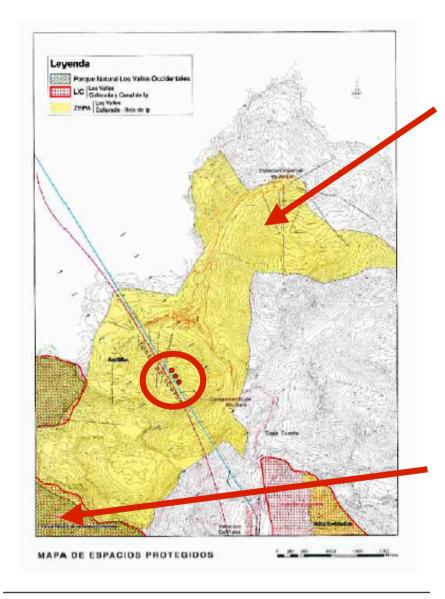
- binational: Spain (Jaca) France (Pau)
- Length: 8,6 Km (5,7 in Spain + 2,9 in France)
- State of the art on safety features (EU directive 2004)

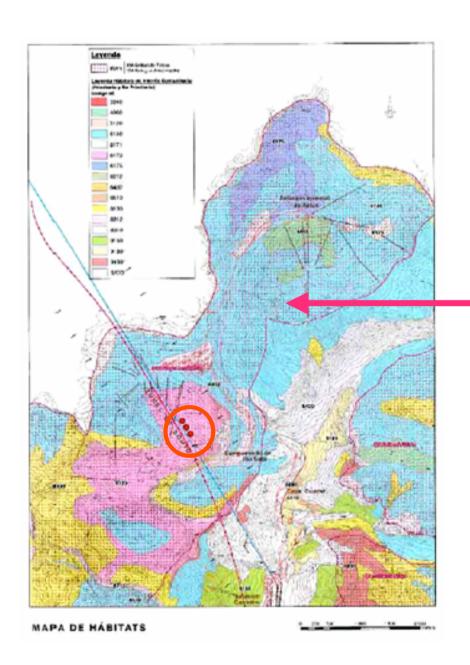

an Old Railway Tunnel


- Now used as service and emergency exit of Road Tunnel
- Safety galleries connecting both tunnels every 400 m
- Current Access for Laboratory



General III:


- The main layouts in the three experiments have been designed neither to interfere with the regular running of Road Tunnel nor with the emergency and service purposes of Railway Tunnel.
- Of course they try to take the maximum profit of them, but at the same time they are thought to operate independently if necessary.
- ⇒ An independent access tunnel (2 3 Km long, ~ 4 7% downwards) almost parallel to existing ones
 - For construction access (!)
 - For regular operation/running and maintenance access
 - For radon-free air conduction
 - For supplies: energy, water, others
 - For Liquid Scintillator .OR. Liquid Argon supply by truck
 - For ventilation: regular operation/running and fire
- ⇒ A permanent connection with the Road and Railway tunnels and the LSC
 - For normal operation (connection to LSC)
 - As an emergency escape way
- ⇒ Another tunnel + vertical shaft to the surface
 - For ventilation: regular operation/running and fire


Environmental I:

Nearby protected sites

- Special protected area for birds (ZEPA)
 - Includes site
 - There is a rare vulture protected species
 - No influence for underground works
 - Regulations for surface works during birds nesting period
- Nature Park
 - Far away from the site

Environmental II:

Animals habitats network

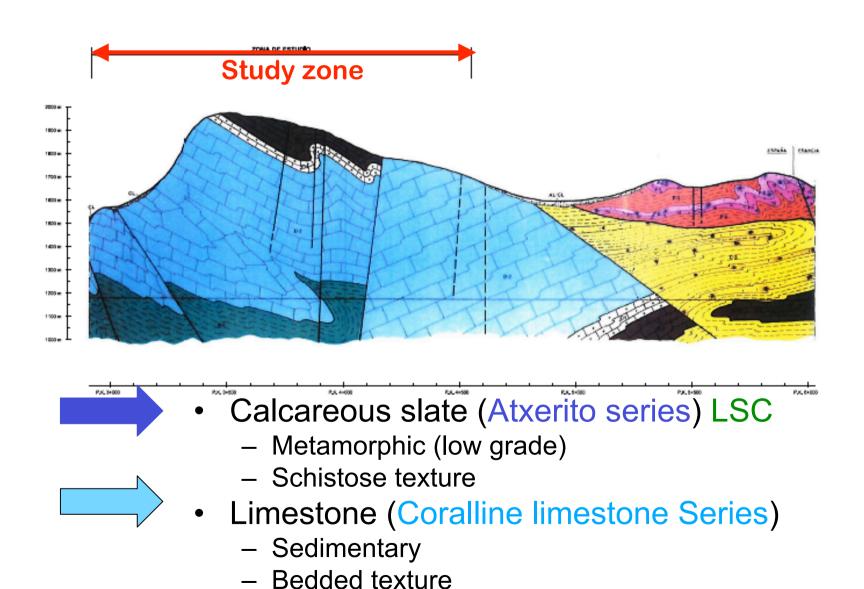
 Maps for animal and vegetal habitats network around the site have been drawn

 There is no special problem at the site for underground works

Environmental III:

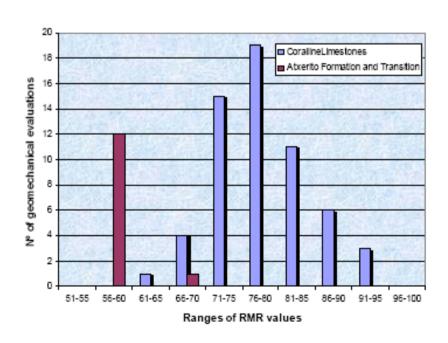
Places for waste rock

Waste rock quantities are big

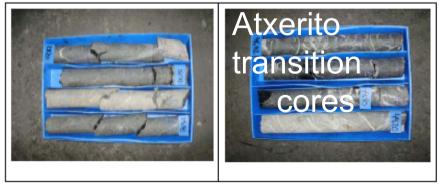

MEMPHYS ~1.000.000 m³

GLACIER ~200.000 m³

Two sites are selected closer than 20 Km. with no environmental problems


The places would be reforested like it was done for the Road Tunnel waste rock sites

Geology I: profile at site from Road Tunnel studies


Geology II: geological studies in this FS

- Retrospective analysis of falls in the current LSC in order to check the real rock parameters around the laboratory
- Revision and analysis of geological data gathered at Road Tunnel excavation fases
- Two probing boreholes (40 and 70m long) in key locations
- Laboratory tests

Two boxes of S-1. At left, from 11,00 to 13,25 meters deep. At right, from 37,00 to 39,20.

Two boxes of S-2. At left, from 25,90 to 28,20 meters deep. At right, from 44,20 to 46,420.

Geology III: conclusions and assumptions for calculations

- •The rock in most of the site is good quality marine coraline limestone
- There is a transition between the limestone and medium quality folded Atxerito beds
- The distribution of both rocks is well known at the Road Tunnel elevation (both from tunnel excavation and further studies for LAGUNA project)
- To know the exact distribution of both rocks at larger depths it is necessary a further campaign of geological-geotechnical boreholing

The rock assumptions for the calculations of this study are:

- MEMPHYS and LENA are assumed to lie in the worst possible situation (the Atxerito beds)
- GLACIER is known to lie in good quality limestones beds

Conceptual support design I: MEMPHYS and GLACIER

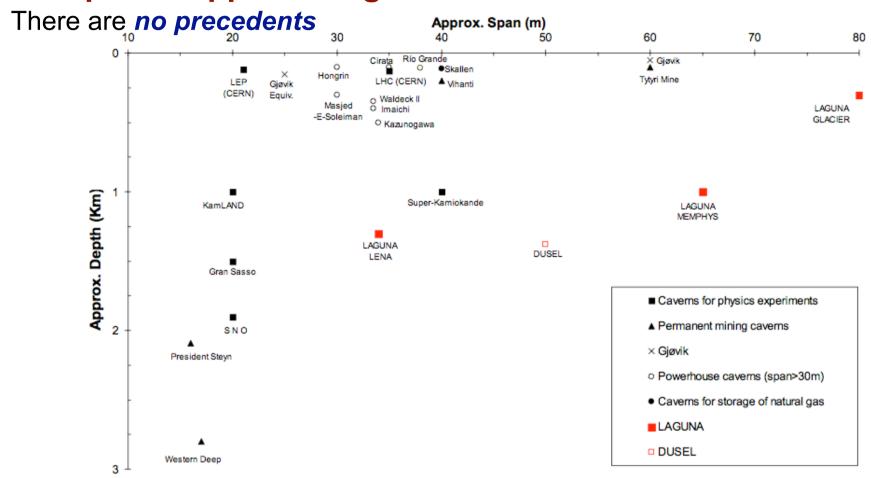


Figure 3.1-5. Scattered plot span vs. depth of permanent large caverns classified by use.

M. Romana: "we are dealing with world record stuff"

Conceptual support design I: MEMPHYS and GLACIER

There are *no precedents*

Their big spans cannot be supported by conventional methods (cables < 20 m, bolts, shotcrete):

- Able to cope with rock stresses near excavation limits
- •Able to cope with "minor" wedges (relative to big spans)
- Not able to cope with "major" wedges

A complete concrete roof vault is not considered

⇒ Go for a partial concrete structure to cope with eventual big wedges

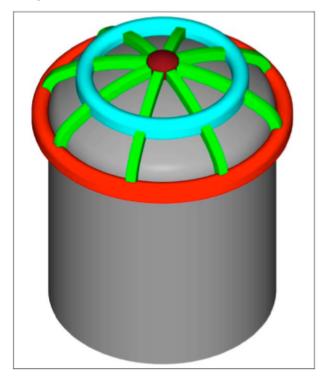


Figure 7.3-2. Perspective view of the vault system.

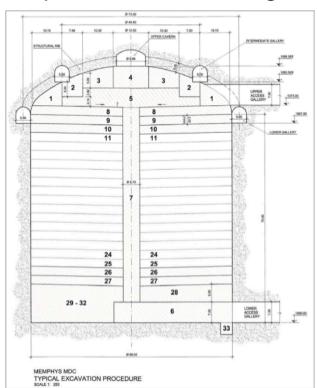


Figure 7.3-3. Excavation sequence for the MEMPHYS caverns.

Conceptual support design II: LENA

There are precedents: Mingtan cavern in weak rock (by *Hoek*)

- 1. Preliminary circular gallery excavated over the cavern
- 2. Support cables installed from the gallery before cavern excavation
- 3. Support completed with more cables, bolts and shotcrete during excavation

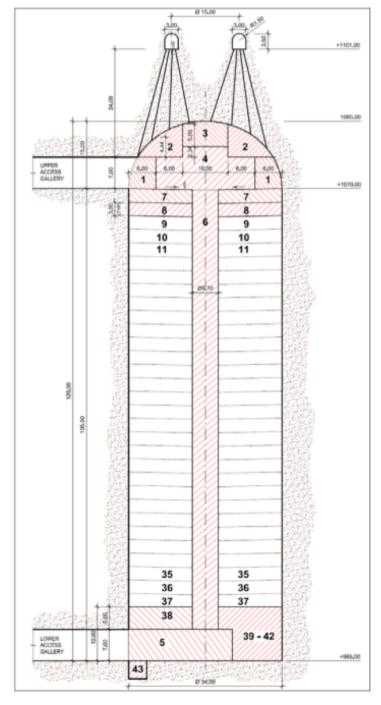
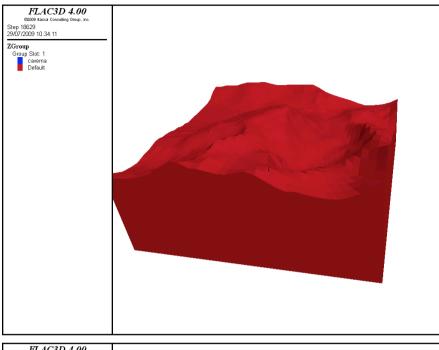
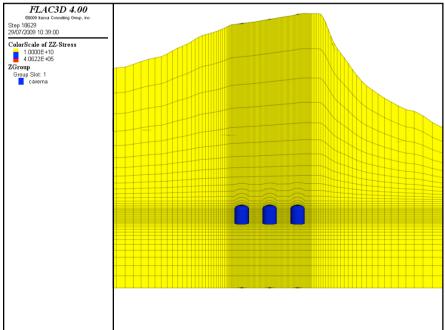
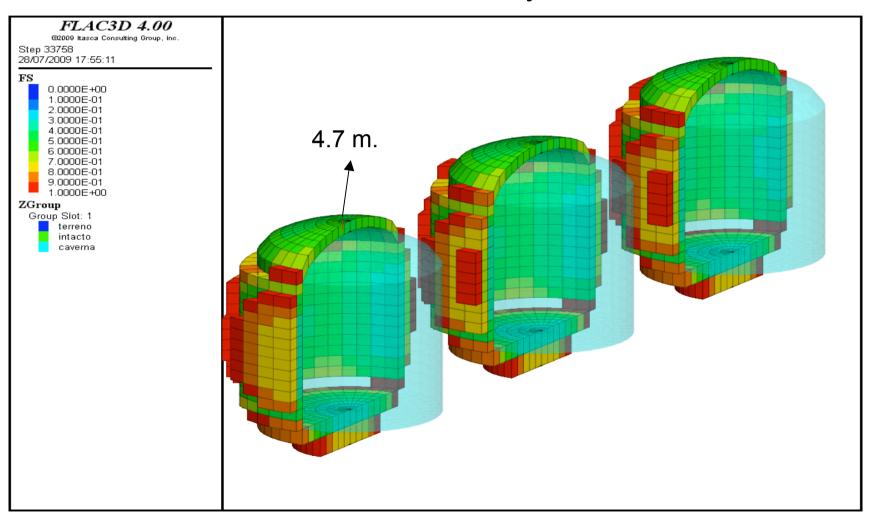




Figure 8.3-3. Excavation sequence for the LENA cavern.

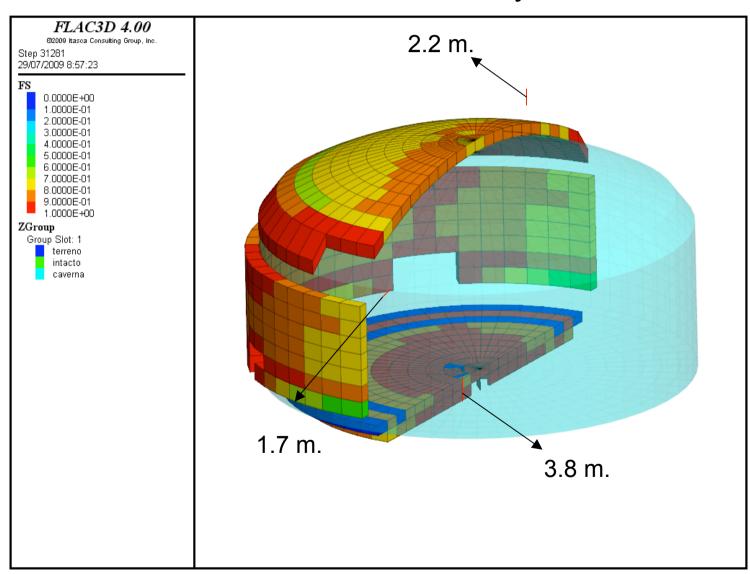
First estimation of the caverns feasibility I:


Modelling / Calculations [elastic]

- 1. Check the effect of real topographic features
 - ⇒ no significant effect

First estimation of the caverns feasibility II:

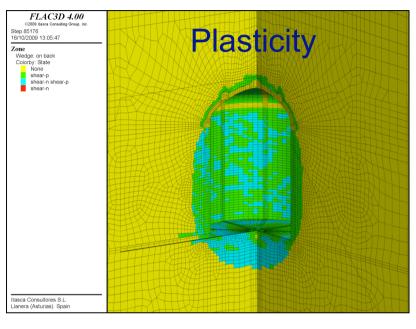
Modelling / Calculations [elastic]

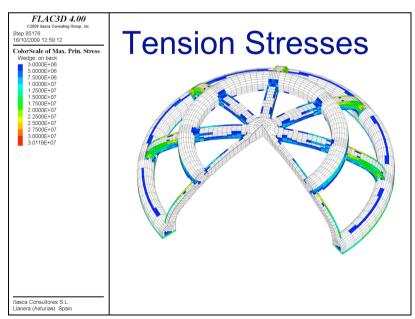

2. Three MENPHYS caverns; Plasticity Indicators ⇒ OK

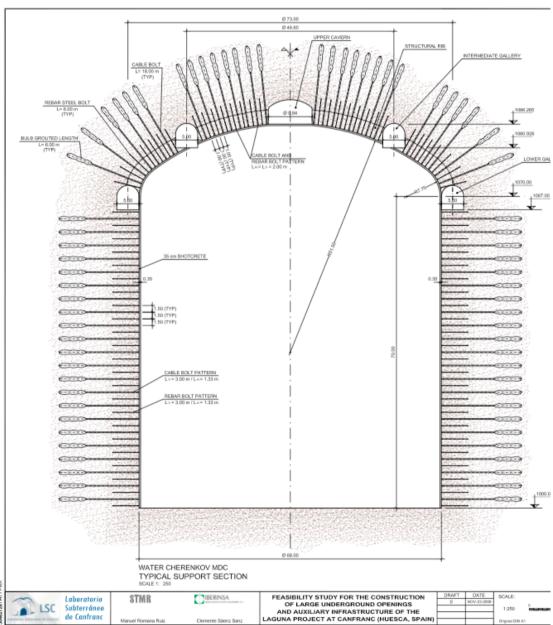
First estimation of the caverns feasibility III:

Modelling / Calculations [elastic]

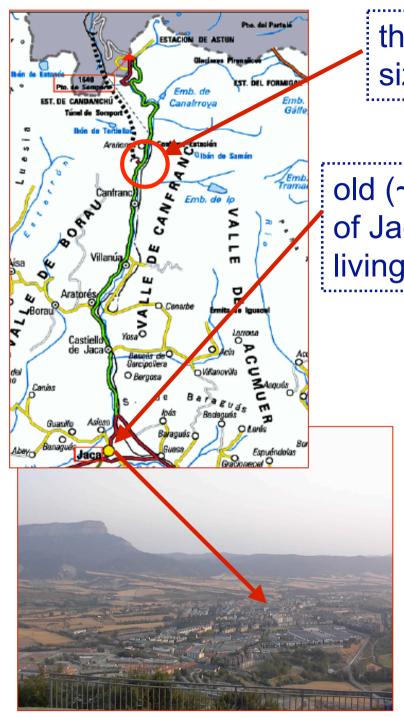
3. enormous GLACIER cavern; Plasticity Indicators ⇒ OK


Realistic Calculation: MENPHYS elasto-plastic modelling


- Assumed worst rock conditions
- Almost all construction stages (slightly simplified)
- Three different behaviour laws for concrete
 - Elastoplastic
 - Brittle failure
 - Softening
- Two different concrete sequences
 - Prior to cavern excavation
 - By stages with cavern excavation
- Concrete needs some reinforcement in the roof lower gallery


Elastic modelling studies allows us to extrapolate valid conclusions for LENA and GLACIER pre-designs

Example for illustration follows:


Pre-design after elasto-plastic structural calculations of one of the three MENPHYS detector' caverns

we even don't forget (try to) that part of our day-to-day life is outside physics

the LSC is in the middlesized village of Canfranc

at 21 Km from the

old (~1097) but lively (~15000 inhab.) city of Jaca, that is well capable to provide all living services / needs

both with excellent road communications with all major Spanish cities, ports, airports etc.

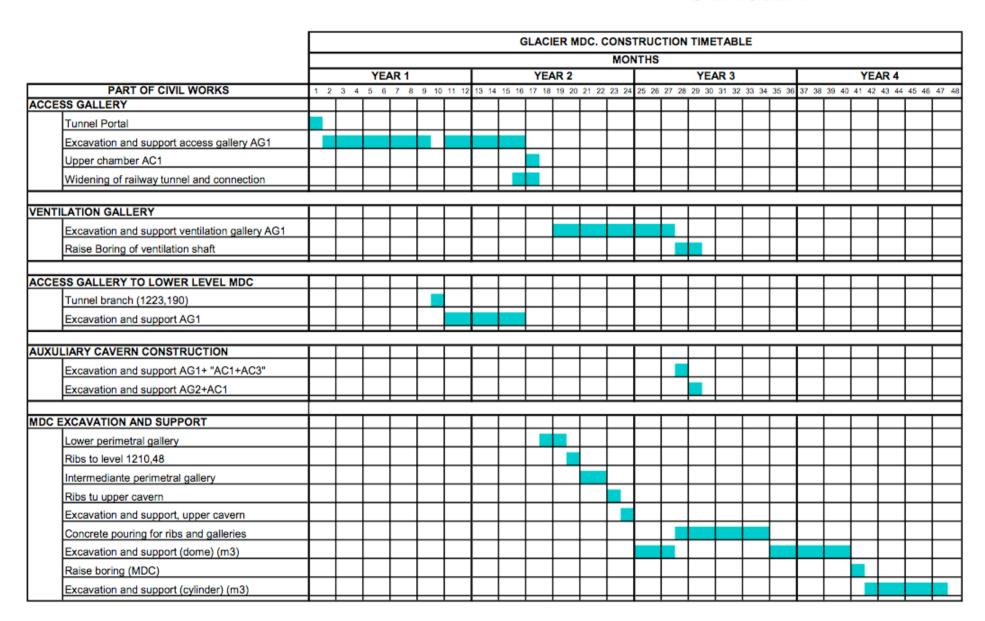
also ...

How much would it cost ????

MEMPHYS

GLACIER

CHAPTER 1 MDC EXCAVATION		CHAPTER 1 MDC EXCAVATION	
1.1 MDC EXCAVATION	70.600.064,33€	1.1 MDC EXCAVATION	14.900.941,42€
1,2 MDC SUPPORT	40.095.850,77€	1,2 MDC SUPPORT	9.381.232,69€
PARTIAL CHAPTER 1 (euros)	110.695.915,10€	PARTIAL CHAPTER 1 (euros)	24.282.174,11€
CHAPTER 2 ACCESS GALLERIES AND CAVERN EXCAVATIONS A	ND SUPPORT	CHAPTER 2 ACCESS GALLERIES AND CAVERN EXCAVATIONS AND	SUPPORT_
2,1 ACCESS GALLERIES	27.959.089,29€	2,1 ACCESS GALLERIES	17.128.604,17€
2,2 AUXILIARY CAVERNS	2.965.952,24€	2,2 AUXILIARY CAVERNS	1.182.241,56€
2,3 VENTILATION GALLERY AND SHAFT	7.301.460,87€	2,3 VENTILATION GALLERY AND SHAFT	8.151.843,43€
PARTIAL CHAPTER 2 (euros)	38.226.502,40€	PARTIAL CHAPTER 2 (euros)	28.482.689,17€
CHAPTER 3 INSTALLATIONS		CHAPTER 3 INSTALLATIONS	
2,1 CONSTRUCTION INSTALLATIONS	641.750,00€	2,1 CONSTRUCTION INSTALLATIONS	641.750,00€
2,2 UNDEGROUND INSTALLATIONS	9.993.420,00€	2,2 UNDEGROUND INSTALLATIONS	6.213.500,00€
2,3 SURFACE INSTALLATIONS	251.650,00€	2,3 SURFACE INSTALLATIONS	251.650,00€
PARTIAL CHAPTER 3 (euros)	10.886.820,00€	PARTIAL CHAPTER 3 (euros)	7.108.900,00€
CHAPTER 4 ENVIRONMENTAL MANAGEMENT		CHAPTER 4 ENVIRONMENTAL MANAGEMENT	
4,1 ENVIRONMENTAL MANAGEMENT	700.000,00€	4,1 ENVIRONMENTAL MANAGEMENT	620.000,00€
PARTIAL CHAPTER 4 (euros)	700.000,00€	PARTIAL CHAPTER 4 (euros)	620.000,00€
CHAPTERS 1 TO 4 (euros)	160.509.237,50€	CHAPTERS 1 TO 4 (euros)	68.471.763,28€
HEALTH AND SAFETY	2.407.639,00€	HEALTH AND SAFETY	877.078,00€
UNDERGROUND MONITORING	481.528,00€	UNDERGROUND MONITORING	233.887,00€
UNDERGROUND MONITORING FURTHER SUBSOIL EXPLORATION	481.528,00€ 1.029.354,00€	UNDERGROUND MONITORING FURTHER SUBSOIL EXPLORATION	233.887,00 € 617.612,40 €
FURTHER SUBSOIL EXPLORATION	1.029.354,00€	FURTHER SUBSOIL EXPLORATION	817.812,40 €
FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES	1.029.354,00€ 2.639.910,76€	FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES	817.812,40 € 1.289.035,27 €
FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES TOTAL CONSTRUCTION COST	1.029.354,00 € 2.639.910,76 € 167.067.669,26 €	FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES TOTAL CONSTRUCTION COST	817.812,40 € 1.289.035,27 € 81.489.373,95 €
FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES TOTAL CONSTRUCTION COST 13% OVERHEAD EXPENSES	1.029.354,00 € 2.639.910,76 € 167.067.669,26 € 21.718.797,00 €	FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES TOTAL CONSTRUCTION COST 13% OVERHEAD EXPENSES	817.812,40 € 1.289.035,27 € 81.489.373,85 € 7.891.018,61 €
FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES TOTAL CONSTRUCTION COST 13% OVERHEAD EXPENSES 6% INDUSTRIAL PROFIT	1.029.354,00 € 2.639.910,76 € 167.067.669,26 € 21.718.797,00 € 10.024.060,16 €	FURTHER SUBSOIL EXPLORATION DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES TOTAL CONSTRUCTION COST 13% OVERHEAD EXPENSES 8% INDUSTRIAL PROFIT	817.812,40 € 1.289.035,27 € 81.489.373,95 € 7.991.018,81 € 3.888.182,44 €


How long will it take ????

MEMPHYS

	-									_				MEMP	PHYS M	IDC's. (N TIME	TABLE												
	\vdash		YEAR 1				WE	AR 2	_	_		YEA	D 2		_		MONTH YEAR 4				LUE-	AR 5		_		WE .						
PART OF CIVIL WORKS	1.2		6 7 /		11, 12 11	3 14 15	_	_	21 22 20	24 25	26 27 29			0 04 05 0	W 17 10				67.00	80 EN 61			C7 CB CB	C 10 6	en les	YEAR	68 69 70	20.00	73 74 76	YEA	AR 7	
ESS GALLERY						14 10	1			22 23	10.00	1.00		3 32 32 3		1		11 12 12	-		7 60 60		100 100	-	- Anges	05 66 67	60 GR 70	77.70	73 74 75	N 77 78	79 80	81 6
Tunnel portal																			П											\top		
Excavation and support access gallery AG1										\top							\neg		\Box			П								\top		$\overline{}$
Upper chamber AC1																					\top							\Box		\top		
Connection gallery upper chamber to upper level MDC																								\top								
Individual connections to MDC domes																				\neg	\top			\top						\top		
Connection with shaft																																
Widening of railway tunnel and connection to shaft							\top					П																				
Raise boring										\top																\neg		\Box	\neg			
			_							_				_	-	_	\pm	_	_	_	_	_	_	_		_	_	_	_	_		_
NTILATION GALLERY	\Box					-	\blacksquare			\top																						
Excavation and support ventilation gallery AG1	\vdash		_	\vdash	_	_	-																									
Raise Boring of ventilation shaft	\perp	_	_	\perp		\perp	1			\perp		\sqcup																				
	=	=	=	=	\Rightarrow	=	=	=		=	==	=	_		=				=					_	=							
CESS GALLERY TO LOWER LEVEL MDC	\rightarrow	-	+	+	-	+	+-		-	+	+		\rightarrow	-	-	\vdash	-	+	\rightarrow	-	+		-	-	\vdash	-	_	$\overline{}$	-	-		
Excavation and support access gallery AG1 to lower level MDC3	+-	-	+	+	-	+	+							-	-		-	-	\rightarrow	-	+	-	-	-						+		
Excavation and support access gallery AG1 to lower level MDC2	+	\rightarrow	+	+	\rightarrow	+	+	\vdash	-	+	+	-		-	\vdash	\vdash	+	+	\vdash	+	+	\vdash	+	+	\vdash	\rightarrow	\rightarrow	\rightarrow	_	\perp	ш	
Excavation and support access gallery AG1 to lower level MDC1	\perp	_	_	\perp	\rightarrow	\perp	+	\vdash	_	_	_	\vdash		_		\vdash	\perp	\perp	\perp	\rightarrow	-	\vdash	+	\perp	\vdash	_	\perp	\rightarrow	_	\perp		
IXILIARY CAVERN CONSTRUCTION		_	_	_	_	_	_		1.	_	_		_	_		_		_	_	_	_		_	-		_	-			=	=	
	+	\rightarrow	+	+	\rightarrow	+	+	+	-	+	+		\rightarrow	_	-	\rightarrow	+	+	\rightarrow	+	+	\rightarrow	+	+	-	\rightarrow	+	\rightarrow	+	+	\vdash	_
Excavation and support AC2's (Water purification)	+	\rightarrow	+	+	\rightarrow	+	+	\vdash	\rightarrow	+	+		_	+	+	\rightarrow	+	-	\rightarrow	+	+	\rightarrow	+	+	\rightarrow	\rightarrow	+	\rightarrow	+	+	\vdash	_
Excavation and support AC1+AC3 (Control, storage & power transf)	\perp	_	\pm	\perp	_	_	_	\vdash	_	_	\pm		_	_	\vdash	_	_	_	\rightarrow	_	_	\rightarrow	_	_		_	\perp	_	_	\perp		
NSTRUCTION MDC-3		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_		_	
Excavation and support lower perimetral gallery	\vdash	\rightarrow		+	\rightarrow	+	+	\vdash	$^{+}$	+		\vdash	\rightarrow	+	-	$\overline{}$	+	+	\rightarrow	+	+	\rightarrow	+	+	\rightarrow	\rightarrow	+	\rightarrow	+	+		_
Ribs to level 1210,48		\rightarrow	-	\vdash	\rightarrow	$\overline{}$	+	\vdash	\neg	+		\vdash	\rightarrow	+	-	-	+	+-	\rightarrow	+	+	\rightarrow	+	+	\rightarrow	-	+	\rightarrow	-	+	$\overline{}$	_
Excavation and support lower perimetral gallery	\Box	$\overline{}$		\vdash	\neg	-	+	\vdash	$^{+}$	+		$\overline{}$	\rightarrow	+		\rightarrow	+	+	\rightarrow	+	+		+	+	 	-	+	\rightarrow	+	+		_
Ribs to upper cavern	\vdash	\rightarrow	+	+	\rightarrow	+	+	\vdash	$\overline{}$	+	_		\rightarrow	+	+	-	+	+	\rightarrow	+	+	-	+	+	-	\rightarrow	+	\rightarrow	+	+	\rightarrow	_
Excavation and support of upper dome	+	\rightarrow	+	+	-	+	+	\vdash	+	+	+		\rightarrow	+	+	\rightarrow	+	+	-	+	+		+	+	-	+	+	\rightarrow	\rightarrow	+	\rightarrow	_
Concrete pouring for ribs and galleries	\vdash	+	+	+	\rightarrow	+	+	\vdash	\rightarrow	+	+		_	_		_	+	+	\rightarrow	+	+	-	+	-	-	-	+	\rightarrow	+	+	\rightarrow	_
	\vdash	\rightarrow	+	+	$^{+}$	+	+	\vdash	+	+	+						_	+-	\rightarrow	+	+	\rightarrow	+	+	\vdash	+	+	\rightarrow	-	+	\rightarrow	_
Excavation y support dome Raise boring (MDC)	\vdash	\rightarrow	_	+	\rightarrow	+	+	\vdash	\rightarrow	+	+		-	+	1		-		-	+	+	\rightarrow	+	+	\vdash	+	+	\rightarrow	+	+	-	_
	\vdash	+	+	+	-	+	+	\vdash	\rightarrow	+	+	\rightarrow	\rightarrow	+	+	-			\rightarrow	_	-	_	+	+	\vdash	+	+	\rightarrow	-	\vdash	\rightarrow	_
Excavation and support (cylinder) (m3)		\rightarrow	\pm	\perp	_	_	+	\vdash	_	\pm	_		_				\perp		_	_	_		_	\perp	\vdash	_	\perp	_	_	\vdash	\rightarrow	_
DINSTRUCTION MDC-2		_	_	1	-	_	_		_	$\overline{}$	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_		_	_
Excavation and suppost lower perimetral gallery	\Box	\neg	+	\vdash	\neg			\Box	\neg	+			\rightarrow	+			+	+	\rightarrow	+		$\overline{}$	+		\vdash	+	+	\rightarrow	+	\vdash	-	_
Fibs to level 1≥10,48		\neg	\top	\vdash	\neg	\top		\Box	\neg	$^{+}$							+	\vdash	\neg	+			+		$\overline{}$	$^{+}$	+	\rightarrow	+	+	-	_
Excavation and support lower perimetral gallery		\neg	\top	+	\neg	_		\vdash	\neg	+		\vdash	$\overline{}$	+				+	\rightarrow	-		$\overline{}$	+		\vdash	+	+	\rightarrow	_	+	-	_
Fibs to upper cavem		\neg	+	+	\neg	+		\vdash	\neg	+	+	\vdash	\neg	+				\vdash	\rightarrow	+			+	-	-	-	+	\rightarrow	+	+	-	_
Excavation and support of upper dome		$^{+}$	+	+	+	+		\vdash	\pm	+	+	\vdash	$^{+}$	+	1	$\overline{}$		+	+	+	+	_	+			+	+	+	+	+	-	_
Concrete pouring for ribs and galleries	\vdash	\neg	+	\vdash	\neg	+	-	\vdash	$\overline{}$	+	+	\vdash	$\overline{}$	+	\vdash	\rightarrow				_	+	\rightarrow	+	1	\vdash	+	+	+	+	+	\rightarrow	_
	\vdash	$^{+}$	+	\vdash	$^{+}$	+	+	\vdash	+	+	+	\vdash	\rightarrow	+	-	-						_	+		\rightarrow	+	+	\rightarrow	+	+	\rightarrow	_
Excavation y support dome Raise boring (MDC)	\vdash	$\overline{}$	+	+	+	+		\vdash	+	+	+	\vdash	\pm	_	\vdash	\rightarrow		1	\rightarrow	_			_	-	\rightarrow	+	+-+	\rightarrow	+	\rightarrow	\rightarrow	_
	+	+	+	+	+	+	+	\vdash	+	+	+	+	+	+	-	\rightarrow	+	+	\rightarrow	+	+		_			_	\rightarrow	+	+	\rightarrow	\rightarrow	_
Excavation and support (cylinder) (m3)	\perp	_	\pm	\perp	_	\pm	_	\perp	_	_	_		_	\pm		\rightarrow	\pm	\vdash	_	\pm	\vdash	\rightarrow	_	_	_	_		_	_	\vdash	_	
NSTRUCTION MDC-1			$\overline{}$	$\overline{}$	\neg	_	_		$\overline{}$	$\overline{}$	_		_	_		$\overline{}$	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Excavation and support lower permetral gallery	\Box	\neg	+	\vdash	\neg	\top		\Box	\neg	+		\vdash	\rightarrow	+	\vdash	\neg	+	\vdash	\rightarrow	$\overline{}$		\rightarrow	+		\rightarrow	+	+	\rightarrow	+	+	\rightarrow	_
Fibs to level 1210.48	1			\vdash				\Box		+			-		\vdash				+	+			-			+	+-	+	-	\vdash	-	_
Excavation and support lower perimetral gallery			1		-		1								\vdash			\vdash	-	-						+	+++	+	-	+	-	_
	\vdash	+	_		\rightarrow	_		\vdash					-		\vdash		-		+	-			-			-	+++	+	-	+	-	_
Files to upper cavern	-	-	+		+	+			+	+	+	-	+	+	\vdash		+	1	+	+			-			+	+-+	+	-	+	-	_
Excavation and support of upper dome	-	+	-	1	+	+		 	-	+	+	-	-	+	\vdash	-	-	+	+	-		-				-	+-	-	-	-	\rightarrow	_
Concrete pouring for ribs and galleries	-	-	+	1	-	+	-		+	+	+	-	-	+		-	+	-	+	-		-				4		-	-	-	-	_
Excavation y support dome	-	+	+	-	+	+	-		-	+	-	-	-	+		-	+	-	-	-				\vdash				_	-	\rightarrow	-	
Raise boring (MDC)	-	-	-		-	-	-	-	-	+	-		-	-		-	-	\vdash	-	-	\vdash	_	-			-			_			
Excavation and support (cylinder) (m3)			_																													

How long will it take ????

GLACIER

recapitulating:

 A very detailed feasibility study for LAGUNA at the LSC has been performed with positive results

LAGUNA-WP2's "Interim Report for the LSC"

[http://www.lsc-canfranc.es/ → activity → LAGUNA]

- Many items have not been presented here due to lack of time (in particular installations and auxiliary infrastructures). Please have a look to the above documents
- The Canfranc area is excellent to provide the social / living needs of the people forming a large Collaboration like LAGUNA

The LSC is found to be very well suited to locate any of the LAGUNA experiments

... and much work is yet to be done to *solve* the master equation:

... and to execute its solution [... solution and execution are rather correlated issues ...]

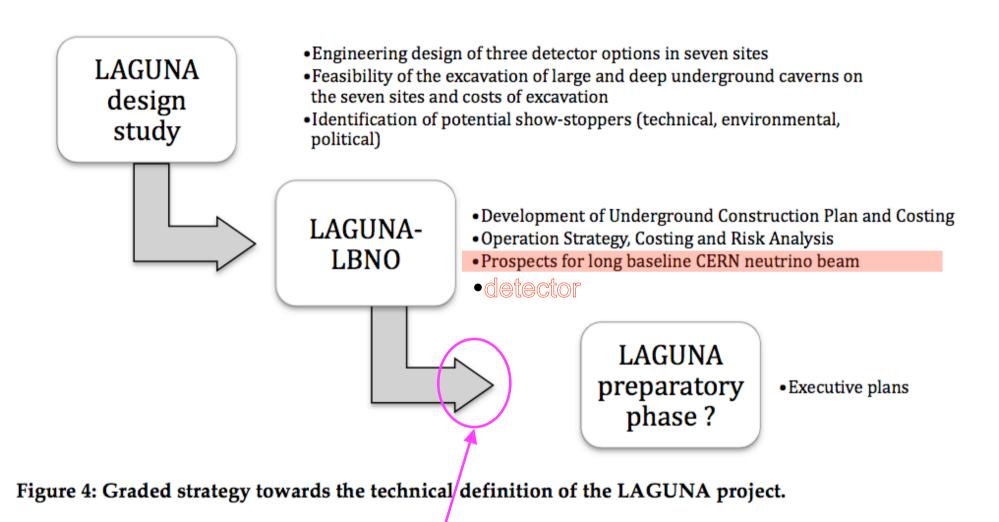
FP7-INFRASTRUCTURES-2011-

Design Study (CP) proposal [LAGUNA-LBNO]

COLLABORATIVE PROJECT

Design Study

FP7-INFRASTRUCTURES-2011-1


Proposal title (max 200 characters)	Design of a pan-European Infrastructure for Large Apparatus studying Grand Unification, Neutrino Astrophysics and Long Baseline Neutrino Oscillations
Proposal acronym	LAGUNA-LBNO
Type of funding scheme	RI Design study implemented as Collaborative Project
Work programme topics addressed	Deep underground science, particle physics, astroparticle physics, long baseline neutrino oscillations

Coordinating person: Prof. André Rubbia E-mail: rubbia@ethz.ch

Phone: +41 44 633 3873

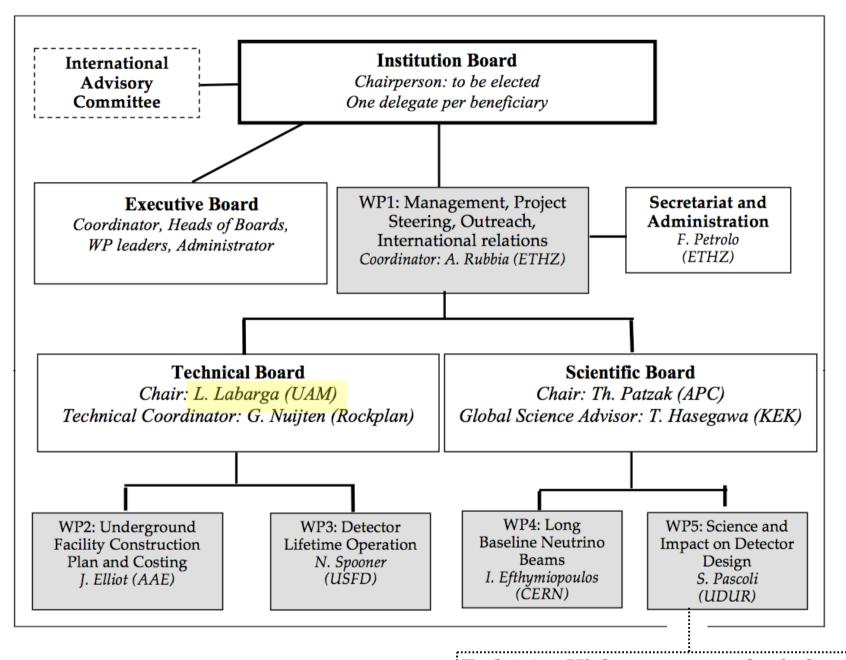
November 2010

1/83

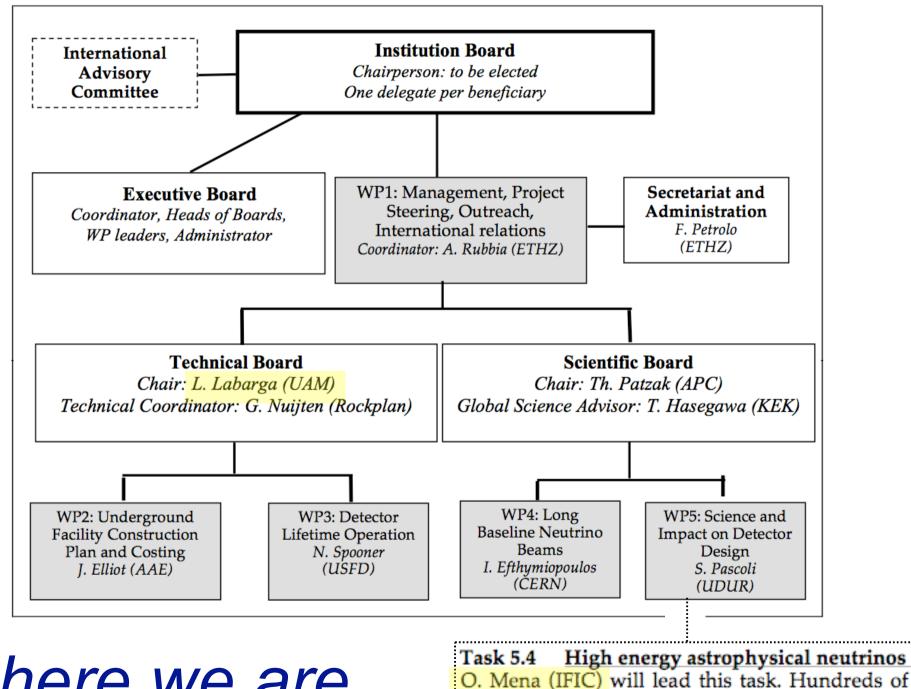
The goal is to be here in the position of submitting a firm proposal to the National Funding Agencies for the full realization of the LAGUNA experiment

Beneficiary no.	Beneficiary name	Beneficiary short name	Country
1.	Swiss Federal Institute of Technology Zurich	ETH Zurich	Switzerland
2.	University of Bern	U-Bern	Switzerland
3.	University of Geneva	UNIGE	Switzerland
4.	Lombardi Engineering Limited	Lombardi	Switzerland
5.	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	CERN	International Organisation
6.	University of Jyväskylä	U-Jyväskylä	Finland
7.	University of Helsinki	UH	Finland
8.	University of Oulu	UOULU	Finland
9.	Kalliosuunnittelu Oy Rockplan Ltd	Rockplan	Finland
10.	Commissariat à l'Energie Atomique / Direction des Sciences de la Matière	CEA	France
11.	Institut National de Physique Nucléaire et de Physique des Particules (CNRS/IN2P3)	IN2P3	France
12.	Technische Universität München	TUM	Germany
13.	Hamburg University	UHAM	Germany
14.	H.Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Krakow	IFJ PAN	Poland
15.	IPJ Warsaw	IPJ	Poland
16.	Wroclaw University of Technology	WrUT	Poland
17.	KGHM CUPRUM	KGHM	Poland
18.	Laboratorio Subterraneo de Canfranc	LSC	Spain
19.	Universidad Autonoma, Madrid	UAM	Spain
20.	Consejo Superior de Investigaciones Científicas	CSIC	Spain
21.	ACCIONA INGENIERÍA & STMR	ACCIONA	Spain
22.	Imperial College London	ICL	United Kingdom
23.	University of Durham	UDUR	United Kingdom
24.	The University of	U-Oxford	United Kingdom

		Oxford		
-	25.	The University of Liverpool	U-Liverpool	United Kingdom
-	26.	The University of Sheffield	USFD	United Kingdom
	27.	RAL	RAL	United Kingdom
	28.	The University of Warwick	U-Warwick	United Kingdom
	29.	Technodyne International Ltd	Technodyne	United Kingdom
	30.	Alan Auld Engineering Ltd.	AAE	United Kingdom
	31.	Rhyal Engineering Ltd	REL	United Kingdom
	32.	Sofregaz	SOFREGAZ	France
-	33.	AGT Ingegneria Srl, Perugia	AGT	Italy
-	34.	Institute of Nuclear Technology of Demokritos	DEMOKRITOS	Greece
-	35.	Horia Hulubei Institute of &D Physics and Nuclear Engineering, Bucharest and partners	IFIN-HH	Romania
	36.	University of Bucharest	UoB	Romania
-	37.	Institute for Nuclear Research, Moscow	INR	Russia
-	38.	Petersburg Nuclear Physics Institute	PNPI	Russia
	39.	High Energy Accelerator Research Organization	KEK	Japan


new Members Incorporated

⇒Spain:


IFIC, ACCIONA-ING/STMR

⇒Consortium (most relevant): CERN !i, KEK

Italy (INFN) is not yet in (i!)

O. Mena (IFIC) will lead this task. Hundreds of 1

there we are

O. Mena (IFIC) will lead this task. Hundreds of I