
a next

Radioactive Contamination in
Neutrino Experimental Physics: the

Cases of NEXT and
Super-Kamiokande Experiments

PhD dissertation by
Javier Pérez Pérez

under the supervision of
Luis A. Labarga Echeverría

2017





ABSTRACT

The current Standard Model (SM) of fundamental interactions has in its

lightest particle, the neutrino, a key to open the door for a much profound

understanding of the laws of the fundamental interactions. However, due to the

low interaction cross section of the neutrinos, it is very hard to get information

about them. Basic questions are the exact masses of the neutrinos and their

hierarachy, the precise value of the mixing parameters and, in particular, the

presence or not of a significant leptonic CP violation. Furthermore, there is

overall the fundamental question of the nature of the neutrino particle: Majorana

or Dirac, i.e., wether the neutrino is its own antiparticle or not. The scientific

comunity is running numerous experiments to solve these questions, most of

them in underground conditions to maximize the visibility of the neutrino

signals.

This Thesis deals with NEXT, a ‘double beta zero neutrino’ (2β0ν) experiment,

and with Super-Kamiokande, a proton decay and neutrino detector.

NEXT (Neutrino Experiment with a Xenon TPC) is a 2β0ν experiment designed

to study if neutrino is a Majorana particle. These type of experiments is the only

known way to solve this question. This decay is a special case of double beta

decay, where the nuclei can’t decay β but it’s possible to decay twice. Because the

neutrinos annihilate each other, all the energy of the reaction corresponding to

the mass difference between parent and daughter nuclei is shared only between

the two electrons. In the case of the 136Xe isotope of NEXT, this energy is 2458

keV. Thus, NEXT searches for a narrow peak at this value in the two-electron

total energy spectrum.

However, radioactive contaminations in the materials of the experiment can

fake that signal and it is absolutely necessary to reduce and quantify the

corresponding background from all the components of the detector down to

tolerable values. Relevant for NEXT are the isotopes 208Tl and 214Bi, because

photons emitted in their decays can have energies very close to the 2β0ν signal.
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Super-Kamiokande (Super Kamioka Nucleon Decay Experiment) is a water

Cherenkov detector designed to search for proton decay and to detect neutrinos

from cosmic and terrestrial sources. With 50 ktons of ultra pure water, the

detector can observe clearly the cherenkov light produced by charged particles

with enough energy; in particular those from the final state products of a

neutrino interaction. However, it basically can not distinguish whether the

interacting particle was a neutrino or an antineutrino. Along this direction comes

the SuperK-Gd project (formerly called GADZOOKS!): an upgrade of the SK

experiment to provide it with a very high efficiency neutron tagging capability.

Neutron tagging opens Super-Kamiokande to a wealth of new measurements

of important physics reactions and improves very much those already in its

Scientific Program.

The idea is to dissolve in the Super-Kamiokande water a salt of Gadolinium

(Gd2(SO4)3) at a low concentration. Some of the isotopes of the Gd have a

very large neutron capture cross section, emitting at capture a cascade of few

photons with 8 MeV total energy that is measured by SK. As the Gd salt is

uniformly distributed along the whole active volume of the detector, radioactive

contaminations in the salt are an issue: the decay processes of unstable isotopes

will induce low energy signals in SK that will fake those from neutron capture.

Therefore, as in the case of NEXT, the presence of radioactive isotopes in the

salt must be reduced to the minimum acceptable, and quantified precisely

afterwards.

My contribution to both experiments is centered in the study of the radioactive

contamination of the detectors, understanding how radioactive contaminations

affects to our experiments, how decay chains evolve and how to reduce the

impact of these backgrounds. Also, I have contributed with the selection of the

materials, the preparation and measurement of the major part of the samples

and, finally, with a complete mathematical analysis of the data taken and on

deciding on the validity of the material for the experiment from the point of

view of radioactivity background.

The text is organized as follows: Chapter 1 is an introduction to neutrino physics

and the implications of its properties. This Chapter explains the actual status
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of the open questions and experiments on this field and also presents both

experiments where I am involved. Also, I introduce the usual presence of natural

radioctivity contamination and the problems that we can find with this source

of background.

Chapter 2 is an introduction to the physics of radioactivity. There, we discuss

the most common types of nuclear decays, the decay chains and the emitted

particles that can mimic our expected experimental signals.

Chapter 3 analyzes the impact of radioactivity contaminations in NEXT and

SuperK-Gd and presents the rationale for the absolute necessity of a radiopurity

campaign in order to reach the expected sensitivity of the detectors.

Chapter 4 presents the experimental techniques to measure this radioactivity

and all the data analysis produres to obtain the value of the activity.

The discussion of the measurements results, their implications, etc. are in

Chapter 5 (for NEXT) and in Chapter 6 (for Super-Kamiokande).

Finally, chapter 7 is for summarizing all these works and their conclusions.

The work of this Doctoral Thesis has been presented:

• NEXT collaboration (V. Álvarez et al.), Radiopurity Control in the NEXT-

100 double beta decay experiment: procedures and initial measurements, JINST 8

(2013) T01002, [arXiv:1211.3961].

• S. Cebrian, J.Pérez, I. Bandac, L.Labarga et al., Radiopurity assessments of the

tracking readout for the NEXT double beta decay experiment, JINST 10 (2015)

P05006, [arXiv:1411.1433].

• S. Cebrian, J.Pérez, I. Bandac, L.Labarga et al., Radiopurity assessment

of the energy readout for the NEXT double beta decay experiment,

[arXiv:1706.06012v1] (submitted for publication to JINST)

• NEXT collaboration (J. Martín-Albo et al.), Sensitivity of NEXT-100 to

neutrinoless double beta decay, [arXiv:1511.09246v1]
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• Pérez J., The NEXT-100 experiment for Neutrino-less Double Beta decay:

Main features, Results from Prototypes and Radiopurity issues, EPS-

HEP 2013, http : //pos.sissa.it/archive/con f erences/180/528/EPS −
HEP%202013_528.pd f

• Pérez J., The NEXT Radiopurity Campaign: Measurements and Results,

NEUTRINO 2014, https : //indico. f nal.gov/getFile.py/access?contribId =

125&sessionId = 30&resId = 0&material Id = poster&con f Id = 8022

All the work related to the Super-Kamiokande experiment has been documented

by internal presentations; no publication yet.
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RESUMEN

El Modelo Standard (SM por sus siglas en inglés) de interacciones fundamentales

tiene en su partícula más ligera, el neutrino, la llave para abrir la puerta hacia

una más profunda comprensión de las leyes de las interacciones fundamentales.

Sin embargo, debido a su baja sección eficaz de interacción, es muy difícil

obtener información sobre ellos. Los interrogantes fundamentales que se nos

presentan son: el valor exacto de la masa y la jerarquía de los neutrinos, el

valor de los parámetros de mezcla y, en particular, la posible presencia de

significativa violación de la paridad CP en el sector leptónico. Además, tenemos

la pregunta fundamental sobre la naturaleza del neutrino: Majorana o Fermi, o

lo que es lo mismo, si el neutrino es su propia antipartícula o no. La comunidad

científica está desarrollando numerosos experimentos para conseguir resolver

estas cuestiones, estando la mayoría de ellos en laboratorios subterráneos para

maximizar la visibilidad de las señales de los neutrinos.

Esta tesis está centrada en dos de estos experimentos, NEXT, un experimento

de desintegración doble beta sin neutrinos, ‘double beta zero neutrino’ (2β0ν);

y también Super-Kamiokande, un detector de neutrinos y de decaimiento de

protones.

NEXT (Neutrino Experiment with a Xenon TPC) es un experimento de 2β0ν

diseñado para estudiar si el neutrinos es una partícula de Majorana. Este tipo de

experimentos es el único conocido que puede resolver esta pregunta. Este tipo

de desintegración es un caso especial que se produce en núcleos que no pueden

decaer vía β pero si son capaces de hacerlo dos veces simultáneamente. Debido

a que los neutrinos se aniquilan mutuamente, toda la energía de la reacción

(que se corresponde a la diferencia de masas entre el núcleo padre y el hijo) es

emitida en los electrones. En el caso del isótopo empleado en NEXT, el 136Xe,

esta energía es de 2458 keV. Por lo tanto, NEXT busca un delgado pico con esa

energía en el espectro de la energía total de los dos electrones emitidos.

Sin embargo, la contaminación radioactiva que podemos encontrar en los

distintos materiales pueden darnos falsos eventos y eso hace que sea totalmente
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necesario reducir y cuantificar el correspondiente fondo radioactivo de cada uno

de los componentes del detector hasta unos valores aceptables. Los isótopos

más influyentes para NEXT son 208Tl y 214Bi, los cuales emiten fotones al

desintegrarse con unas energías mu cercanas a la señal de 2β0ν.

Super-Kamiokande (Super Kamioka Nucleon Decay Experiment) es un

detector Cherenkov de agua diseñado para buscar la desintegración del protón

y la detción de neutrinos producidos desde fuentes tanto cósmicas como

terrestres. Con 50.000 toneladas de agua ultrapura, este detector puede

observar con claridad la luz Cherenkov producida por partículas cargadas con

suficiente energía; en particular, aquellas producidas después de la interacción

con neutrinos. Sin embargo, es básicamente imposible saber si lo que se

ha observado es un neutrino o un antineutrino. SuperK-Gd (previamente

llamado GADZOOKS!) es una mejora del experimento SK en la cual adquiere la

capacidad de detectar neutrones con alta eficiencia. Esta detección de neutrones

conduce a Super-Kamiokande a un escenario lleno de nuevas e importantes

medidas por hacer para la Física, mejorando también aquellas que ya estaban

en su programa científico.

La idea consiste en disolver en muy baja concentración una sal de Gadolinio

(Gd2(SO4)3) en el agua de SuperKamiokande. Algunos de los isótopos del

Gadolinio tienen una enorme sección eficaz de captura de neutrones térmicos,

emitiendo después de la captura una cascada de fotones con una energía en

total de unos 8 MeV, que serán medidos por el detector SK. Debido a que

la sal va a estar distribuida uniformemente por toda el agua del detector,

las contaminaciones radioactivas que encontremos en la misma son todo un

problema: las desintegraciones que puedan producir señales a baja energía y

que pueden comportarse de manera parecida a una captura de neutrones. Por

lo tanto, como pasa en NEXT, la presencia de isótopos radioactivos debe verse

reducida hasta llegar a unos mínimos aceptables, y además, cuantificando con

precisión el valor de esta contaminación.

Mi contribución a ambos experimentos está centrada en el estudio de

la contaminación radioactiva de ambos detectores; entendiendo cómo

las contaminaciones radioactivas afectan a nuestros experimentos, cómo
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evolucionan las cadenas radioactivas y cómo minimizar el impacto de estos

fondos. Además, he contribuido con la selección de los materiales, la

preparación y medida de la mayoría de las muestras y, finalmente, con un

completo análisis matemático de los datos tomados y decidiendo sobre la

idoneidad de los materiales para el experimento desde el punto de vista del

fondo radioactivo.

La tesis está organizada de la siguiente manera: el Capítulo 1 es una

introducción a la Física de Neutrinos y las implicaciones de sus propiedades.

Este capítulo explica el estado de las cuestiones abiertas aún sin resolver y los

experimentos en este campo, además de presentar a ambos experimentos en los

que estoy involucrado. Por último, introduce la contaminación radioactiva y los

posibles problemas que podemos encontrar ocasionados por este fondo.

El Capítulo 2 es una introducción a la Física de la Radioactividad, donde

discutimos las más habituales formas de desintegración, las cadenas de

desintegración y las características de las partículas emitidas que pueden imitar

a los verdaderos sucesos que esperamos ver en nuestros experimentos

El Capítulo 3 analiza el impacto de la contaminación radioactiva en NEXT y en

Super-KGd y presenta las razones por las cuales una campaña de radiopureza es

imprescindible si queremos alcanzar la sensibilidad necesaria en los detectores.

El Capítulo 4 presenta las técnicas experimentales para medir la radioactividad

y todo el proceso de análisis de datos para obtener la actividad.

La discusión de los resultados de las medidas están en el Capítulo 5 (para el

caso de NEXT) y en Capítulo 6 (para el caso de Super-Kamiokande)

Finalmente, el Capítulo 7 está dedicado a mostrar las conclusiones de este

trabajo.

El trabajo de esta Tesis Doctoral correspondiente a NEXT también ha sido

presentado en:
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• NEXT collaboration (V. Álvarez et al.), Radiopurity Control in the NEXT-

100 double beta decay experiment: procedures and initial measurements, JINST 8

(2013) T01002, [arXiv:1211.3961].

• S. Cebrian, J.Pérez, I. Bandac, L.Labarga et al., Radiopurity assessments of the

tracking readout for the NEXT double beta decay experiment, JINST 10 (2015)

P05006, [arXiv:1411.1433].

• S. Cebrian, J.Pérez, I. Bandac, L.Labarga et al., Radiopurity assessment

of the energy readout for the NEXT double beta decay experiment,

[arXiv:1706.06012v1] (submitted to publication to JINST)

• NEXT collaboration (J. Martín-Albo et al.), Sensitivity of NEXT-100 to

neutrinoless double beta decay, [arXiv:1511.09246v1]

• Pérez J., The NEXT-100 experiment for Neutrino-less Double Beta decay:

Main features, Results from Prototypes and Radiopurity issues, EPS-

HEP 2013, http : //pos.sissa.it/archive/con f erences/180/528/EPS −
HEP%202013_528.pd f

• Pérez J., The NEXT Radiopurity Campaign: Measurements and Results,

NEUTRINO 2014, https : //indico. f nal.gov/getFile.py/access?contribId =

125&sessionId = 30&resId = 0&material Id = poster&con f Id = 8022

La parte de trabajo hecha para Super-KGd ha sido presentada en charlas internas

y no ha sido aún publicada.
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1
Introduction to the Neutrino Physics

Neutrinos, a desesperate solution for the beta decay problem, is nowadays one

of the most important particles in Experimental Physics. It was in 1930 when

Wolfgang Pauli postulated the neutrino (in that moment, he called it neutron),

necessary to conserve energy, momentum and angular momentum in beta decay.

In that moment, he thought that it was better to postulate a ghost particle that

to violate several conservation laws. And he was right.

1



Chapter 1. Introduction to the Neutrino Physics

This is a small part of his original letter, translated by Kurt Riesselmann1

Pauli letter to Gauverein meeting in Tübingen

Dear Radioactive Ladies and Gentlemen,

[...] the possibility that in the nuclei there could exist electrically neutral

particles, which I will call neutrons, that have spin 1/2 and obey the

exclusion principle and that further differ from light quanta in that they

do not travel with the velocity of light. The mass of the neutrons should

be of the same order of magnitude as the electron mass and in any event

not larger than 0.01 proton mass. The continuous beta spectrum would

then make sense with the assumption that in beta decay, in addition to the

electron, a neutron is emitted such that the sum of the energies of neutron

and electron is constant

Pauli was right in almost everything, but not in the mass of the neutrinos. Now

we know that their masses are in the order than meV, several order of magnitude

smaller than he expected.

Neutrinos are very elusive particles because they only interact via gravitational

and weak forces. And therefore, the interaction cross section of these particles is

very small. Thus, if you want to design a neutrino detector, it must be huge.

First Neutrino Observation

The first direct observation of neutrino interactions was in 1956, thanks to the

experiment of Cowan and Reines [Reines and C. L. Cowan 1956]. In 1995, F.

Reines was awarded with the Nobel Prize2 for pioneering experimental contributions

to lepton physics3.

The experiment was placed close to Savannah River Plant, a nuclear facility in

the United States in the state of South Carolina. Close to the nuclear reactor,
1http : //microboone − docdb. f nal.gov/cgi − bin/RetrieveFile?docid = 953; f ilename =

pauli%20letter1930.pd f
2Both Physicists deserved the Nobel Prize, but unfortunately, C. Cowan died in 1974
3http : //www.nobelprize.org/nobel_prizes/physics/laureates/1995/
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Figure 1.1: Conceptual design of the apparatus used by Cowan and Reines for their
neutrino experiment; figure taken from NuMi-MINOS (left). Coincidence peaks from
positron annihilation (right)

with a large flux of neutrinos, they wanted to observe an inverse beta decay

interaction of some of those neutrinos with the detector. In Chapter 2 we can

find a complete explanation of beta decay, but here, we are going to introduce

inverse beta decay first:

νe + p→ n + e+ (1.1)

The detector consisted of a solution of CdCl2 in water. This solution was

sandwiched with liquid scintillators, were some PMTs detected the emitted light.

The experimental idea was to detect both final-state particles.The positron will be

annihilated with one environmental electron, prompting 511 KeV photons. The

neutron will be captured by a 108Cd nucleus, emitting a de-excitation delayed

gamma.

n +108 Cd→109m Cd→109 Cd + γ (1.2)

In figure 1.1-right, taken from [Reines and C. L. Cowan 1956], we can observe

both signals, the annhilation photon and the de-excitation photon, a 5.5µs

3



Chapter 1. Introduction to the Neutrino Physics

delayed signal, that confirms the production of these two particles from the

antineutrino interaction with one proton.

They observed about 3 neutrinos per hour, obtaining a neutrino interaction

cross section very close to the theoretical predictions, about 6 · 10−44cm2. The

neutrinos (in this case, antineutrinos) were discovered, thus starting a new era

in High Energy Physics: Neutrino Experimental Physics.

Solar Neutrino Problem

The next step in the History of the Neutrino was the Neutrino Solar flux. The

first observation of Neutrino Solar flux was made with Homestake experiment

(also known like Davis experiment). This experiment, that was running from

1970 to 1994, was headed by Raymond Davis Jr. and John N. Bahcall. In 2002,

R. Davis Jr. was awarded with the Nobel Prize for for pioneering contributions to

astrophysics, in particular for the detection of cosmic neutrinos4.

The detector, placed inside the Homestake Gold Mine (in Lead, South Dakota,

USA), was a 380 cubic meter tank filled with perchloroethylene (very rich in

chlorine), being able to count the argon atoms produced by the interaction of

the neutrinos with chlorine atoms. The argon atom counting, done every few

weeks, gave a three times lower value of the number of neutrino interactions

than the theorical calculations, made mainly by John N. Bahcall, [Bahcall, Davis,

and Wolfenstein 1988].

Other strong evidence was observed in Kamiokande-II in 1988, [Hirata et al.

1990], where the number of observed neutrinos coming from the solar direction

was also smaller than the predictions. Additionally, to explore this question,

some other experiments were built like GALLEX and SAGE.

the puzzle was solved by SNO experiment, [Ahmad et al. 2002], a neutrino

detector filled with heavy water. This detector was sensitive to both neutral

currents, a measurement of the total number of neutrino interactions; and

sensitive to charged currents, a measurement of the total number of electron

4http : //www.nobelprize.org/nobel_prizes/physics/laureates/2002/
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neutrino. The total number of observed were in a good agreement with J. Bahcall

calculations, but electronic neutrinos were only 1/3 of the observed. They had

oscillated.

It is important to remember that, nowadays, we know that there are three

charged leptons with their associated neutrino. Then, we have three neutrino

flavors with their own antiparticles: electron neutrinos (νe, νe), muon neutrinos

(νµ, νµ) and tau neutrinos (ντ , ντ). But it is important to remark that neutrinos

don’t have right-handed partners, as we illustrated in figure 1.2.

Figure 1.2: Particles considered in Standard Model. We can observe that neutrinos only
have left-handed component

Neutrino Mass and Oscillations

Neutrino oscillations can be seen as the change of flavour of the neutrinos,

because they are in a mixed state of three different eigenstates. The flavor

oscillations can be expressed with the unitary rotation of the mass eigenstates:

|να〉 = ∑
i

U∗αi|νi〉 (1.3)

Where α = e, µ, τ and i = 1, 2, 3

5



Chapter 1. Introduction to the Neutrino Physics

When a neutrino is in propagation, the different masses of the eigenstates

propagate in a different form and can produce changes in the neutrino

flavor. This matrix, U∗, is the complex conjugated of U: the Pontecorvo-

Maki-Nakagawa-Sakata matrix (PMNS or MNS). The PMNS matrix can be

parameterized by the three Euler angles, θ12, θ23, θ13 and three phases, δ, α21, α31.

UPMNS+M =


1 0 0

0 cos(θ23) sin(θ23)

0 −sin(θ23) cos(θ23)




cos(θ13) 0 sin(θ13)e−iδCP

0 1 0

sin(θ13)e−iδCP 0 cos(θ13)




cos(θ12) sin(θ12) 0

−sin(θ12) cos(θ12) 0

0 0 1




1 0 0

0 eiα1 0

0 0 eiα2

 (1.4)

This matrix is product of three rotation matrices and also, the fourth matrix, has

the Majorana extra phases but doesn’t affect to neutrino oscillations, because

these phases cancel out for any observable neutrino oscillations.

A good review of the current knowledge of those phases and angles can be

found at [Gonzalez-Garcia, Maltoni, and Schwetz 2014].

Respecting the eigenstates mass values, the only quantities known are the so-

called Solar Mass Splitting:

∆m2
sol ≡ m2

2 −m2
1 = (7.45+0.19

−0.16) · 10−5eV2 (1.5)

and the Atmospheric Mass Splitting

|∆m2
atm| ≡ |m2

3 − (m2
1 + m2

2)/2| = (2.421+0.022
−0.023) · 10−3eV2 (1.6)
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Figure 1.3: Summary of the knowledge about neutrino masses. In the left side, it is
represented neutrino mass normal hierarchy. The other possibility, an inverted hierarchy
is drawn in the right side

These two measurements are consistent with two different scenarios. In figure

1.3, we can observe in left side, the normal hierarchy and in the right side, the

inverted hierarchy.

Majorana or Dirac neutrinos

Soon, in the neutrino’s early years, when neutrino still was a theoretical particle,

was postulated the double beta decay, where a nucleus cannot beta-decay once,

but can twice. This decay was proposed by M. Goeppert-Mayer [Goeppert-

Mayer 1935]

After this, it was proposed the theory of Majorana [Majorana 1937] and its

application to beta decay [Racah 1937]

Figure 1.4: Feynmam diagram of the double beta decay. In the left side with neutrinos.
In the right side, the theoretical decya without emission of neutrinos

7
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There are two different explanations for neutrino behaviour: Dirac and

Majorana. According to the Standard Model, all fermions are Dirac particles,

i.e. particles that are distinguishable from their own antiparticles. On the

contrary, Majorana particles are indistinguishable from their own antiparticle,

making possible the mutual annhilition of two Majorana particles and may

explain the smallness of the neutrino masses. Also, this decay violate lepton

number conservation, and can be linked with the asymmetry between matter

and antimatter in the Universe.

Therefore, if neutrinos are Majorana particles, it is possible to observe double

beta processes where the neutrinos are not emitted and all the energy goes

shared in the two emitted electrons.

A
Z X →A

Z+2 Y + e− + e− (1.7)

If NEXT observe unanbigously the (2β0ν) decay process, we can conclude that

neutrinos are Majorana particles

Neutrino Sources

Because neutrinos are very elusive, they can travel very long distances in the

Universe without interacting with anything and arrive to the Earth, and cross all

of us with a extremely low interaction probability. Therefore, we are recieving a

wide ’almost transparent’ shower of neutrinos from very different sources. The

kwon sources and their fluxes at the Earth are showed in figure 1.5, taken from

[Spiering 2012].

The less energetic neutrinos come from the Cosmological Neutrino Background,

the background after Big Bang with T = 1.9K. Next in enery are Solar neutrinos.

Next are Supernova neutrinos; they are produced during the collapse of massive

stars; Supernova 1987A is the only observed event. The Relic Supernova

Neurtrino, also known as Diffuse Supernova Neutrino Background (DSNB), is

the overall neutrino flux from all Supernova explosions during the history of our

Universe. Atmospheric neutrinos are produced in the decay of π and K mesons,

8



Figure 1.5: Representation of the most important neutrinos sources. Accelator neutrinos
are not considered

produced by the interaction of heavy charged particles and nuclei from Cosmic

Rays with the Atmosphere. Active Galaxy Nucleus (AGN) are a strong source

of very high energy particles; they are placed in the center of active galaxies.

It is interesting to remark the terrestrial neutrinos, produced by the natural

radioactivity: mainly the β decays of 40K and the decay chains of 232Th and
238U. This neutrino flux is compossed by νe

Greisen-Zatsepin-Kuzmin (GZK) effect is a theoretical limit of the energy of the

Cosmic Rays. Higher energy protons will interact with the Cosmic Microwave

Background (CMB) producing π and the highest energy neutrinos predicted,

after the π decay.

Man-made sources of neutrinos are mainly two: accelerators and reactors. These

sources are very useful because they have well known propierties, like energy

or travelled distance. Accelerators neutrinos are produced in the interaction

of accelerated protons with a target, producing mesons and neutrinos in their

decays. Reactor neutrinos are produced during the different reactions inside the

9



Chapter 1. Introduction to the Neutrino Physics

reactor, mainly the β decays of the fission fragments produced by the fission fuel

(usually 235U).

1.1 Experimental neutrino Physics; the physics cases of
the experiments NEXT and SuperK-Gd

Around Neutrino Physics are built several experiments in different underground

laboratories. Now, we are going to introduce the conceptual idea of this two

experiments where I am involved: NEXT and SuperK-Gd.

SuperK-Gd is an upgrade of Super-Kamiokande, a neutrino detector. This new

step will have gadolinium sulfate solved in the water to improve the capability

to detect neutrinos.

NEXT is a Neutrino Physics detector, but not designed to observe neutrinos.

This detector is designed to precisely measure the energy of the emitted electrons

in double beta decay.

1.1.1 NEXT experiment

A electron produce a twisted track, producing new electrons during its path,

and with a strong deposit of energy at the end. Later, a moderate electric field,

enough to drift these electrons but not to produce new electrons, drifts them to

the electroluminiscence region. Here, a strong electric field produce the emission

of high energy photons.

NEXT detectors are asymmetric Time Projection Chambers (TPC) filled with

high-pressure xenon gas, about 15 bar. The final detector, NEXT-100 will have

100 kg of enriched xenon, 90% of 136Xe. These detectors has two different

measurement planes: energy plane to perform a precise measure of the energy

with a very good energy resolution, 0.5 - 1% at Qββ and tracking plane to

reconstruct the track of the event and do background rejection.

10
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NEXT Conceptual Idea: advantages

NEXT idea has several advantages over the other competitors. The advantages

of using Xe are 2: a high Qββ, it is a noble gas (the only noble gas with 2β-

decay) and therefore features a low attachment, the high natural abundance of

136Xe isotope and it is easy to enrich. The advantages of using gas Xe are

the good energy resolution < 1% and the possibility of tracking. In addition,

combining tracking and radiopure selection of the components give us a very

low background. Further, those properties make the NEXT concept scalable.

Light production

In the detector, the electrons from 2β-decay excite and ionize the Xenon gas,

figure 1.6. The Xenon atoms de-excitate very rapidly (about 1 ns) emitting a

rather small 172 nm light signal (S1), that is detected at the energy plane and

serves as trigger. The ionization electrons are drifted by a weak electric field to

the electroluminescent (EL) region. There, a larger electric field such to excite the

xenon, but not enough to ionize it, accelerates electrons producing a big amount

of 172 nm scintillation light (S2).

This light is wave-length-shifted (WLS) to the blue region by a 1,1,4,4-tetraphenyl-

1,3-butadiene (TPB), a wavelenght-shifter that increase the amount of light and

converts the 175nm light to 440nm light. This blue light, can be easily detected

with SiPM.

The energy plane will measure precisely the number of photons produced (Fig.

2, left).

Light detection: Energy plane

In the opposite of the EL region, it is the Energy Plane, designed to measure

the energy of the event as precisely as we can. There, tens of radiopure-

designed PMTs, Hamamatsu R11410-10, will precisely measure the energy of the

event, with an energy resolution better than 1%. PMTs are the selected option

11
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Figure 1.6: Schematic resume of how energy is deposited in Xenon. Both signal S1 and
S2 are produced thanks to this process.

because of their low energy resolution, ideal to separate the signal from the close

background peaks in the region of 2β0ν.

Light detection: Tracking plane

Close to the EL region, we have the tracking plane. There, TPB coated Si-

Photomultipliers (SiPMs) reconstruct the two electrons tracks from the 2β-decay.

They form a single twisted line with a strong energy deposition at both ends.

This technique is crucial to reject background events.

Background control of the experiment

Similar to electron emission in double beta decay, gamma emitters can ionize

some xenon atoms, producing a signal that can mimic the expected signal. The

two main dangerous gamma emitters are 208Tl with an gamma energy of 2615

keV and 214Bi with a energy of 2448 keV, both values too close to the Qββ

expected signal for the 2β0ν.

12
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Figure 1.7: Schematic explanation of the light production in NEXT detector. We can
observe S1, the drifting electrons and S2

To control the background of the experiment, there are two working groups that

try to solve this problem: Radiopurity Group and Background Model Group.

Radiopurity Group, composed by Luis Labarga and me from Universidad de

Madrid (UAM), by Susana Cebrián from Universidad of Zaragoza (UZ) and

with the help of Iulian Bandac from Laboratorio Subterráneo de Canfranc (LSC)

and several colleagues from Instituto de Física Corpuscular (IFIC) from Valencia;

studies the effect of the radioactive contaminations in our low background

detectors and also quantify these activities.

Background Model Group, composed mainly by several physicists from

IFIC and from Universidad de Santiago de Compostela (USC), is working

in MonteCarlo simulations to determine the acceptable upper limits of the

background and also quantify the total effect of these background.

13
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1.1.2 SuperKamiokande experiment

Super-Kamiokande (SK) is the most important detector for nucleon decay and

neutrino physics. In this important collaboration, there are working about 150

people and 40 institutes from Japan, the United States, Korea, China, Poland,

Spain, Canada, UK, Italy and France.

Figure 1.8: Schematic view of SuperKamiokande and the emplacement inside the Mt.
Ikenoyama

History and milestones of the detectors

SuperKamiokande is the evolution of the detector KamiokaNDE (Kamioka

Nucleon Decay Experiment). Kamiokande construction started in 1982 and

finished in 1983. It was designed to observe the proton decay but it only could

obtain a limit in this decay. Lately, the evolution Kammiokande-II, in 1985, made

important neutrinos observations like the Solar Neutrinos, the Atmospheric

Neutrinos, the Neutrinos from Supernova 1987A and the experiment KEK to

Kamioka, K2K. But, no nucleon decay was observed. Thanks to its discoveries,

in 2002, Masatoshi Koshiba was awarded with the Nobel Prize for pioneering

contributions to astrophysics, in particular for the detection of cosmic neutrinos5.

5http : //www.nobelprize.org/nobel_prizes/physics/laureates/2002/

14



1.1 Experimental neutrino Physics; the physics cases of the experiments NEXT and SuperK-Gd

The next upgrade of the detector was Super-Kamiokande. The SK detector is

a cylindrical tank with 39.3 m in diameter and 41.4 m in height and filled with

50 kton of ultrapure water. This detector is located in the Kamioka mine (Gifu

Prefecture, Japan) under Mountain Ikenoyama, with 1000 m of rock overburden

(or 2700 m water equivalent), shielding the detector and reducing the cosmic ray

muon background.

The detector is divided into two parts: the inner detector and the outer detector,

Inside the Inner Detector have 32 kton of water. Inside, the cylindrical water

tank has covered all its inner surface with 11148 PMTs, 20" model R3600.

But, in any case, not all the water volumen is used for most of the physics

measurements, it is usual to disregard the 2 m closer to the walls of the inner

detector, that is about 22.5 kton. The Outer Detector, also covered with 1885

PMTs, 8", is another water Cherenkov detector that acts like a veto for Cosmic

Rays events.

The SK experiment started in April 1996 and shut down for maintenance in

July 2001. The first phase of the experiment is called SK-I. During refilling

after maintenance, an accident occurred in November 2001, in which more than

half of the PMTs were destroyed due to the implosion of a PMT. After the

accident, the SK detector was rebuilt with half of the original PMT density in

the inner detector. A Fibre-reinforced plastic (FRP) cover was used in each PMT

to prevent chain reaction implosions. The operation was resumed in October,

2002, phase called SK-II. In October 2005, the experiment was completely rebuilt

and resumed data taking with the all of PMTs in July 2006, this phase is SK-III.

Finally, in September 2008 starts the current phase, SK-IV, with upgraded new

version of the front-end electronics.

SK is a very successful collaboration: it has discovered atmospheric neutrino

oscillations, it was key in the solution of the solar neutrino problem and it is

measuring precisely an important fraction of the elements of the leptonic mixing

matrix. With K2K collaboration, it was the first time that was observed neutrino

oscillations in a long baseline experiment. With T2K collaboration, has provided

evidence of a non-vanishing value for θ13, exploring the idea of CP violation in
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the lepton sector. In 2015, Dr. Takaaki Kajita was awarded with the Nobel Prize

or the discovery of neutrino oscillations, which shows that neutrinos have mass6.

Super-Kamiokande, a water Cherekov detector

All of these Kamioka detectors are a Cherenkov light detector. This phenomena

was firstly postulated by Oliver Heaviside [Heaviside 2008] and observed by

Pavel A. Cherenkov [Cherenkov 1937]. Cherenkov, I. Frank and I. Tamm were

awarded by the Nobel Prize in 1958 for the discovery and the interpretation of the

Cherenkov effect7.

Cherenkov light is an emitted light from charged particle moving through a

dielectric medium with a speed higher than the light in this medium. This light

has a cylindrical symmetry in the direction of the relativistic particle, with an

angle of emission that follow this equation:

cos(θ) =
1

n · β =
1
n

√
1− m
−→p

(1.8)

Where n is the refraction index in this medium, m is the mass of the particle, −→p
is the momentum of the particle and β is the quotient between the speed of the

particle and of speed of light in vacuum.

In our case, in ultra-pure water detector, the speed of light is about 0.75c, the

speed of the ionizating particles are very close to c and n = 1.33. Therefore, it

is easy to observe high energy particle with a speed close to the light. Then,

according to these values, the typical Cherenkov angle is:

cos(θ) =
1

n · β −→ θ = cos−1
(

1
1.33

)
= 41.2◦ (1.9)

6http : //www.nobelprize.org/nobel_prizes/physics/laureates/2015/
7http : //www.nobelprize.org/nobel_prizes/physics/laureates/1958/
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This emitted visible emitted light, follows a spectra peaked at 375 nm, blue

light, shown at figure 1.9, left. At the right side, we can observe the spectrum of

Quantum Efficiency (QE) of the PMTs used in SK.

Figure 1.9: Inthe left box, we can observe the wavelength spectrum of the Cherenkov
light produced in water. In the right box, the quantum efficiency of PMTs used in SuperK

Quantum efficiency is the conversion factor of photons to electrons, usually

called photoelectrons. These PMTs were chosen to maximize the detected signal

of each event.

Figure 1.10: Three different supporting structures for the PMTs in SuperK detector

The next two future steps are Hyper-Kamiokande and SuperK-Gd. Hyper-

Kamiokande is a new and larger version of the water Cherenkov detectors in

Kamioka, that is scheduled for 2020. SuperK-Gd, where a UAM Physicists

Group, composed by Luis Labarga, Pablo Fernández and me, takes part on this

Collaboration, is an upgrade of Super-Kamiokande detector. In this new version,

we will solve a gadolinium salt to capable to distinguish between neutrinos and

antineutrinos. It will be explained widely in Chapter 3.
17
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1.2 Radioactive contamination in materials

In neutrino experiments, where the number of events are very small, we have

to select the materials with high precision to control every possible source of

background.

We have to consider that materials are not completely pure. Not only one

element compose a material. That means that we will find out several impurities

and we have to evaluate them in terms of their radioactivity. For a more complete

explanation on this field, I recommend to read this reference paper in the field,

[Heusser 1995].

1.2.1 Origin of the radioisotopes

First of all, we are going to identify the different sources of radioisotopes. This

information is useful to understand the activity of some radioisotopes and to

know why some samples have this radiosotope in its composition.

Figure 1.11: Periodic table where are indicated the origin of all the elements. Picture
taken from wikipedia.

• Primordial radionuclides: these radionuclides were created before the

formation of the Earth. In the nucleosynthesis process, there are

three different sources: Big Bang, Stellar nucleosynthesis and Supernova

explosions.

18
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In Big Bang where created hydrogen, helium and some traces of lithium. In

stellar nucleosynthesis were produced some other small nuclei like carbon,

nitrogen and oxygen. Finally, in Supernova explosions, we will find a

broader number of new nuclei, some of them radiosotopes. But, most

of them have decayed due to its short half-life in comparison with the

moment when they were created.

At the present time, we only can observe those isotopes with half-lifes

in the order of hundreds of millions of years, like 40K, 238U, 232Th and
235U. Additionaly, we can observe several secondary radionuclides, that

are the succession of decays of the unstable daughters of these primordial

radionuclides, known as Decay Chains. We will take deeply about this in

section 2.2.

The 32 Primordial radionuclides are: 40K, 48Ca, 50V, 76Ge, 82Se, 87Rb, 96Zr,
100Mo, 113Cd, 115 In, 116Cd, 128Te, 130Te, 130Ba, 136Xe, 138La, 144Nd, 147Sm,
148Sm, 150Nd, 151Eu, 152Gd, 174H f , 176Lu, 180W, 186Os, 187Re, 190Pt, 209Bi,
232Th, 235U and 238U.

• Cosmogenic radionuclides: cosmic rays are a high-energy shower of

charged particles mainly originated outside our Solar System. 90% of

these particles are protons, 9% are alpha particles and the other particles

are positive-charged nuclei, electrons and a small fraction of these are

antimatter particles.

Cosmic rays can produce new nuclides directly by spallation8 or can

undergo various transformations with the upper part of our atmosphere,

creating some particles that will produce the new nuclides.

The most used cosmogenic radionuclides are 3H, 10Be, 14C, 21Ne, 26 Al,

and 36Cl; usually for dating geologic materials or rocks. For example,
14C is the most famous cosmogenic radionuclide used in dating methods.

Cosmogenic production of 14C and its decay rate, gives a constant ratio

8Cosmic Spallation is a process where a high energy cosmic rays collide with a nucleus expulsing
a high number of the nucleons
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between 14C and 12C. When a sample is isolated from new cosmogenic
14C, the measure of this ratio gives the age of this sample.

But, in our case, the exposure of the detectors components to the high

energy particles shower can produce a wide presence of not welcome

radiosiotopes. Specifically, in [L. Baudis et al. 2015], they have studied the

cosmogenics activation of two very important elements for NEXT: xenon

and copper. In Xenon, has been observed these isotopes: 7Be, 85Sr, 88Zr,
91∗Nb, 99Rh, 101Rh, 110∗Ag, 113Sn, 125Sb, 121∗Te, 123∗Te, 126 I, 131 I, 127Xe,
129∗Xe, 131∗Xe, 133Xe, and 132Cs. In copper, has been observed: 46Sc, 48V,
54Mn, 59Fe, 56Co, 57Co, 58Co and 60Co.

• Anthropogenic radionuclides: in Twentieth century, we started to

understand and control the power of the atomic nucleus. This knowledge

allows us to create new radiosotopes. For example, most of the

radionuclides for medical purposes are produced in nuclear plants like

Petten nuclear reactor (Netherlands) or Chalk River Laboratories (Canada),

but also it can be produced in cyclotrons. With this techniques, they create

short-lived radioisotopes for therapies. But anycase, this sources are well

controlled and they are not an usual source of radioimpurities.

The main sources of radioimpurities of anthropogenic radionuclides are

nuclear weapons, nuclear power plants and uranium minning. The most

recent and strong contributions to the contaminations of anthropogenic

raadionuclides where the two most important nuclear power plants

accidents: Chernobyl (1986) and Fukushima (2011).

These two accidents and the nuclear weapons testing thrown to the

atmosphere various radionuclides (some of them short half-lifes), but the

most important are 90Sr and 137Cs.
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1.2 Radioactive contamination in materials

1.2.2 Sources of radioactive

Now, after showing the origin of the radioisotopes, we can present where we

can find them in a experiment, also presenting how to protect the experiment

from these sources of background.

Environmental Radioactivity

The most significant radiosotopes in the Earth Crust are Decay Chains of 238U

and 232Th and 40K. The typical activity of 40K is about hundreds of Bq/kg. In

the case of these two Decay Chains the activities are about tenths of Bq/kg

Usually, these chains are not in equilibrium in surface samples, because they

suffer some migrations due to physical or chemical processes.

This is one of the reason why all the low activity experiments as also an external

shielding to avoid this source of background.

Radon in the air

One of these elements that breaks the equilibrium of the decay chains is Radon,

present in the three decay series. This element can emanate from the material

due to the recoil of the alpha particle emission or also due to the diffusion from

the material. Typically, the concentration in air is about 40Bq/m3.

These radon atoms are particularly dangerous, because the can enter inside the

detector but also can be found attached to the surface of the materials of the

detectors. The most important isotope is 222Rn, with a half-life about 4 days,

that can decay to 214Bi, a very important and dangerous source of background.

Then, one of the best solutions is to have a gas system to reduce the presence of

this isotope in the air.
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Cosmic Rays background

Cosmic rays in the upper part of the atmosphere are an indirect source of

background, because can produce several particles. Primary cosmic rays, mainly

protons and alpha particles, produce different interections with the upper part

of the atmosphere. Therefore, can be produced the secondary Cosmic Rays, that

are (ordered by intensity at sea level): muons, neutrons, electrons, protons and

pions.

Cosmic Rays background can be divided into two different forms: the

secondaries Cosmic Rays and the the activation of the materials, explained

previously.

Then, it is necessary to place the detectors inside a underground laboratory, to

shield with the mountain the flux of secondary Cosmic Rays, mainly neutrons

and mouns.

Radioactivity from Detector and Shielding

To reduce these previous sources of background, we have to shield the detector

from them. Therefore, we will find the two last possible sources of background:

the shielding and the detector itself.

The shielding are usually two elements: lead and copper. Lead is cheaper and is

used for the external part of the shielding, because unfortunately it has also some

radioactive contaminations. Then, the internal part of the shielding is made by

copper. This metal, thanks to its high redox potential, can be easily separated

from K, U and Th, producing a very low bakground material with also a strong

capability to reduce external backgrounds.

Finally, to build a successful low background detector, it is mandatory to carry

out a Radiopurity Campaign. It consist of a deep study of the behaviour of the

radioactivity in materials, a coordinate work with the engineers to design the

detectors and a precise selection of the materials to build a detector capable to

fullfill the background requeriments that we have.
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2
Introduction to radioactivity physics

An atomic nucleus is a small region (of the order of the fentometers) where

it is located the most massive part of the atom. In this region we can find the

nucleons (protons and neutrons) that compose the nucleus and some exchanging

particles to keep the nucleus together.

Radioactivity is a transition process where the state of a atomic nuclei changes

emitting some particles. Spontaneous Radioactivity is a exothermic proccess

where the nucleus emits particles, losing energy, trying to reach a more stable

configuration.
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Chapter 2. Introduction to radioactivity physics

Radioactivity was discovered by Henri Becquerel1 in 1896, thanks to the

observation of radiation from uranium that interacts with photographic paper.

After discarting other hypotheses, he concluded that uranium emits rays by

itself.

Following this work, Pierre and Marie Curie discovered that thorium is also a

radioactive element. They also discovered polonium and radium trying to isolate

the sources of these rays.

In 1903, Henri Becquerel won the Nobel Prize, shared with Pierre and Marie

Curie in recognition of the extraordinary services he has rendered by his discovery of

spontaneous radioactivity2.

To finish this short historical review, in 1899, Ernest Rutherford discovered that

a magnetic field can interact with this radioactive emissions, binding them into

two different directions. The positive particles were Alpha Rays and the negative

were Beta Rays. In 1900, Paul Villard discovered a different type of radiation

from radium, not affected by magnetic fields and named by Rutherford with

Gamma Rays. This classification also follows their power to penetrate materials,

where the less penetrating radiation are Alpha Rays. This three type of emissions

are the most common radioactive emission produced in a nuclear decay.

To continue this chapter, we are going to present some usual concepts related

with radioactivity.

First of all, in a nuclear desintegration, we define as the parent nucleus that one

before the nuclear decay and we also define as the daughter nucleus the new

nucleus after the decay, that also might produce the emission of particles and

energy. Each radioactive isotope can also be called radioisotope, radionuclide

or only nuclide.

1It is necessary to use the name to name this Physicist, because his family had a long tradition
in science: grandfather (Antoine César Becquerel), father (Alexandre-Edmond Becquerel) and son
(Jean Becquerel)

2http : //www.nobelprize.org/nobel_prizes/physics/laureates/1903/
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Other important parameter in nuclear decays is the Q-value. It is defined like

the released energy during a desintegration.

Q = (minitial −m f inal)c2 (2.1)

This energy will be shared by the emitted particles.

To quantifity the radioactivity, The International System of Units (in French,

Système international d’unités, SI) define the derivated unit known as

Becquerel, Bq. One becquerel is the activity of one radioactive sample with

one desintegration per second. An older radioactivity unit used to meausure

radioactivity is the Curie (Ci), that is the activity of one gram of 226Ra (1 Ci = 37

GBq).

Radioactivity is a quantum process and we cannot predict when an atom will

decay. But, in our work in radiopurity, we are only considering very massive

samples, where we can define several constants and laws to study this process.

One of this macroscopic constants to study radioactivity is the mean lifetime τ

(usually call lifetime). It is also related with the decay constant, λ:

λ =
1
τ

(2.2)

The third usual constant to quantify the decay rate is the half-life, t1/2 that is the

time required for a decaying sample to reduce its quantity by a half of its initial

value. The relation with the other constants is as follows:

t1/2 =
ln(2)

λ
= ln(2) · τ (2.3)
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Chapter 2. Introduction to radioactivity physics

Since every nucleus has an intrinsic probability to decay, we can affirm that the

number of decays depend on the number of atoms we have, N. Then, we can

write:

dN
dt

= constant · N (2.4)

And by solving this equation, we can find the most important equation for

nuclear decays, where the constants reflect the initial conditions.

N = N0 · e−λt (2.5)

The last parameter (but not the least... maybe is the most useful) to consider is

Activity. This is the rate of decays of a radioactive sample:

A = −dN
dt

= λ · N (2.6)

The activity depends on two factors: the number of atoms and the half-life

of these atoms. When you observe a sample during periods in the order of

magnitude of its half-life, you can observe changes in the number of atoms and

also in its activity.

We can also define the specific activity that is the activity divided per mass unit.

The specific activity is the unit used for the measurements we have taken in

several laboratories, but usually we only call it as activity.

Finally, we have the Decay Scheme diagram, figure 2.1, where are arranged

certically the energy level of the parents and daughters nuclei. For a spontaneous

decay, the energy levels of the daughters nuclei must be below the parent energy

level.

With horizontal lines, we represent the energy levels of the parent nucleus and

the different possible energy states of the daughter nuclei. For spontaneous

decays, you have to reach to a lower energy level. Vertical arrows present the
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Figure 2.1: Decay scheme of 60Co

gamma photons emitted to reduce the energy of the nucleus, in the way for a

more stable state.

Diagonal arrows indicate the type of decay and the branching ratio of this decay:

the probability to undergo this decay branch. In the example in Figure 2.1, 60Co

decays beta with 0.31 MeV (prob 99.88 %) and emiting two photons with 1.17

MeV and 1.33 MeV. But it can also beta decay with 1.48 MeV (prob 0.12 %)

emiting only one photon with 1.33 MeV.

In the right side of the diagram we have the JP of this state, where J is the value

of the nulcear angular momentum and P is the value of the parity.

The probability of each decay are ruled for several factors. In alpha decay, for

instance, a change in the nuclear angular momentum between the parent and the

daughter nuclei implies a more complicated way to escape for the alpha particle,

significantly decreasing the probability of this decay branch.

Sometimes, after a decay, the nuclei remain excited. Thus, to reach the ground

state, the nucleus emits Gamma Rays carrying out the excess of energy. These

transitions between ground and excited states are commonly very fast (lower

than picoseconds). But, there also exist some long-lived excited states called

Nuclear Isomers. A Nuclear Isomer is a metastable3 state of the nuclei, because

its decay time is several orders of magnitude bigger than the usual decay time,

typically about 1µs. The most usually observed case in our work is 234∗Pa.

3The usual notation for a metastable nuclei is * or m after the mass number
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Chapter 2. Introduction to radioactivity physics

For a more complete information in this field, I recommend to read

Radioactivity Radionuclides Radiation [Magill and Galy 2005], Radiation Detection

And Measurement [Knoll 2000], Techniques for Nuclear and Particle Physics

Experiments: A How-to Approach [Leo 2012], Introductory Nuclear Physics [Krane

1987], An Introduction to Nuclear Physics [Cottingham and Greenwood 2001] and

also with the lessons of Prof. H. C. Verma (Department of Physics, IIT Kanpur) in

the youtube channel of National Programme on Technology Enhanced Learning

(NPTEL) from India.

One last comment, this work in centered in radiopurity and in radioactive decays

in very low background detectors. Then we will not consider the induced

radioactivity like, for example, the one produced by neutrons (the most usual

purpose is the induced nuclear fission) or the one produced induced by laser,

used to increase the probability for a nuclear decay.

2.1 Type of nuclei radioactivity decays

Radioactive decays have a wide range of different decays. These are the most

common observed nuclear decays:

• Hadronic decays: a hadron is a particle composed by quarks, for example

neutrons, protons, pions, etc. In these decays, the emission of hadrons

is the way used to release energy. The most usual is alpha decay (with

the emission of an alpha particle composed by 2 protons and 2 neutrons),

but we also can find proton emission, neutron emission, double proton

emission and cluster decay (emission of a specific type of smaller nucleus

bigger than an alpha particle).

Fission is also a hadronic decay, where a very massive nucleus

stochastically splits into two new nuclei (sometimes can be 3 daughter

nuclei) with the emission of several neutrons and high energy photons.

• Leptonic decays: this decay emits leptons but always following lepton

number conservation. The most common leptonic decay, called beta

decay, emits an electron and an electron antineutrino. We can also find
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2.1 Type of nuclei radioactivity decays

positron emission, electron capture, bound state beta decay, double beta

decay, double electron capture, electron capture with positron emission

and double positron emission.

In any case, we are going to consider only those that are important in radioactive

contamination in our experiments, mainly because of their frequency.

Alpha Decay

Alpha decay is a process where one nucleus decays emiting an alpha particle.

In 1909, Becquerel and Royds discovered that an alpha particle is an Hellium4

nucleus. This emission reduces the number of protons by 2 and the number of

nucleons by 4. Soon after this decay, the nucleus and the alpha particle reach a

neutral configuration with the emission/capture of electrons

A
Z X →A−4

Z−2 Y +4
2 α (2.7)

In terms of energy, we can write the equation considering the binding energy of

the electrons negligible in comparison with the masses.

Qα ≈ (Mparent −Mdaughter −MHe)c2 (2.8)

Typically, we can observe that for atomic number A & 150, Q is positive. That

means that this decay can be produced spontaneously.

Then, using the conservation of the linear momentun, we can conclude that the

emitted particle and the recoiling nucleus are in the same line but with opposite

direction. And, also according to conservation of the energy, we can calculate the

kinetic energy of the emitted alpha particle and the small recoil in the nucleus

4Despite Hellium is the second most common element in the Universe and is produced in stars
by Nuclear Fusion, in the Earth is not so common and mainly produced by alpha decay.
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Chapter 2. Introduction to radioactivity physics

produced with this decay. But, in any case, the alpha particle transport most of

the kinetic energy of this decay.

Kα ' Q(1− 4
A
) (2.9)

This kinetic energy of the alpha particle, that is the magnitude we are going to

observe with our detector (because the nucleus is not usually free), is strongly

depended with A; where for a very massive nuclei all the kinetic energy is

mainly for the emitted particle.

A very good approach for alpha decays can be obtained with the Geiger-Nuttall

law [Geiger and Nuttall 1911], which relates the decay constant with the number

of protons of the nucleus and the energy of the released alpha. It is important to

know that this law works properly in nucleus with even number of protons and

even number of neutrons, as we can see in Figure 2.2. In other configurations

(odd-even, even-odd and odd-odd) is not as precise as it is in that configuration.

The law is as follows:

ln(λ) = −a1
Z√
E
+ a2 (2.10)

After alpha emission discovering, there was a twofold unsolved question about

alpha decay: how an alpha particle can scape from the nucleus with a Coulumb

potencial barrier several times bigger than the kinetic energy of the particle and

why this decay follows equation 2.10.

In 1928, George Gamow [Gamow 1928] found an explanation for these two

problems. According to Gamow’s description, the emission of a particle with

less energy than the Coulomb potencial barrier was described by a simple toy-

model that was one of the first applications of quantum tunneling predictions.

The approximation starts with previously-formed alpha particle inside the

nucleus with an energy between 4 and 10 MeV, and also with the nuclear

Coulomb potential barrier about 20-30 MeV. Then, the alpha particle inside the

nucleus tries to escape from the nucleus according to the probability predicted
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2.1 Type of nuclei radioactivity decays

Figure 2.2: Representation of evenZ evenN nuclei, picture taken from Introductory
Nuclear Physics (Kenneth S. Krane), chapter 8.

by quantum tunneling theory. With this simple hypothesis and with some

calculations, Gamow also obtained this formula and the explanation of how

an alpha particle can escape from a nucleus.

As a source of radioactive background, alpha decay is not dangerous for our

experiments because an alpha particle can be easily recognized in our detectors.

But, an alpha particle can also produce an (α, n) reaction and also the unstable

daughters can emit gamma rays.

After an alpha decay, it is important to consider the emission of gamma rays

from excited daughters. We will talk about this in 2.1

We also have to consider another type of background from Alpha Decay, the

Induced Neutrons after an Alpha decay. (α, n) reaction is the process where

a nucleus capture an alpha particle and undergo the emission of a neutron.

Now, the alpha particle follows the reverse process: it has to cross the Coulomb

potential barrier to enter inside the nucleus and also has to prompt a neutron.

Depending of the Q of the reaction, the energy threshold can be:
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Chapter 2. Introduction to radioactivity physics

Figure 2.3: In this table, taken from Passive Nondestructive Assay of Nuclear Materials,
were measured several neutron production rate from some low A isotopes

• for negative values of Q

EThreshold = −Q(1 +
A
4
) (2.11)

• for positive values of Q

EThreshold = 0 (2.12)

With these two conditions, we can estimate that most of these reactions will take

place in light (low number of nucleons) nuclei.

In NEXT, where most of the elements are very heavy, this reaction is not a

problem. But, in SuperK-Gd we mainly will have water with Gadolinium sulfate,

then it is possible that oxygen can capture some of these alpha particles

We can observe in figure 2.3 that it is possible to produce a neutron background

from (α, n) reactions with oxygen present inside the water tank. Alpha particles

lose energy in very short distances, but Gadolinium salt is disolved in the water

and alpha-emitter impurities in the salt can produce this reaction.
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2.1 Type of nuclei radioactivity decays

This can be a very dangerous source of background in SuperK-Gd, because the

contamination with 238U, 232Th and 235U chain produces a neutron background

that can mimic the expected signal.

Beta Decay

Beta Decay is a weak-interaction decay of a nucleon with the emission of a

lepton and an antilepton. At the first observations of beta decays only an

emitted electron with a non-discreet energy spectrum was detected. This is the

most significant difference with alpha decay: the energy spectra of the detected

emitted particle is not constant. It follows a distribution of energy with the mean

value approximately 1/3 of the maximun value.

Figure 2.4: Schematic view of the energy distribution of an beta decay

Wolfgang Pauli in 19305 found an explanation to this decay: there are emitted

two particles but the second was undetectable and has neither mass nor charge,

the neutrino. I used ’was’ because that was the first definition. Now we know

that neutrino can be detected and that it has mass since oscillations have been

observed.
5This famous letter is known by how it starts: Dear Radioactive Ladies and Gentlemen...
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The first complete explanation of this spectra was given by Enrico Fermi in 1934

[Fermi 1974], using time dependent Perturbation Theory and the Fermi’s Golden

Rule:

λ =
2π

h̄
| Hi f |2

dn
dE f

(2.13)

Where λ is the transition rate, Hi f is the interaction Hamoltonian (that depends

of the inicial and final states) and dn/dE f is the density of states at final energy.

Inside beta decay category, we can consider three different types of reactions

that involves this decay6

n→ p + e− + ν (2.14)

In this case, an electron, e−, and a antineutrino, ν are emitted. This is due to

the lepton number conservation, which implies that the sum of leptons and

antileptons must be constant. The observation of the (2β0ν) will imply the

violation of the conservation of the lepton number measured.

The three most common beta decays reactions are:

β− decay

A
Z X →A

Z+1 Y + e− + ν (2.15)

β+ decay

A
Z X →A

Z−1 Y + e+ + ν (2.16)

6A free neutron has a half-life about 10 minutes, but when the neutron is bounded in a nucleus
there are different forces and processes that modifies that half-life.
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2.1 Type of nuclei radioactivity decays

Electron Capture

A
Z X + e→A

Z−1 Y∗ + ν (2.17)

Now, we will talk about the most usually observed decay in world of radiopurity,

β−. It is produced to balance the number of neutrons and protons and also can

be described as a neutron decay.

The decay energy of β− can be approximated to:

Qβ−
∼= (Mparent −Mdaughter)c2 (2.18)

The energy spectrum is wider than alpha decay, with energies between some

tenths of keV and 4 MeV. Additionally, after this emission, the nucleus usually

remains excited and have to emit gamma photons or inner bounded electrons to

release this energy.

Regarding health risks, high energy beta particles can be dangerous because of

its penetration capability, bigger than alpha particles.

Spontaneous Fission

In a very massive nucleus (in the order of 240 nucleons or more), it is possible

to have an uncommon decay type known as nuclear fission7. In this case, the

nuclei splits into two lighter nucleus emitting several photons and neutrons with

energies around 1 MeV per particle. This process is much more energetic than

the other usual decays like beta and alpha decays.

We can distingish between two different types of Nuclear Fission: ’Induced

Fission’ and ’Spontaneous Fission’ (SF), depending of the need of a external

particle to excite the nucleus or not.

7In 8Be we have alpha decay that splits the nucleus into two identical components: the daughter
nucleus and the emitted alpha particle. It can be consider like the less massive nucleus that decays
into Spontaneous Fission
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Induced Fission is the first Nuclear Fission reaction observed, where a neutron

absorbed by a nucleus causes this decay. This decay, observed by Otto Hahn

and Fritz Strassmann [Hahn and Strassmann 1939] bombarding uranium with

slow neutrons, was the openning of a door to a new high energy proccesses.

In uranium, the isotope 235U has several orders of magnitude bigger thermal

neutron capture cross section, that makes this one the perfect candidate for a

nuclear chain reaction. This energetic process was used firstly to produce nuclear

bombs and it is commonly used to obtain energy in a nuclear plant 8.

Later, Spontaneous Fission was discovered by Flerov (Flyorov) and Petrjak

(Petrzhak) [Petrzhak and Flerov 1940] showing their work in this short paper:

Fission of Uranium

With 15 plates ionization chambers adjusted for detection of uranium fission

products we observed 6 pulses per hour which we ascribe to spontaneous

fission of uranium. A series of control experiments seem to exclude other

possible explanations. Energy of pulses and absorption properties coincide

with fission products of uranium bombarded by neutrons. No pulses were

found with UX and Th. Mean lifetime of uranium follows ten to sixteen or

seventeen years

Some years later, they write a new paper with more complete information about

their discovery [Petrzhak and Flerov 1941].

This process follows a stochastic law, producing hundreds of different daughters

nuclei and with a wide multiplicity of number and energies of the photons and

the neutrons emitted.

For a more complete review of this process, I recommend to read ’Passive

Nondestructive Assay of Nuclear Materials’, [Relly et al. 1991]

Inside the nucleus, there is a competition between two forces that retain the

nucleus together: the short range nuclear force and the electrostacic repulsion.

8To control this reaction, you have to reduce the number of neutrons with a material that absorbs
and control this number. An usual element used is Gadolinium, that thanks to its big thermal
neutron capture cross section, controls this reaction.
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2.1 Type of nuclei radioactivity decays

With a very low probability, the nucleons can reach a configuration with two

droplets (similar to a peanut) that finally will separate into two new nuclei with

usually between 100 and 140 nucleons per daughter nuclei. During this process,

some neutrons and photons are prompted. But, the daughter nuclei most of the

times are in a unstable state. Then, within miliseconds or seconds, they decay

again emitting electrons, neutrons or gamma particles.

Figure 2.5: Schematic view of the Spontaneous Fission.

In this type of decay is impossible to know the daughters that will be produced.

It is possible to obtain more than 100 different daughters, with several quantities

of photons and neutrons emitted. We only can talk about the distribution and

the mean value of the photons and neutrons emitted.

Before discussing the emitted photons and neutrons, we are going to show the

important correlation between the total energy of the photons, EγTotal , and the

number of emitted neutrons nneutron
9

EγTotal = ϕ(Z, A) · nneutron + 4.0 (2.19)

9To name the number of neutrons, is usually used ν, but we prefer to use nneutron in order to avoid
confusions with neutrinos
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where ϕ(Z, A) is a function that depends on Z and A and its value is close to 1

[Valentine 2001].

It is very hard to find information about photons and neutrons emitted in

Spontaneus Fission. Our principal source of Spontaneous Fission background

is 238U and we try to present information about this isotope. But, if it is not

possible, we will present information about other isotopes, where we expect

similar behaviour.

Photons in Spontaneus Fission

The emission of photons is very strong in number and in energy compared with

the most common decays [Valentine 2001]. The mean energy emitted per decay

is about 1 MeV per emitted photon. Total gamma energy emitted is about 6 MeV.

This energy must be shared with the emitted photons.

About the energy of the emitted gammas, its mean value of this follows an

empirical equation, obtained by fitting data from 235U, 239Pu and 252C f decays:

< Eγ >= −1.33 + 119.6
Z1/3

A
(2.20)

The energy distribution of these photons is shown in figure 2.6-left, [Sobel et al.

1973]. It follows an exponential law.

Concerning the number of emitted gammas, it is about 6 photons per fission.

The average number can be approximated with this equation:

< nγ >=
Etotal

< Eγ >
(2.21)

A typical distribution of the number of photons is shown in figure 2.6, -right.

This distribution, from 252C f , it is fitted to a double Poisson function, and also

to a negative binomial distribution, depending of the autors.
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2.1 Type of nuclei radioactivity decays

Figure 2.6: Left, energy distribution of the emitted photons in SF in 238U. Right,
distribution of number of emitted photons (in this case, in 252C f ).

Neutrons in Spontaneus Fission

In SF, several neutrons are emitted together with the photons. The mean neutron

energy of these emitted neutrons is about 2 MeV, and follows Maxwellian

distribution. See Figure 2.7 for the case of 252C f .

Figure 2.7: Energy distribution of the emitted neutrons in Spontaneus Fission. The
isotope of this distribuiton is 252C f

We know that the mean total energy emitted with photons is about 6 MeV; then,

and according with equation 2.19, the mean number of emitted neutrons is about

2 per decay.

This table shows the probability of the number of emitted neutrons per decay.
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Figure 2.8: Spontaneous Fission neutron multiplicity of several isotopes.

Double Beta Decay

Double Beta Decay might also be a source of background in our experiments.

Among the usual elements that we consider in our background, the only one

that can undergo double beta decay is Uranium.

Double Beta decay in Uranium was observed by Turkevich [Turkevich 1991] and

it is one of the lowest energy double beta decay, with a Qββ = 1.1MeV.

In addition, the rate of double beta decay in Uranium is about 6 order of

magnitude slower than spontaneous fission, which itself is about 6 order of

magnitude slower than alpha decay.

Therefore, because of its long half-life and its very low Qββ, very far away from

our ROI we will not consider this as a background source

Photon emissions after the decay processes

After a nuclear decay the daughter nucleus can be in an excited state. To reach

the ground state, it has to emit this energy by gamma emission or by internal

conversion. These emissions are mostly produced after a beta decay, for example

the most important photons for our experiments are emitted after a beta decay.
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Typically, Gamma emission is very fast, about 10−14s; however in some cases,

the nucleus can remain excited more time.

We have also to consider that not all the excitation energy is released by the

gamma particle. There is also a small nuclear recoil, very small, in the order of

a few of eV.

Internal conversion is the electromagnetic process where the nucleus prompts

a tighly bound electron with the excess of energy from its excited state. After

this, some electrons fall into lower energy levels with the emission of X-Rays

or electrons (also called Auger electrons) or both. These emissions are not

important for us as a background source because their energies are always below

1 MeV.

These discreet energy photons can be easily detected by gamma ray detectors

and used to quantify the amount of these isotope present in our samples, because

each decay as a characteristic energy. This is our usual technique to quantify the

amount of radioactive contaminations.

These emissions obey two rules: conservation of angular momentum and parity.

Conservation of angular momentum follows this equation

−→
Ji =

−→
J f +

−→
L (2.22)

Where Ji is the parent angular momentum, J f is the daughter angular

momentum and L is the angular momentum of the emitted photon. Then, the

angular momentum can be:

|Ji − J f | ≤ L ≤ Ji + J f (2.23)

If there isn’t any possible value for L in the photon, this energy only can be

released through internal conversion, transfering it to a nearby strong bounded

electron.
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Even though photons could be emitted, internal conversion also competes for

the emission. We can define conversion coefficient wich is the ratio between the

probability of internal conversion and probability of gamma decay.

Respecting parity, we can classify into two differen type of decays:

Electric transitions

π f = πi · (−1)L (2.24)

Magnetic transitions

π f = πi · (−1)L+1 (2.25)

The most favored are low L transitions and electric transitions, then sometimes

there are almost forbidden decays. Because of these rules, you can explain the

existance of the nuclear isomers: excited nuclei with a highly forbidden decay

probability.

2.2 Decay chains

A parent nucleus decays to its daughter nucleus emitting particles. After the

decay, there are three different options for the daughter:

• Unstable state: the new nucleus is still not stable; it will decay again trying

to reach a stable state.

• Metastable state: the nucleus is in a long-time excited state. It needs more

time to emit a gamma particle. After the emission, the nucleus can be

stable or unstable. It is not a decay because the nucleus remains the same.

• Stable state: after the decay, this new nucleus will remain in this state (as

far as we know) and the decay chain is finished.
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A Decay Chain is a process of several decays between unstable and metastable

states until it is arrived to a stable nucleus; the end of the chain. In this process,

we can observe alpha decays, beta decays and gamma emissions to stabilize the

energy of the nucleus 10.

The most commonly observed decay series are the four transuranic decay series,

where the first isotope is a heavy element with a very long half-life (those

radioisotopes have an age similar to the Earth age). In our description, we

are only going to consider the natural isotopes for these chains. For example,

Thorium series starts with 232Th naturally but it could also start with 252C f , an

artifical element.

There are also natural decay chains produced by cosmic radiation, cosmogenic

decay chains, that are shorter than transuranic ones. For example, 28Mg,

produced by cosmogenic spallation of 36 Ar, undergoes beta decay to 28 Al and
28Si, a stable isotope. Other cosmogenic decay chains are 32Si, 36Cl and 39Cl.

We could also consider the artificial decay chains, that requires accelerators,

nuclear plants o nuclear bombs to create the isotope. For example, one of the

radiosotopes that can be produced as daughter nucleus in a nuclear fission,
144Ba, beta decays several times to 144La, 144Ce, 144Pr and finally to 144Nd, a

very stable alpha decay radioisotope with a half-life of 2.29 · 1015 years. The last

isotope of this chain is 140Ce, that is stable.

The four transuranic decays chains are:

4n Thorium series: this chain starts with 232Th and includes, alphabetically,

the following elements: actinium, astatine, bismuth, francium, lead,

polonium, protactinium, radium, radon, thallium, and thorium. The total

energy released in this chain is 42.6 MeV.

4n+1 Neptunium series: this chain is a bit special because it doesn’t have any

isotope with its half-life large enough to be actually observed. It has not

been detected in any of our measurements.

10Stricly, we can consider other very low probability paths in this chains, with β+, 2β, cluster
decays, etc. However, they are negligible for our experiments.
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4n+2 Uranium series: this chain starts with 238U and includes astatine, bismuth,

lead, polonium, protactinium, radium, radon, thallium, and thorium. The

total energy released is 51.7 MeV

4n+3 Actinium series: this is the only observable odd chain. It starts with
235U and includes actinium, astatine, bismuth, francium, lead, polonium,

protactinium, radium, radon, thallium, and thorium. The total energy

released is 46.4 MeV

We can see a schematic description of the Decay Chains in figures 2.9, 2.10 and

2.11. The black arrows represent the alpha decays of the isotopes and the blue

ones represent the beta decays. In the arrows it is also indicated the half-lifes of

these decays. And, in the case of two posible branches, the probability of each

branch.

We can observe 4 different colours for the isotopes: green is for those isotopes

that decay fast, yellow for intermediate time, red for long half-life and white for

the stable isotopes, the end of the chains. This colour will determine how this

chain will evolve if the equilibrium is broken.

In some decays, we can observe grey boxes that include the value of the energy

of some gamma particles emitted in the decays. The detection of these gammas

is our way to quantify the amount of that particular radioisotope in the sample.

Semitransparent radioisotopes and arrows are low probability decay paths,

important to understand the decay chains but not important for radiopurity

purposes.

Finally in some of the heaviers nuclides, we can find a number with SF, that

indicates the probability to undergo a decay with Spontaneous Fission.
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Figure 2.9: 232Th Decay Chain.
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Figure 2.10: 238U Decay Chain.
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Figure 2.11: 235U Decay Chain.
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2.2.1 Radon Emanation in Decay Chains

During the decay processes within the chains, we find three different isotopes of

radon: 220Rn in the 232Th chain, with a half-life of 55 seconds; 219Rn in the 235U

chain, with a half-life of 4 seconds; and 222Rn in the 238U chain, with a half-life

of 4 days.

Radon is a noble gas and can scape outside the material; mainly by diffussion

but can also be produced by the nuclear recoil from the alpha decay. These

radon isotopes will decay and decay, emitting particles and photons away from

the material where the initial radon was originated.

The most important radon radisotope that we have to consider is 222Rn because

of its relatively long half-life of ∼ 4 days. Environmental radon in the air of

the laboratory and from contaminations in the surface of the different exposed

materials are important sources of background, for instance the photons emitted

by the daughter 214Bi.

Then, the problem of a high concentration of radon in air is a important problem

for the underground laboratories, all of them surrounded by tons of rocks and

concrete. Because of this, they have to measure the concentration and install

systems to reduce the amount of radon in the air inside the laboratory.

Additionaly, in HPGe detectors and to reduce the presence of radon near by the

detector, we create a nitrogen atmosphere inside a methacrylate box to avoid

airborne radon intrusion. This prodecure will reduce the amount of background

of the detector.

In the NEXT itself, we are following three different strategies to reduce this

background:

• Heating the detector: with heating, the kinetic energy of the particle is

increased. Then, the emanattion time is lower than in normal conditions.

Therefore, we heat the detector for several days to reduce the number of

attached atoms in the surface of our materials.
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• Radon emanation measurements: we also are carrying out several

measurements to quantify the amount of emanatted radon from some of

our materials. We have choosen the most massive and internal materials

for these first measurements.

• Getters: in the gas system of NEXT, we have placed getters to reduce the

impurities of the gas. Theses getters can remove several types of gases that

are mixed with the xenon, including the emanatted radon.

Secular Equilibrium

A decay chain is in equilibrium when the activities of all the isotopes are the

same. It is needed a few of half-life of the isotopes to reach this equilibrium.

Equilibrium doesn’t mean same number of atoms of the different isotopes of the

chains, but same activity. When a chain is in equilibrium, the number of atoms

produced by the decay of the parents is the same that the number of decays of

the daughter; both have the same activity.

It often happens that radioactive contaminations are in non-equilibrated chains,

with different activities in some of the isotopes of the chain. This is due to

the different chemical and physical behavior of the chain elements during any

industrial production process underwent by the sample, that can change the

relative amount of the elements in the chain, thus breaking its equilibrium.

Therefore, we have to study how this new scenario evolves.

Time evolution of Decay Chains

When equilibrium is broken, the following are the equations that define how a

chain evolves in time. The idea is simple, one builds a system of differential

decay equations each including in each term the number of atoms coming from

its parent and the number of atoms that decay.
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dN1

dt
= −λ1N1

dN2

dt
= λ1N1 − λ2N2

dN3

dt
= λ2N2 − λ3N3

... (2.26)
dNi
dt

= λi−1Ni−1 − λi Ni

...
dNj

dt
= λj−1Nj−1

The general solution for these equations were found by Harry Bateman [Bateman

1910] in the first years of the past century:

Nn(t) =
n

∑
i=1

(
Ni(0) ·

n−1

∏
j=i

λj ·
n

∑
j=i

(
e−λjt

∏n
p=i,p 6=j(λp − λj)

))
(2.27)

Where for each radioisotope ’i’, Ni(0) is the initial number of atoms, Ni(t) is the

number of atoms after a time t and λi is its decay constant.

In figures 2.9, 2.10 and 2.11 we can observe the different colours of the

radioisotopes. Depending of the state of equilibrium with the neighbour

isotopes, we can consider three scenarios related with the time evolution of the

decay chains:

• Green radiosotope: (half-lifes about some minutes or lower). These

half-lifes are so short that we cannot observe any changes in their

activities during the measurements. They reach the equilibrium with their

neighbours very fast.

• Yellow radiosotope: (half-lifes between some minutes and few years).

Within those half-lifes times, we can observe how the activities evolve

during the measurement (for the shorter half-lifed isotopes of the interval)
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or how it has changed when the measurement is repeated some time

later (for the longer ones). One typical example of this is the decay of

the trapped radon in the measurements with High Purity Germanium

detectors.

• Red radiosotope (half-lifes of about tens of years or longer). These

radiosotopes have a very long half-life: it means that we need very long

time intervals to observe changes in the activity. Depending of the half-

lifes of all the radiosotopes involved, we can observe small evolution in

the activity of these isotopes or, in the case of the longer ones, we can

observe partial equilibrum between red-coloured radiosotopes.

In this case, we can define sub-chains (part of the chains) that will be in

local equilibrium in our time scales.

2.2.2 Most important gamma lines in the decay chains

To quantify the activity of a sample, we use germanium detector that count

the numbers of detected photons. In the decay chains there are a wide variety of

emitted photons. For instance, in the Thorium series there are about 100 photons

with intensity over 0.1%. Next, we discuss a criteria to select which photons are

the best for quantify the activity:

• Photon energy: there are two factors that limit the energy interval: the

background of the detector and the photon detection efficiency. Usually,

the background of the detector is bigger at low energies, more or less

below 200 keV. The second factor is the photon detection efficiency,

that typically follows a distribution with the maximun about 150 keV

and decreases while the energy increases. A complete description of

germanium detectors can be found in Chapter 4.1

Therefore, the recommended interval is between 200 keV and 1500 keV;

however there are also some interesting photons outside this interval.

• Intensity: not all the transitions have the same probability, with some

photons having greater probability to be emitted. Low probability photons
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has low activity that cannot be distinguished from the background except

some of them with high energy that have basically no background.

We can find some very intense and interesting photons with low energy

(about 200 keV and below). And, in the Actinium series, we also can use

for our analysis some high energy photons, for instance the 2614.5 kev

from 208Tl.

• Non-overlaping photons: to simplify the analysis, we prefer to avoid

photons with almost the same energy as it is almost imposible to quantify

the contribution of each one. In anycase, if the diference of intensity of the

photons is very big, we can ignore the small one.

• To cover all the parts of the chain: because of the usual non-equilibrium of

the decay chains in our samples, we have to choose photons in all the parts

of the chains. In Uranium series, to quantify the upper part of the chain,

we only can use a very low intensity photon (0.6%) from 234∗Pa.

Acording to the criteria, we can find in figures 2.9, 2.10 and 2.11, the most

recommended photons for the analysis.

Also, to minimize the uncertainty of the measurement we try to measure several

gamma lines of each part of the chain. Then, is possible that some activities are

quantified with the combined analysis of two or three photons.
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Isotope Decay Energy Intensity Possible Interferences

Chain (keV) Isotope (keV, Intensity)
228 Ac 232Th 911.2 0.266

964.8 0.051 214Bi (964.1/0.004)

969.0 0.162
208Tl 232Th 583.2 0.304 214Pb (580.2/0.004), 228 Ac (583.4/0.001)

860.6 0.045

2614.5 0.356
238U 238U 1001.0 0.006

766.4 0.002 214Bi (768.4/0.049)
214Pb 238U 295.2 0.192
214Bi 238U 609.3 0.461

1120.3 0.150
235U 235U 185.7 0.572 226Ra (186.1/0.035)

205.3 0.050 228 Ac (204.0/0.001)
219Rn 235U 401.7 0.066
211Pb 235U 831.8 0.038 228 Ac (830.5/0.006)

Table 2.1: Table of the most used emitted photons from Decay Chains

It is important to remark that the most important gamma photon of 235U, (185.7

keV and 0.572 of intensity) has very close one photon from 226Ra (186.1 kev and

0.035 of intensity).

Therefore, if a sample had big contribution of the lower part of the 238U, it can

mimic the peak of 235U. In the case that we only can estimate an upper limit

for 235U activity, we can suppose that all the counts measured arround 186 keV

come from 235U. With this hypothesis, we would find a wrong value of the

activity, but if we treat it as an upper limit.

It sure will be lower that the one obtained with 205.3 keV gamma photon.
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2.3 Other radioctive isotopes

There are other sources of radioactive background in our experiments. There

are individual radionuclides that are a background source and a dangerous

source of events. Some of them are primordial radionuclides (40K, 176Lu,
138La), cosmogenic radionuclides (60Co, 56Co, 58Co and 54Mn) and there are also

anthropogenic radionuclides (134Cs and 137Cs)

We are only going to remark the most important gamma lines emitted per each

radiosotope, i.e. those ones used in our analysis to estimate their activities.

• 40K: This is one of the three most common sources of natural radiactivity in

the Earth crust, with 238U and 232Th. This isotope is present in potasium

with a 0.0117% of atoms. This isotope undergo beta decay (with 10.7%

of probability) emitting a gamma photon of 1460.8 keV. The half-life is

1.248 · 109 years.

It is a very common isotope that usually can be found in plastic and in

many organic materials. This isotope is widely present in our lifes (and

bodies) since potasium is a mineral needed for the human body.

In terms of radioactive background, its activity is a background signal in

the region of the 2β2ν signal.

• 60Co, 56Co, 58Co : the most important radiosotope of cobalt is 60Co. This

isotope undergo beta decay emitting two photons with 1173.2 keV (with

99.85% of probability) and 1332.5 keV (with 99.98% of probability). The

half-life is 5.27 years

Also can be observed peaks from 56Co (T1/2 = 77.27d, γ emissions at 846.77

keV and 1238.28 keV) and specially 58Co (T1/2 = 70.86d, γ emission at

810.78 keV). Typically, the half-lives of these two isotopes are of the order

of the live time in the screening measurement and usually they are not

observed.

They are typical cosmogenic products of copper. They are produced at the

exposure of the material to cosmic nucleons.
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60Co is commonly observed in metals and electronic components. Also it

is often used as callibration sources.

• 134Cs and 137Cs. They are produced after nuclear fission processes;

nowadays, the Fukushima accident is the major source of these isotopes.
137Cs undergoes beta decay to 137∗Ba (with 94.6% of probability) that emits

a photon with 661.7 keV. 134Cs undergo beta decay emitting two gamma

photons with 604.7 keV (with 97.62% of probability) and 795.9 keV (with

85.46% of probability)

We have found some samples contaminated with these isotopes after the

Fukushima accident, for example some resistors from Japan Fenichem

Company, Inc; a chemistry and electronic japanese company. Also, in some

samples of Gadolinium salt treated as well in Japan.

• 176Lu, 138La: we only have found these two isotopes in rare earth samples,

the gadolinium samples for Super-Kamiokande. The very similar chemical

behaviour of the rare-earths make very complicated the total separation

among them.

176Lu undergoes beta decay emitting two gamma photons with 201.8 keV

(with 77.97% of probability) and 306.8 keV (with 93.6% probability)

138La undergo β− (with 34.4% probability) emitting one gamma of 788.7

keV; but also can undergo β+ (65.6% probability) emitting one gamma of

1435.8 keV.

In terms of background, they are dangerous because both of them are β−

emitters with energies about 1 MeV.

• 54Mn: This radionuclide is an usual product from the cosmogenical

activation of the copper, like the cobalt radionuclides. 54Mn undergoes

electron capture emitting one photon of 834.8 keV (99.98% probability)
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Isotope Energy Intensity Possible Interferences

(keV) Isotope (keV, Intensity)
40K 1460.8 0.107 228 Ac (1459.1/0.008)

60Co 1173.2 0.999

1332.5 1.000
134Cs 604.7 0.976

795.8 0.855 228 Ac (795.9/0.043)
137Cs 661.6 0.805
176Lu 201.8 0.840 228 Ac (199.5/0.003), 228 Ac (204.0/0.001)

306.9 0.930
138La 788.7 0.335 214Pb (785.9/0.011), 214Bi (786.1/0.003)

1435.8 0.663

Table 2.2: Most relevant emitted photons from the most common radiosotopes.

It is important to remark that for samples with a very big amount of 228 Ac,

the gamma line with 1459.1 keV can easily mimic the 40K peak. Therefore, to

estimate the activity of 40K, first is necessary to know the activity of 228 Ac and

use this information to estimate the number of counts that can came from this

radioisotope. Subtracting this value and the contribution of the background, we

can obtain the activity of 40K radioisotope.
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3
Experimental techniques in NEXT and

SuperK-Gd; the impact of

radioactivity on them

3.1 NEXT

The NEXT-100 detector is a 100 kg xenon gas TPC scheduled to be running at the

Canfranc Underground Laboratory (LSC, Laboratorio Subterráneo de Canfranc)

in 2018. Its demostrator is the detector NEW (NEXT-WHITE)1, that is a 1:2 scale

1The name honours the memory of the late Professor James White, guide and mentor of NEXT
project
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(1:10 in mass) and designed using the same materials and photosensors than

NEXT-100.

Figure 3.1: Left side, the detector outside the castle, in a clean room for the instalation of
the Tracking Plane. Right side, Internal view of the detector

3.1.1 The NEW Detector

NEW is a TPC with an active xenon mass of about 10 kg at 15 bar. Right now

(July, 2017), it is taking data at the LSC. A complete information about this

detector can be found in The NEW detector: construction, commissioning and first

results, a poster of M. Nebot-Guinot in the NEUTRINO 2016, [Nebot-Guinot

2016].

Currently, the detector is in the so-called Run II, taking data from several

callibration sources: 83∗Kr, 56Co and 22N. First results are shown in Figure 3.2.

Figure 3.2: Left side, a 83∗Kr peak. Right side, an electron-positron track from 56Co source
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Vessel

The pressure vessel is made of titanium-steel alloy with a wall thickness of 12

mm, designed to work to a maximun pressure of 15 bar. The total mass is

∼ 700kg. All the different internal layers of the detector can be seen in Figure

3.1-right. They are the Inner Copper Shielding, the Field Cage and the Light

Tube.

The first layer is the Inner Copper Shielding, a thick copper background

protection with 6 cm in the barrel and 12 cm in the endcaps. Both endcaps

are designed to place sensors, one for the Energy Plane with PMTs and the other

with SiPMs for the Tracking Plane.

The second layer is the Field Cage. The best solution found for an uniform

electric field was to use several copper rings placed in the High Density

Polyethylene of the Field Cage connected to a resistor chain. In the upper part

of the detector are the High Voltage feedthroughs. They have been designed to

operate the cathode at up to 50 kV and the grid at up to 20 kV.

The innermost layer of the detector is the Light Tube; Teflon coated with TPB,

the wavelength shifter that converts VUV light to blue. This is necessary to make

the SiPMs capable to see the emitted light.

The totas mass of the detector with all the layers is ∼ 1900kg.

Energy Plane

The Energy Plane is designed to measure the energy of the events with high

precision. It has 12 PMTs (64 in the case of NEXT-100), model Hamamatsu

R11410-10, coupled with an optical gel to sapphire windows coated with TPB.

These PMTs use a divider circuit with components chosen to maximize their

radiopurity.

The PMTs are held by a 12 cm thick copper plate that is also an excellent

shielding for the detector.
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Figure 3.3: Draw of the detector NEW with the most important parts.

Tracking Plane

The NEW tracking plane is placed in the other copper plate end-cap. It is

made of 28 Kapton DICE-Boards (KDB), printed circuit boards (PCB) that satisfy

radiopurity requeriments. Each KDB will have 64 SiPMS; 1792 SiPMS for all the

detector. For NEXT-100 will be used 111 KDB with 7104 SiPMS.

First option for the tracking plane where S10362-11- 050P/NG from Hamamatsu,

but finally we found a more radiopure option, SensL SiPMs 1x1mm2. These

photosensors provide a dense array of 1 cm pitch for topological reconstruction

of the track of the event produced inside the chamber.

A reflective teflon mask is fitted on each KDB to increase the luminosity.
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Lead Castle

The wall rocks of the LSC are an important source of photons from the Nuclear

Decay Chains. To shield them, we have build a Lead Castle with 20-cm thick

lead shield. The structure is made by Carbon Steel with the inner parts of 316

Ti. More than 400 lead bricks (200x100x50mm3) have been used in this castle.

Several samples of Lead have been screened in HPGe detectors to find the best

option for this shielding.

We have estimate that this castle can attenuate the gamma flux from the rock

walls of the laboratory in 4 orders of magnitude.

Figure 3.4: Left side, the detector NEW inside the open lead castle. Right side, the same
but with NEXT-100 detector

Gas System

In a TCP with ultra low background, the control of the level of purity of the gas

is a must.

A complete gas system has been developed to make vacuum inside the detector,

fill the detector with high pressure Xenon, the recirculation of the Xenon through

the purification getters (three units: two cold, one hot), cryo-recover of the

enriched Xe and also in a emergency to recover the enriched Xe.
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Slow Control

To control all these systems, we have developed a complete Slow Control

to monitorize all the status of the most important elements of the detectors.

Four computers, using Labview programs, show the information and allow to

control the High Voltage of the Cathode and the Gate, the Voltage of all the

photosensors, the temperature of different components of the system, the status

of the Gas System and some other features.

In any case, 24h shifts are done (underground or at the surface building) to act

as fast as possible in case of emergency.

3.1.2 Impact of radioactivity

Natural radioactivity in detector materials and surroundings is, as in most other

2β0ν decay experiments, the main source of background in NEXT. Other possible

sources of background like airbone radon, neutrino and neutrons are under

control by other means and their contributions are negligible compared with

natural radioactivity.

For NEXT, the expected 2β0ν peak of 136Xe (Qββ = 2458.1 ± 0.3keV)

[M. Redshaw and Myers 2007] and [P. M. Cowan and Barber 2010] lies in

between the photo-peaks of the high-energy gammas emitted after the β decays

of 214Bi and 208Tl, intermediate products of the uranium and thorium series,

respectively:

In the lower part of the 238U chain, we will find out the 214Bi. After its decay, the

daughter isotope, 214Po, emits a number of de-excitation gammas with energies

around and above the Q value of 136Xe. The gamma line at 2447 keV (1.57 %

intensity) is very close to Qββ, and its photoelectric peak would overlap the

signal peak even for energy resolutions as good as 0.5% FWHM. All the other

gamma lines emitted after the decay of 214Bi have very low intensity (at least two

orders of magnitude lower than the 2447 keV line), and hence their contribution

to the background rate can be neglected.
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In the lower part of the 232Th chain, we will find out the 208Tl. After its decay,

the daughter isotope, 208Pb, emits a de-excitation photon of 2615keV with an

intensity of 99.75%. Electron tracks from its photo-peak can lose energy via

bremsstrahlung and fall in the region of interest (ROI) around Qββ defined by the

energy resolution of the detector. Additionally, even though the Compton edge

of the 2.6 MeV gamma is at 2382 keV, well below Qββ, the Compton-scattered

photon can generate other electron tracks close enough to the initial Compton

electron to be reconstructed as a single track with energy around Qββ.

3.1.3 The NEXT background model

NEXUS is a Geant4-based detector simulation developed by the NEXT

Collaboration. More information about it can be found in The NEXT experiment

for neutrinoless double beta decay searches, PhD thesis of J. Martín-Albo [Justo

Martín-Albo 2015], and also in [J. Martín-Albo et al. 2016] and [Lopez-March

2016].

NEXUS has been used to estimate the 2β0ν signal and background detection

efficiencies using Monte Carlo (MC) simulations.

Figure 3.5: Left side, a signal event. Right side, a background event

A 2β0ν candidate event requires that:
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• Only one track is reconstructed fully contained within the fiducial volume

of the detector (defined by excluding a region of 2 cm around the

boundaries of the active volume). The definition of a fiducial volume has

two purposes: it rejects all charged backgrounds entering the detector and

it discards those events in which the tracked particles may have left the

active volume, depositing part of their energy in passive materials.

• The reconstructed track features a blob at both ends. As can be seen in

figure 3.5, two blobs are produced by two electrons and a single blob means

that there is only one particle.

• The energy of the event is within the region of interest (ROI) 2.448 < E <

2.477 MeV.

This selection criteria gives an efficiency of 28% for 2β0ν signal events. But, the

good point is that backgrounds from 208Tl and 214Bi are suppressed by more

than 6 orders of magnitude, being the background from 2β2ν decays completely

negligible.

The Background rejection rates are obtained dividing the initial activities of
208Tl and 214Bi by the corresponding background rejection factors (defined as

the inverse of the background acceptance resulting from the 2β0ν-decay event

selection just described).

The NEW data will make possible the validation of the NEXT-100 background

model, currently based on detailed Monte Carlo detector simulation and

radiopurity measurements that predict the background rate for NEXT-100.
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3.2 SuperK-Gd

Super-Kamionade is the 2nd Generation of KamiokaNDE (Kamioka Nucleon

Decay Experiment). In Chapter 1, they are discussed several of the milestones

and prizes of the Super-Kamiokande detector. This section aims to briefly

explain the next upgrade of the detector, SuperK-Gd.

SuperK-Gd project will enable Super-Kamiokande to efficiently detect thermal

neutrons by dissolving Gd2(SO4)3 into SK at a concentration of 0.2%. Once

the neutrons (produced for instance by the interaction of an antineutrino)

are thermalised, they are captured by Gadolinium, emitting a delayed 8 MeV

photons cascade from its de-excitation. The detection of this cascade in time and

space coincidences with a neutrino event opens the experiment to new reactions

of high scientific interest.

For a more complete explanation about the SuperK-Gd project, one can read

’Neutrino Physics in Present and Future Kamioka Water-Cherenkov Detectors

with Neutron Tagging’, PhD Thesis written by P. Fernández from UAM,

[Fernández 2016]

3.2.1 Neutrino-Neutron Physics

First of all, we are going to introduce one important reaction of neutrinos and

antineutrinos with nucleons:

να + n→ leptonα + p (3.1)

να + p→ leptonα + n (3.2)

Considering low energy events, ≤ 100MeV, only νe can produce a charged

lepton, the positron, therefore a neutron. This free neutron is a very important

source of information. With neutron tagging, we have a very useful way of

discerning antineutrinos from neutrinos.
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Considering high energy events, the ν-neutron processes are more complex and

difficult to describe analiticaly, with several neutron production mechanisms

and with a bigger neutron emission multiplicity than low energy events.

These reactions can be classified into three categories: elastic and quasi-

elastic scattering, resonant and coherent meson production and deep inelastic

scattering.

It is remarkable that most of the physics goals of the detector will be improved

with the addition of a neutron tagger. For example, in proton decay the Gd

adding will bring sort of veto requirement thus reducing the background.

3.2.2 Gadolinium as a Neutron Capturer

The best choice for neutron capture was Gadolinium, a rare earth with the largest

neutron capture cross section, mainly the odd isotopes. Other advantage of Gd

is that these odd isotopes are present in Gd with about ∼ 30% of the total

abundance (see Table 3.1).

Gadolinum Natural Abundance Neutron Capture De-excitation

Isotope (%) Cross Section (barn) energy (MeV)
152Gd 0.20 1050 6.25
154Gd 2.18 85.0 6.44
155Gd 14.80 60700 8.54
156Gd 20.47 1.71 6.36
157Gd 15.65 254000 7.94
158Gd 24.84 2.01 5.94
160Gd 21.86 0.765 5.64

Table 3.1: Gadolinium isotopes with the most important characteristic for neutron
tagging. The high Neutron Capture Cross Section and the high Energy released are
superb.

Therefore, the neutron capture will be made mainly by 155Gd and 157Gd and the

emitted energy will be about 8 MeV.
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Figure 3.6: Inverse beta process with neutron capture by a Gd nucleus.

The Inverse β with Neutron Capture process is a double event process with a

delayed coincidence, in time but also in space, (shown in figure 3.6) is as follow:

• Antineutrino interaction with a proton and creation of a neutron and a

positron.

• The neutron is thermalised in the water and captured by a Gd atom,

traveling typically about 2 meters. The time of this thermalisation is

∼ 10µs.

• Once thermalised the neutron, a Gadolinium atom will capture it. Finally,

the de-excitation with the emission of photons is produced. This process

has a typical time of ∼ 20µs.

Once chosen Gd as the neutron capturer, it is necessary to decide how to dissolve

this element, because it is a metal and therefore it is not soluble. Gadolinium

salts were the best solution, thanks to their solubility.

Two different candidates were the most promissing options: a binary salt, GdCl3,

and ternary salt, Gd2(SO4)3. Both salts were interesting candidates, but GdCl3
presented light absortion close to Cherenkov light peak (∼ 350nm) and some

undesired corrosion effects.

The main characteristics of the chosen salt Gd2(SO4)3 are: no observed corrosion

effects in the water tank, excellent solubility in water, small light attenuation and

an excellent uniformity of the solution.
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Figure 3.7: Left side, photon multiplicity emitted after the de-excitation of the
Gadolinium. Right side, Fraction of neutrons captured by Gd vs concentration of Gd
in thw water.

The final decision is to use 100 Tons of Gd2(SO4)3, 0.2% of concentration. With

this concentration, the probability of the detector to measure emitted neutrons is

∼ 80% (∼ 90% capture, see figure 3.7-right and ∼ 90% reconstruction efficiency)

3.2.3 EGADS R&D

EGADS (Evaluating Gadolinium’s Action on Detector Systems) is the name of

a Research and Development program to test a water Cherenkov detector with

Gadolinium as a neutron tagger.

The EGADS detector, placed in a new cavern done for this detector, is scale

1:250 similar to Super-Kamiokande. The EGADS water tank contains 200 ton

of ultrapure water, with 5.417 m in diameter and 4.949 m in height. Inside this

water tank, there are 240 photomultipliers; 227 of them are similar to those in

the SK detector, 151 PMTs without any cover, 16 PMTs with an FRP housing and

the 60 remaining PMTs with FRP and acrylic cover.

As in every ultra low background detector, during its construction and

operation, cleanliness is a must and all the team were properly equipped, all

the parts were cleanned with alcohol or pure water and continuous flux of air

inside the detector were used to avoid the presence of dust.

Once dissolved Gd, a Water Purification System is responsible to keep the

excellent conditions of the water. The first stage, the pre-treatment before the
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Figure 3.8: Most important parts of the EGADS water tank

water purification system, mainly consist of three part: first, several microfilters

to remove the largest particles of dust; second, an UV to kill the possible

bacterias and the third is a special resin, AJ4400, designed to remove Uranium,

in order to improve radiopurity of the solution. After this stage, the solution is

pumped to the water purification system . In this system, the solution passes

through several filters to separate Gd salt ions (Gd3+ and (SO2−
4 )) and the pure

water. This pure water is further purified and reunited to the Gd salt ions and

injected to the tank.

Thanks to this system, the solution properties fulfill the requeriments: the

luminosity of the water is very similar to Super-Kamiokande (only with pure

water) and the Gd concentration has a very good uniformity in all the parts of

the detector.

Finally, after a fruitfull period, this technology has been probed and SuperK-Gd

was approved by the Super-Kamiokande Collaboration (June, 2015).

3.2.4 Impact of radioactivity in SuperK-Gd

In previous versions of the detector, only ultra pure water was present inside

the water tank. But, with the addition of Gd2(SO4)3, radioactive impurities

in the salt can produce some dangerous backgrounds in the fiducial volume.

We have to quantify and minimize these backgrounds. In an extreme case,
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Figure 3.9: Example of the double signal produced by the neutrino and the neutron.

it is even possible to saturate the detector in cases of very large radioactive

contaminations. Radiopurity of the chosen Gd sample is a must to have a

powerful detector. The different materials used for the detector and the walls

are less important because it is more complicate for them to contribute to the

background entering in the fiducial volume.

Mainly, there are three sources of background: Spontaneous Fission, (α, n)

reactions and High Energy Beta Decays. All these decays have been explained

in detail in Subsection 2.1.

Spontaneous Fission

In our case, we have two different sources of SF backgrounds: U and Th. Because

the probability of this decay is 4 order of magnitude lower in 232Th than 238U,

we consider only this uranium isotope.

Uranium has three different observed decay modes: alpha decay, Spontaneous

Fission and double beta decay. Other decay type, Cluster Decay2 emitting a 14C

nuclei is energetically possible but not observed. The two first of these modes

can be a possible source of background.

2Cluster Decay is a nuclear decay where an atomic nucleus emits a small cluster of neutrons and
protons, bigger than an alpha particle, but smaller than an usual binary fission fragment
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The Spontaneous Fission has been deeply explained previosuly, but it is useful

to remember that the mean gamma energy emitted is about 6 MeV, where the

energy is shared by the emitted photons with about 1 MeV per each one. In the

case of the neutrons, the mean energy is between 1 and 2 MeV per neutron, with

a mean number of emitted neutrons ∼ 2 per decay.

The problem of SF is that if only one photon and one neutron are produced in

the decay, the event has a very similar signature in the detector than that of the

inverse β antineutrino reaction, thus becoming an irreducible background in the

detector.

alpha, n

After an α decay, it can be produced a secondary process, the (α, n) reaction.

This alpha particle can be captured by some elements in the fiducial volume.

The best candidates for these reactions are two oxygen isotopes: 17O and 18O.

For example, a typical reaction is:

18O + α→22∗ Ne→20 Ne + 2n (3.3)

We can observe that in this case the multiplicity of neutrons is 2. These

backgrounds, alone or in coincidence with some other neutrino events, can fake

the investigated reactions.

High Energy Beta Decays

After a beta decay, there are two emitted particles, the electron and the de-

excitation photon. The most dangerous isotopes are those with higher energies,

like 208Tl (Qβ = 5.00MeV), 212Bi (Qβ = 2.25MeV) and 214Bi (Qβ = 3.27MeV),

that can fake the signal of a low energy neutrino or the neutron capture event if

it coincides with a solar neutrino candidate.
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3.2.5 Impact of radioactivity in SuperK-Gd

With all these information and with the expected values of the events we want

to observe, we have these radiopurity requeriments for SuperK-Gd.

Decay Chain Sub Chain SRN (mBq/kg) Solar ν (mBq/kg)
238U 238U < 5 -

226Ra - < 0.5
232Th 228Ra - < 0.05

228Th - < 0.05
235U 235U - < 3

227 Ac/227Th - < 3

Table 3.2: physics-based requirements for radioactive impurities in the Gd2(SO4)3 salt.
Where no number is given (-), the corresponding requirement is less restrictive than that
for the other physics analysis

In these cases, it is important to remark that these levels are possible to obtain

with our usual measuring procedures, except for the 232Th, where the restrictive

limits of < 0.05 make harder the possibility to achieve these goals.
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4
The characterization of radioactivity

contamination in materials:

experimental techniques

The precise estimation of the activity of the materials for very low background

experiments requires a deep understanding of the high precision detectors

employed to quantify these contaminations.

The most used technique is High Purity Germanium detectors, HPGe, but

sometimes were used Mass Spectrometers. Both types of detectors and the study

of the signal obtained are explained in this Chapter.
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4.1 High Purity Germanium detector (HPGe)

For gamma spectroscopy, typically were used Iodide-based detectors. But,

nowadays, semiconductors detectors have take their place. First, silicon-based

detectors but, finally, germanium detectors became the most used in gamma

spectroscopy.

Figure 4.1: Comparison between a sodium iodide scintillator and a Ge(Li) detector, where
it is easy to observe the better pulse height and energy resolution in germanium detectors.
The gamma source was 108∗Ag and 110∗Ag. The original picture was taken and adapted
from Radiation Detection and Measurement, Glenn F. Knoll

Germanium detectors have bigger photoelectric cross section than silicon

detectors, thanks to their bigger atomic number. Ionizing radiation produces

in germanium electron-hole pairs, where the number of pairs are proportional

to the energy of the incident radiation. The most important advantage with

other detectors is that the energy to create a pair electron-hole is lower that in

other detector, for example, paired ions in gas detectors. Therefore, the effect of

the statistical fluctuation is less important and the energy resolution is actually

the best for this measurement. This excellent energy resolution allows these

detectors to precisely observe closer peaks than others detectors, improving the

measurement techniques.
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Ge(Li) detectors, where lithium drifting process is produced, were the first

type of germanium detectors. Lately, in the mid 1970s were developed the

High Purity Germanium (also called Intrinsic Germanium). These detectors

have impurities lower than 1010atoms/cm3 thanks to the improvement of the

production techniques of production.

The interval of working energies for silicon detectors depends of several factors,

mainly the composition of the detector and the size. With these characteristics,

HPGe’s cover energies from a few of keV to several MeV, detecting almost all

gamma rays produced in nuclear decays. Also, they can observe several atomic

x-rays events with energies around 100 kev. For radiopurity studies, energies

above 2700 keV are not necessary.

To improve the signal-noise ratio, it is necessary to operate in underground

conditions and also to place the detector inside a shielding castle. This castle

has usually two parts: the outer part, made of Pb and the inner part, made by

Cu. A complete explanation of shielding can be found in [Heusser 1995].

But, the main disadvantage of germanium detectors is that germanium has a

small band gap (0.7 eV) and they need to be operated at low temperature.

Usually they are cooled liquid nitrogen to 77K, kept in a dewar in thermal

contact with the detector. The emanating gaseous nitrogen from this dewar,

also is employed to create a nitrogen atmosphere inside the shielding to reduce

the presence of radon. Luckily, HPGe detectors can be in room temperature

between uses. Then, HPGe are replacing Ge(Li) because the need to be always

at low temperatures.

Despite the worst energy resolution, Iodide detectors are still important like a

relative reference for detector efficiency. Then, the efficiency is still often quoted

in relative terms to a standard 3" x 3" of NaI(Tl). For HPGe’s installed at LSC,

this efficiency is about 100%.
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4.1.1 Gamma-ray interaction with matter

To understand the behavior of the gamma ray with the detector and also the

shielding is necessary to know how gamma rays interact with the matter. When

a collimated source of monoenergetic photons cross a material, the intensity

varies as follows:

I = I0 · e−µx (4.1)

where µ is the absorption coefficient (also known like attenuation coefficient) of

the material, I0 and I are the initial and final intensity of the beam, and x is the

thickness of the material

Absorption coefficient of the material is dependent of the energy of the incident

photons and strongly dependent with the atomic mass. This coefficient can be

defined like the sum of the three most important different interactions that can

happen:

µ = τ(photoelectric) + σ(Compton) + κ(pair) (4.2)

Figure 4.2: Total absorption coefficient of Lead (including three absorption processes)
versus energy of the photons.
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Where τ(photoelectric) is Photoelectric Effect coefficient, σ(Compton) is

Compton Scattering coefficient and κ(pair) is Pair Production coefficient. The

three different processes of attenuation ionize the material follow these laws:

• Photoelectric effect: in this process, the photon vanishes transferring the

main part of its energy to an electron and unbounding it from the nucleus.

Very small part of the energy is transferred to the nucleus as a recoil. It

follows the Einstein equation for photoelectric effect:

Ee = hν− Eb (4.3)

Where Ee is the energy of the unbounded electron, hν is the energy of the

electron and Eb is the bounding energy of the electron. It is important to

remark that to cover the vacancy of the electron can be used a free electron

from the medium a can be produced a rearrangement of the electrons of

the atoms, with the emission of x-rays or Auger electrons. This x-rays

usually a absorbed very close to the emission of it, usually a millimeter or

less.

This effect is the dominant effect for low energy gammas, < 0.5 MeV.

• Compton scattering: this process is similar to photoelectron effect, where

the photon interacts with an electron. But, in this case is a inelastic

scattering where the energy is shared by the two particles, the photon and

the electron. The change of the energy of the photon follows this equation:

hυ′ =
hυ

1 + hν
m0c2 (1− cosθ)

(4.4)

where θ is the scattering angle produced with the initial and final

directions of the incident photon. The rest of the energy is transferred

to the electron.

This effect is dominant for intermediate energies.
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• Pair Production: when a gamma-ray has a energy larger than twice the rest

mass of an electron, 1022 keV, it is possible to produce this process. As can

be seen in figure 4.2, this process becomes the most important in energies

about a few MeVs. In pair production, the gamma ray is replaced by a pair

electron and positron, where the energy above 1022 keV is shared in form

of kinetic energy.

Electron produced will deposite their energy, but when the positron is

slowed to a energy similar to the electrons of the medium, it will be

annihilated, with the emission of two photons that possibly will interact

with the detector. But, sometimes these photons can scape producing two

peaks, one for single scape (with 511 keV less energy) and other for double

scape (with 1022 keV less energy).

This effect is dominant for high energy gammas, above 2MeV.

4.1.2 Gamma-ray energy deposited in a HPGe detector

The objetive of a gamma ray detector is to measure all the energy of the emitted

photon, known like Full Energy Peak. For low energy events, a Photoelectric

interaction will absorbe all this energy. But, when the gamma ray energy is

bigger, Compton Scattering and Pair Production appears. In these cases, the

energy is shared between electrons and photons. In figure 4.3 we can observe a

schematic view of some gamma interactions inside a detector.

Figure 4.3: Different events that can happen in a HPGe.
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For Photoelectric Effect, left side of figure 4.3, is easy to observe that the energy

is transferred to the electron and this event will be a part of the Full Energy

Peak.

These are the ideal events, where all the energy deposited goes directly to a Full

Energy Peak event.

For Compton Scattering, the Full Energy Peak correspond the central example

of the figure 4.3, in the lower part. There, after the Compton Scattering, the

photon will deposite the rest of the energy via Photoelectric Effect.

If the photon escapes without depositing its energy in the detector after the

interaction, the energy deposited of the electron will be lower than the Full

Energy peak. The deposited energy in the HPGe follows a smile-like continuum

spectrum with a gap between the full energy peak and the Compton continuum

spectrum; where the maximum energy deposition is produced in the case of

backscattering of the photon, θ = π. The energy of the end of this distribution,

known like Compton edge, is:

hυ′|θ=π =
hυ

1 + 2hν
m0c2

(4.5)

The gap between Full Energy Peak has an upper limit, obtained in the case of

high energy gammas, 2hν >> m0c2:

Ec ≡ hυ f − Ee|θ=π =
hυ

1 + 2hν
m0c2

∼=
m0c2

2
= 256keV (4.6)

In the case of the HPGe’s employed in our work, the size of the detector

makes possible to have several Compton Scattering without depositing all the

energy in the detector. That process, known like Multiple Compton Scatterings

and presented in figure 4.4, makes a different continuum spectrum, where it

contribution can be mainly observed between Compton Edge and Full Energy

Peak.
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For Pair Production, the process is more complex, as can be seen in figure 4.3.

When the pair electron-positron is created, the positron will be thermalized and

annihilated, emitting two photons with opposite directions.

It is possible that one photon scapes and while the other interacts losing all its

energy via Compton Scattering and Photoelectric effect. In this case, this event

will have the energy of the Single Scape Peak. If both photons escape without

interacting, we will observe the Double Escape Peak.

Figure 4.4 is only an example of possible intercations with the detector,

because the annihilation photons can independently scape, interact via Compton

Scattering or interact via Photoelectric Effect. The escaping photons can deposit

(via Compton Scattering) part of their energy in the detector. Then, some

events with energies between Double Scape Peak and Full Energy Peak will

be measured by the detector.

Figure 4.4: Spectrum of a High Energy Gamma source. Most remarkable parts of the
spectrum are shown.

There are other second order effects that could be detected like events in the

detector, produced for example when we have a very active sample and the

emitted gammas interact with the shielding.
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For Photoelectric Effect, rearrangement of the electrons produce some x-rays

photons that can be detected like a small peak in the region of 100 keV. For

Compton Scattering, the scattered photon from the interaction with a electron

from the shielding can be scape towards the detector. The interval of energies

where Compton Scattering is the dominant interaction and the angle of the

photons necessary to arrive to the detector (usually bigger 110 degrees) make

this non- gaussian peak appears about 250 keV. And, For Pair Production, when

a positron produced in the shielding and lately annihilated, it produces a pair

of 511 keV photons that can be detected, producing a peak in the spectrum.

These three background sources are usually small and easy to observe and avoid,

because they are not close to our experiments important peaks.

4.2 Radiopurity Services of the LSC

Canfranc Underground Laboratory (LSC, Laboratorio Subterráneo de Canfranc)

is located in the Spanish side of the Pyrenees, under the Tobazo mountain. The

experimental halls of the Laboratorio Subterráneo de Canfranc (LSC) have been

excavated in the rock 850 m deep, approximately 2450 m.w.e. overburden that

suppresses the cosmic muon flux by 5 orders of magnitude.

LSC is a ICTS1 (Infraestructuras Científicas y Técnicas Singulares) and runs by

a Consortium between the Spanish Ministerio de Economía y Competitividad,

the Government of Aragon and the University of Zaragoza. The underground

facilities have been completed and delivered by the University of Zaragoza to

the Consortium on 30 June 2010.

The LSC’s total area is about 1.250m2 corresponding to a volume of about

10000m3 and it has two experimental halls (40x15x12m3 and 15x10x7m3) in

which the experiments are distributed as well as offices, a clean room a

mechanical workshop and gas storage room. Outside the mountain, the LSC

headquarters and administration external building has 16 offices for scientific

users, 9 offices for LSC personnel and 4 specialized laboratories as well as a

1http://www.idi.mineco.gob.es/portal/site/MICINN/ICTS
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Figure 4.5: Map with the location of the two new LSC laboratories. Inside Lab2400 are
placed NEXT detectors

mechanical workshop and storage room, meeting, conference and exhibition

rooms and 2 apartments.

Seven experiments have been approved (ANAIS, and ArDM on dark matter,

BiPo, NEXT and SuperK-GD on neutrinos, GEODYN on geodynamics and

GOLLUM on biology). The scientific users are about 254 from 19 Countries.

Figure 4.6: View of the HPGe farm at LSC

The LSC also offers a Radiopurity Service to measure ultra-low radioactivity

using four high purity germanium detectors (HPGe). The HPGe detectors
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property of LSC are p-type close-end coaxial High Purity germanium detectors

produced by Canberra France, with 100-110% relative efficiencies, that is defined

like the relative efficiency to a 3"x3" NaI detector at 1332 keV and for a distance

of 25 cm between the source and the detector. The energy resolution at FWHM

is about 2 keV at the 60Co gamma line of 1332 keV.

The active volume of crystals ranges from 410 to 420 cm3, with a cylindrical

shape with similar diameter and height, about 81 cm. Cryostats are made of

ultra-low background aluminum.

Figure 4.7: View of the HPGe without the shielding

Each detector has a shield consisting of 5 cm of oxygen-free copper and 20 cm

of very low activity lead having <30 mBq/kg of 210Pb; nitrogen gas is flushed

inside a methacrylate box to avoid airborne radon intrusion.

The data acquisition system is based on Digital Signal Processing using Canberra

DSA1000 modules.

The most used detectors for NEXT measurements are those named GeOroel,

GeTobazo, GeAnayet, GeLatuca and geAspe. The name of the detectors is the

same that the most important mountains around the laboratory. These detectors

are in operation since 2011.
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Figure 4.8: HPGe background, part 1. Detectors GeAnayet, GeTobazo and GeOroel
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Figure 4.9: HPGe background, part 1. Detectors Gelatuca, GeAspe and Asterix
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For example, the background spectrum of one of the LSC detectors, geOroel, has

approximately 500 counts/day between 100-2700 keV. The relevant gamma lines

of 583 keV (208Tl) and 609 keV (214Bi) contribute with 1 and 3 counts per day

respectively.

To place the sample as close as is possible to the detector, LSC employees a

Marinelli beaker, designed for HPGe measurements. This cylindrical container

has an annular bottom part, adapted to introduce the detector and increase

as much as possible the detection efficiency. This container is made by

polypropylene with the cover of polyethylene. The usual sizes employed at LSC

are 1 and 4 Liter.

Figure 4.10: Sample of different Marinellis beakers employed at LSC for radiopurity
measurements

4.3 Typical measurement procedure

To carry out a radiopurity measurement, are involved some people from

different institutions. The first step is the sample selection.

In NEXT, the selection of the materials depends on a joint decision from several

parts of the experiments. Mechanical and electrical engineers are in charge to

design the detector and usually they need to check the radiopurity of some new

components to be placed in the detector. Different plastics, screws, electronic

components or metal alloys are typical options that engineers propose us for

the measurements. In this point, Radiopurity Team, with some help from the
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Background Model people, check in databases information from these options

and choose the best options for the measurement. Sometimes, no information

about these samples is found and we have to be the first to measure it. After this

selection, we ask with LSC for availability of detectors to do the measurement.

In SuperK-Gd, Japanese part of collaboration are in direct contact with several

companies that produce Gadolinium Sulphate. Therefore, they talk with the

companies about our radiopurity requirements and send samples of about 1 to

5 kg to measure them at LSC.

Once chosen, we have to prepare and clean the sample. In NEXT, we have a wide

variety of sample types and sizes. The sample size is limited by the marinelli

size. Usually it is not necessary to use more space that marinelli offers, but

sometimes we have measured bigger samples, removing the marinelli and using

freely the space inside the shielding and around the detector. One example is

the Copper CuA1 measurement, a 94 kg measurement that is shown in figure

5.12 and in row # 24 of the tables 5.1 and 5.2

In SuperK-Gd, the samples are mostly powder samples that easily fit in a

marinelly. The only complication is to not spill the Gadolinium Sulphate powder.

Before each measure is recommended a calibration run of the detector, necessary

guarantee that the detector is working properly, checking possible problems like

lost of detection efficiency (smaller peaks) or drift in the energy of the peaks.

At LSC, calibrated radioactive sources of 60Co and 152Eu are used during 1000

seconds for calibrations.

The first source, 152Eu, is a source with a large amount of peaks, good to

calibrate. For our calibrations can be used 21 different peaks in the interval

of 100-1500 keV, where the most important peaks are 122 keV, 344 keV, 779 keV,

1112 keV and 1408 keV. One calibration event is shown in figure 4.11 with all the

important peaks fitted.

The second source, 60Co, is a well known isotope found in several radiopurity

measurements. It has two strong peaks with energies of 1173 keV and 1333 keV.

Additionally, we can observe the double coincidence peak, where both gamma
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Figure 4.11: Callibration spectra with 152Eu source. The most important peaks are fitted

photons have deposited all their energy and we can observe a peak with 1173

keV + 1333 keV = 2506 keV. This peak, with a low probability in comparison

with the other two, can be used for detector calibration at high energies. In our

case, after a callibration of 1000 seconds, 1173 keV and 1333 keV peaks are about

∼ 30000counts and 2506 keV peak is about 10− 20counts.

After calibration, we start the screening of the sample and the analysis. During

this process, weekly checks are done the evaluate if everything is working

properly and if it is necessary to extend more time the measurement. This

analysis process is explained in Section 4.7. Typically, the measurement time

is about 1 month.

Finally, the results are shared with the people of the collaborations and we

decide if this sample enough radiopure for our requirements or not.

88



4.3 Typical measurement procedure

4.3.1 Sample preparation

Once the sample is selected, it must to be cleaned. Superficial contaminations

from external sources can fake the radiopurities measurement and make

necessary to clean all the samples before its radiopurity measurements and also

before been placed in the experiments.

The usual cleaning protocol for samples is as follows. For big samples, they

will be cleaned by hand with clean room wipes and pure alcohol with ethylene

or methylene, depending of the availability. If the samples are smaller, these

samples will be cleaned in an ultrasonic bath and alcohol at room temperature

during 30 minutes.

For the cleaning of metals, in our case Cu and Pb, it is necessary to use acids for

the cleaning. For copper, the process is as follows:

• External cleaning, removing the possible oxide layer in the pieces

• Soap cleaning in a bath with Elma 60 (acid soap at 5% solution) during 30

minutes at 40 degrees.

• Water bath in pure water to remove the soap.

• Acid etching at super pure nitric acid bath (4% solution at 40 degrees)

during 30 minutes.

• 3 successive pure-water baths, rinsing the copper pieces to remove the acid

from the surface

• Passivation at citric acid bath (10% solution at 40 degrees) during 30

minutes with in water rinse

• 2 successive pure-water baths, rinsing the copper pieces to remove the acid

from the surface

• Drying with clean room wipes

For Pb, the process is almost the same but without passivation step, not

necessary for this material.
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Figure 4.12: Peak identification with a very dirty sample, GOX-1602-NYC-1. First and
second parts of the spectrum is shown in the figure
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4.3 Typical measurement procedure

Figure 4.13: Peak identification with a very dirty sample, GOX-1602-NYC-1. Third and
fourth parts of the spectrum is shown in the figure
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Figure 4.14: Peak identification with a very dirty sample, GOX-1602-NYC-1. Fith part of
the spectrum is shown in the figure

For PMTs, the cleaning protocol is a bit different. These sensors are fragile and

we have to be careful with them, mainly with the ceramic stem and with the

pins. The cleaning protocol recommended by Hamamatsu consists of normal

cleaning with alcohol and clean room wipes for the body and the window of the

PMT and careful cleaning with special sticks for the pins and the ceramic stem.

For the metal samples prepared for germanium spectrometry, a different

protocol has been used. This protocol is: diamond cut of the sample, cleaning

with acetone, ultrasound bath with acid-detergent, 63% nitric acid bath, new

cleaning with acetone and storing in a sealed plastic bag.
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4.4 Signal Extraction

4.4 Signal Extraction

As is explained in Chapter 4.1, the signal observed in a HPGe is composed

of mainly two contributions: the Full Energy Peak and the sum of the several

Compton edges of the upper energies isotopes. Additionally, we have to

consider the background of the detector, that we also have to extract from the

measured signal.

First of all, we have to define the Net Signal, that is the number of counts of Full

Energy Peak that correspond to the sample. To remove the background from the

net signal, it is necessary to have also a background measurement that is taken

during about 30 days. To compare both measurements, due to the different

length of the measurements, we have to normalize the time of the background

measurement to the signal measurement and compare results. In figure 4.15 we

can see, fitted in black, a very large peak at 583 keV from the signal and the small

contribution, fitted in red, of the background peak (normalized to the duration

of the signal duration).

The background run is recommended to be taking unless one per year and check

the time stability of the detector

When the net signal is very big, we can stop the measurement because the

statistics is enough to get the signal with a very small error. Figure 4.15 is a

good example of a measurement with enough time of measurement.

Signal and background datafiles are taken daily for, in case of any problem,

discard this wrong file losing not so much measurement time.

The data obtained in each measurement gives us the number of events measured

per bin of the detector. With the present electronics at LSC, the number of

channels is 8192 and the Emax is about 2700 keV (depending of the detector).

Therefore, a rebinning factor of ∼ 0.33 keV/channel is necessary to convert

channels to energy in the x axis.

Additionally, we have to remember that, despite of the nitrogen flux, the firsts

days of measurement we can have atmospheric radon surrounding the sample,
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Figure 4.15: Gadolinium sample for SuperKamiokande experiment. In black is plotted
the signal and in red, the background. Background duration is normalized to the duration
of the signal measurement

that will fake the true value of the activity. Therefore, we have to check the 2 or

3 first datafiles and be sure that radon excess has disappeared.

For this analysis is used ROOT, a modified C++ software developed by René

Brun and Fons Rademakers for CERN. ROOT is a powerful software designed

for experimental data analysis. In my case, I have used the version 5.34/25.

We fit the signal to a gaussian plus an horizontal line (polynomial cero order).

The gaussian fits to the gamma peak properly, except in the left side. The interval

employed to fit the gaussian is 3 sigmas around the central position of the peak.

A horizontal line is a very simple but accurate approximation to the accumulated

Compton Continuum background. With the data fitted, we can calculate the area

of the gaussian that is equivalent to number of events detected. This number of

events will be converted to activity in equation 4.7.

The fitting function used by ROOT has three fitting parameters that are p0, p1

and p2. For a typical gaussian distribution, the equation is:

f (x) = p0 · e

(
−0.5

(
x−p1

p2

)2
)

(4.7)
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The number of events are equivalent to the area of the gaussian function, but the

area has been decreased with the rebin factor, necessary to convert channels to

keV. Therefore, according to gaussian equations and removing the rebin factor,

the area of the gaussian is:

Area =
√

2π · P0 · P2/rebin (4.8)

In a very low background experiment we desire very very clean materials and

sometimes we find materials where the signal is not well observed. The problem

of these very good materials is that, according to our analysis methods, we

cannot clearly observe a peak that can be used to quantify the activity of the

sample. In these cases (where the experimental limitations cannot determine if

we have a signal or not) we have to define a lower upper-limit (with usually

≈ 95% of CL) a for the activity the sample.

These lower upper limits depend on the sample (material, size, position during

the measure and Compton edge from more energetic gamma decays), the

detector (background from the detector and shielding, detection efficiency) and

the length of the measurement.

Therefore, we have to follow a criteria to find it with the maximum precision.

We are using two different methods for this analysis: when we have a large

Background and Datas and Background follows gaussian behavior and when

we have low background where the background doesn’t follow any clear fit

function or we only have Compton Continuum background.

4.4.1 Case of Large Background

In the case of Large Backgrounds, the data follows a Gaussian statistical. We can

define the observed signal, like:

Snet = (SPeak − SCompton)− (BPeak − BCompton)
tsignal

tbkg
(4.9)
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Where SPeak is the area of the signal peak, SCompton is the area produced with

Compton events. The explanation is the same for the background datas, BPeak,

BCompton, both normalized to the duration of the signal measurement.

In some cases, we can measure several peaks from the same isotope that can

be used each to measure the activity independently and their results can be

statistically added to get a more accurate estimate. For example, in 228 Ac we can

find three very close and intense peaks for their analysis. Individual analysis is

correct but a mixed analysis gives a better result and also a lower value for the

error of the measurement.

Therefore, a better estimate of this activity can be obtained from their weighted-

mean. Then, the new variance is:

σ2
κ =

1
∑n

i=1 1/σ2
κ,i

(4.10)

With a mean value of:

κ =
∑n

i=1 κi/σ2
κ,i

∑n
i=1 1/σ2

κ,i
(4.11)

There two cases where we are going to obtain upper limits instead of value of

the activity: first is when Net Signal has a negative value. Activity can only

take positive values; negative values are always interpreted as no source being

observed. Second case is when the number of counts of the Net Signal is smaller

than the error.

In this two cases, we will get a interval where, with a 95% of c.l., we will find

the true value of the number of counts:

κ ≤ κ + 1.645σκ (4.12)

How to get the activity from this number of counts, is explained in Section 4.7.
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4.4.2 Case of Low Background

This is method we follow for those signal that cannot be fitted with a gaussian

function. This method is widely in [Baudis et al. 2011]. It is usually used to

estimate the lower upper limit of the activity in cases of absence of signal or

non-fittable signal. In any case, we try (if it is possible) to extend exposure of

the sample until the peak could be fitted.

First of all, we define Detection Limit Ld like the level of a true net signal that

can be detected with a probability of ≈ 95%.

Ld = 2.86 + 4.78

√
SCompton + BPeak

tsignal

tbkg
+ 1.36 (4.13)

According to this criteria, we can find three different cases:

• if Snet < 0 In this case, we don’t observe any signal but we cannot affirm

that there isn’t any background source. In this case, Ld will be taken like

the lower upper-limit of the number of counts we have measured.

• if 0 < Snet < Ld In this case we have a small excess from the background

but we cannot affirm if it is a signal of activity from the sample or a

statistical fluctuation in the background rate. In this case, the lower upper-

limit is Snet + Ld.

It is recommended to extend the measure (if it is possible) in the case of an

important peak.

• if Ld < Snet We have a signal. In this case, it must be analyze it like a

normal signal.

Independently of the case, we have a number of counts (of signal or an upper

limit) that has to be converted to specific activity. In Section 4.7 is clearly

explained how to obtain the activity from a number of counts.
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4.5 JANIS database for Nuclear decays

JANIS2 is a free and complete database developed by OECD Nuclear Energy

Agency and Aquitaine Electronique Informatique. JANIS contains information

of the Nuclear Decays, of Fission yields and Interaction data, like resonance

parameters, cross-sections or neutron multiplicities.

This database is developed in Java. That means that can be used under Windows,

Mac OS X and Linux.

For our experiments, we have use the Decay Lines database, where we can find

the energy of the photons emitted in a Nuclear Decay with intensity of photon,

also with their errors. It can be also used to identify unknown peaks observed

in a data spectrum, looking in the database for peaks in the interval of energies

close to the peak.

A complete tutorial of JANIS can be found in [N. Soppera and Dupont 2014].

4.6 Monte Carlo simulation

This part of the radiopurity work, lead by Susana Cebrián from Universidad de

Zaragoza, consist on simulations to estimate de efficiency of the detector for this

sample.

Concerning the estimate of the detection efficiency, Monte Carlo simulations

based on the Geant4 [Agostinelli et al. 2003] code have been performed for

each sample, accounting for intrinsic efficiency, the geometric factor and self-

absorption at the sample. No relevant change has been observed in the

Geant4 simulation when changing version or the physical models implemented

for interactions (considering the low energy extensions for electromagnetic

processes based on theoretical models and on exploitation of evaluated

data, G4EmLivermorePhysics class and the previous G4LowEnergy classes3).

Validation of the simulation has been made by comparing the efficiency curve of

2http : //www.oecd− nea.org/janis/
3http : //geant4.cern.ch/support/userdocuments.shtm

98



4.6 Monte Carlo simulation

the detectors measured with a 152Eu reference source of known activity located

at 25 cm from the detector with the simulated one.

More or less, all the detectors have similar detection efficiency, but GeOroel a

bit better than the others. The higher efficiency shown by GeOroel is due to a

slightly larger volume in comparison with the other detectors

To simulate the samples two characteristics of the sample must be known: the

size and the composition, where that means percentage ratio of the elements of

the sample. We these two parameters, we usually simulate an homogeneous and

isotropic emission from the sample. In some cases, where we know (thanks to

the databases or to our accumulated experience) that a heterogeneous sample

has some radiopure parts and some radioactive parts, we decide to simulate the

emission of the gammas only from those radioactive parts. One example of this

case can be the simulation of the activity of the welding of two pieces of Stainless

Steel, previously measured and with very good radiopurity results.

To quantify the detection efficiency in a measurement, we simulate the emission

of 100.000 gammas with the same energy. This step is repeated in steps of 50

keV for low energy events. For energies above 500 keV, where the behavior of

the efficiency is more stable, 100 keV are used.

To estimate the error associated to the MC simulation, we have consider these

factors:

• Detector simulation: with several parts that are complicated to perfectly

know and simulate.

• Sample simulation: with several factors that can change between samples

like size, shape, composition or position.

• GEANT 4: error associated to program and the different libraries employed

to estimate the efficiency of the measurement. It may change by the

employed version in the simulation of the measurement.

• MC method: the error associated to the MC simulation itself. It will be

reduced with a larger number os simulated events.
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Considering all these factors, we estimated that the error associated to MC

simulations is ∼ 10%.

4.6.1 Efficiency Estimation: typical examples

Now, we will show two small examples of how simulations have been made to

estimate the detection efficiency of the detectors.

For NEXT, the chosen sample are the Sapphire windows for the Energy Plane.

Each crystal is 6 mm high and has a diameter of 83.8 mm, with the total mass

was 527 g. To avoid problems with the surface of the windows, the windows

are on a teflon supporter. For the composition of the sample, we have use the

simplest possible: Aluminium Oxide, Al2O3

Figure 4.16: Montecarlo simulation of Sapphire windows for NEXT experiments. Left
side, The sample prepared. Center, the simulated sample with the emission of some
photons. Right side, the efficiency simulated

The sample chosen from Superk-Gd is GOX-1603-SHT-236. This sample is a

Gadolinium powder sample that adapts its form to the marinelli. In this case,

the sample has a cylindrical geometry with h = 110mm, rint = 120mm and

rext = 195mm.

In figure , in the left side we can observe the emission of 100 keV photons. These

low energy photons are in more of the cases self-absorbed by the gadolinium

itself.
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Figure 4.17: Montecarlo simulation of one sample of Gadolinium for SuperK-Gd

4.7 Quantification of the radioactive contamination of the
materials

To derive the activity in a sample of an isotope producing a gamma emission

of a certain energy, we need the net signal (the number of events of the

peak from to the sample, explained in section 4.4) and the Full Energy Peak

detection efficiency at the corresponding energy, together with the time of the

measurement and the branching ratio of the emission.

Now, for determining ultra-low activities of a sample (at the level of mBq/kg and

below), we have to compare the measured signal of the sample with the detector

background and following a criteria depending of the level of background (large

or low background). Finally we have obtained signal or an upper limit that we

have to convert to specific activity.

The steps taken to convert signal to specific activity are:

• Fist step is to obtain the Net Signal. To do this we have to extract it

using the data run and the background run of the HPGe detectors. In

this moment we have detected counts / measurement time.

• Second step is to divide per the duration of the measurement in seconds.

Now, we have detected counts / second.

• Third step is divide per the emission intensity, according to Janis database.

Now we have detected disintegration / second
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• Forth step is divide be the detection efficiency of the Full Energy Peak,

estimated with MC simulations. Now we have disintegrations / second,

that is Bq.

• The las step is to convert this activity to specific activity, dividing by kg,

number of units, length... depending of the sample screened.

4.8 Other techniques

Not only HPGe’s are employed to measure the amount of radioimpurities of the

materials. These other techniques are not capable to directly quantify the lower

parts of the chains but in some cases they are necessary for our experiments.

The two different techniques employed are Mass Spectrometry (MS) and Radon

Emanation analysis.

4.8.1 GDMS and ICPMS

In these techniques, ions are extracted from the sample for mass spectrometry;

the main difference between is how to obtain these ions. Mass Spectrometry

techniques are fast and requires only a small sample of the material. For our

experiments, we have used Glow Discharge Mass Spectrometry (GDMS) and

Inductively coupled plasma mass spectrometry (ICPMS)

Several samples have been measured for NEXT and SuperK-Gd. This technique

is more relevant for SuperK-Gd because it can quantify better the number of

atoms of 238U, an important source of background.

In GDMS are used solid samples to function as the cathode in a plasma

or discharge gas, typically argon. Direct analysis of solid samples can be

advantageously performed, without chemical sample preparation. The gas ions

are accelerated toward the sample resulting in erosion and atomization of its

surface, and those extracted atoms will be detected with a mass spectrometer.

This technique is recommended for metals, used in NEXT in several samples
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like Stainless Steel, Copper or Lead (see 5). The samples were prepared with a

surface of 2x2cm2 for its measurements.

For our ICPMS measurements, the sample must be prepared before the

measurement, converting it into a liquid. The sample is nebulized and converted

in atomic ions that finally goes to a Mass Spectrometer.

We have to remark two strong disadvantages of Mass Spectrometry: first is

the uniformity of the sample. We are only analyzing a small part of the

sample and is the sample is not uniform, very different results can be obtained.

Second disadvantage is that this method cannot measure our most important

radiopurity peaks. Measured concentrations of U, Th and K have been converted

to 232Th, 238U and 40K activities. No information on daughter nuclides in the

chains and a possible disequilibrium in the lower part of the chain cannot be

detected.

In any case, this technique is very useful to make a pre-selection of samples, with

information of the activity in the upper part of the chain. Later, these samples

must be screened with germanium detectors underground.

4.8.2 Radon emanation

As it was commented in Chapter 2, radon is present in the natural decay series

and is a gas that can also escape from the materials, mainly by diffusion or by

the nuclear recoil after an alpha decay. The most dangerous These is not a direct

measure of the amount of 214Bi, it measures the number of atom of radon that

scape from the material that lately will undergo several decays to 214Bi.

These measurements were carried out by Grzegorz Zuzel from Jagiellonian

University, Cracow, Poland.

The detector consist of a vacuum chamber for the sample and a cryogenic

adsorption trap to capture radon to detect the alpha decays of its daughters.

The sensitivity limits are about some µBq/sample and the duration of these

measurements are about 2 or 3 weeks.
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Some positive results have been obtained from these measurements but they are

still not published.

4.9 Conversions between ppb and Bq/kg

When you make a measurement with HPGe, you are counting decays,

usually Bq/kg. In the other hand, using Mass Spectrometer you are getting

concentration units, usually ppb.

These two techniques are very common to quantify the radioactive

contamination of a sample, but it is not usual to find the conversion process

between these two units. An important point is that these two magnitudes are

not equivalent, specific activity and concentration don’t have the same units and

are related by these two equations.

A = λN (4.14)

n =
Na

ma
m (4.15)

Combining these two equations and taking care with the units, we will finally

get the conversion equation:

For example, for Uranium, we will get:

a =
1Bq U

kg sample
⇔ Conc = 7.46 · 10−11mat1/2 ppb o f U (4.16)

With the half-life in years. In the case of ppb of U and activity of one isotope,

for example 238U

a =
1Bq U

kg sample
⇔ Conc = 7.46 · 10−11 mat1/2

nabun
ppb U (4.17)
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Or, in the opposite direction:

1ppb U ⇔ a = 1.33 · 1010 nabun
mat1/2

Bq U238/kg (4.18)

With these equations, we can find out the typical conversion factors:

1Bq/kg 238U ⇔ 81ppb U (4.19)

1Bq/kg 232Th⇔ 246ppb Th (4.20)

1Bq/kg 40K ⇔ 32.3ppb K (4.21)
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5
Radioactive contamination in NEXT

detector

5.1 Introduction

The study of the background of the detector is a key part of the low-background

detectors. We have to understand the background effects, select the most

appropriate materials, quantify their activity and estimate the impact of these

radioactive backgrounds in our 2β0ν decay search.

The most important components in our detectors are those that are in the inner

parts and the PMTs. Inner components have less shielding and bigger solid angle

to emit background events inside the fiducial volume. PMTs are photosensors
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that can’t be replaced (they are the best for our requirements), but they are

handmade and it is possible to have individual differences or radioimpurities

that makes necessary to screen all these units and check whether they are enough

radiopure or not for our experiment.

In NEXT, we have divided the detector in four sections: Energy Plane, Tracking

Plane, Vessel and Shielding and External Parts. Each part is explained in detail

in individual sections.

Furthermore, we have developed NEXUS, a software based in GEANT-4, to

quantify the effect of these activities in our experiment. For a more complete

explanation, I recommend The NEXT experiment for neutrinoless double beta decay

searches, PhD Thesis written by J. Martín-Albo from IFIC [Justo Martín-Albo

2015] and Sensitivity of NEXT-100 to neutrinoless double beta decay, [J. Martín-Albo

et al. 2016]

5.2 Energy Plane

This section is destined to study the activity of all the components placed inside

the detector and used to measure the energy of the events. We have to consider

mainly the PMTs and their bases, the copper plate and the windows, but there

are also other small components.

All this work is published in Radiopurity assessment of the energy readout for the

NEXT double beta decay experiment, [Cebrian et al. 2017].

5.2.1 PMT base

Tha base of the PMTs, also known as divider circuit, is necessary to divide

the high voltage of the PMT and also to improve the signal, in our case, to

have the needed linearity of the signal. Each PMT base in the NEW set-up is

composed of a total of 19 resistors of different electrical resistance, 7 capacitors

(5 having a capacity of 1.5µF and 2 with 4.7µF) and 18 pin receptacles fixed

on a kapton substrate using epoxy, a copper cap with a mass of ∼ 50g and a
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1-m-long cable made of kapton and copper. A paste was used for soldering. All

these components used in the PMT bases have been separately screened.

Figure 5.1: Complete view of the Energy Plane of NEW detector. We can observe the
Copper Plate with 12 holes for PMTs, behind the Sapphire windows

The Base capacitors are Tantalum Solid Electrolytic Chip Capacitors with

Conductive Polymer Electrode, TCJ Series, supplied by AVX1. Two samples

of units with the different capacities and different size and mass have been

screened. It was possible to quantify the activities from 40K, 232Th and the

lower part of the 238U chain (rows # 1 and 2 of the tables 5.1 and 5.2). The

measured activities in the larger capacitors are roughly a factor of 2 higher than

in the smaller ones, which is also the ratio between the masses of each unit.

The presence of 182Ta (beta emitter with Q = 1814.3 keV, T1/2 = 114.6 days,

produced by neutron activation on 181Ta) was identified by means of several of

its gamma emissions.

1http://www.avx.com
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Figure 5.2: Left side, AVX Capacitors 1.5µF. Center, AVX Capacitors 4.7µF. Right side,
Vishay Capacitors

In addition, a sample of capacitors from Vishay2 (Metallized Polypropylene

Film Capacitors, 5µF, 32x11x21mm3 each unit) having the dielectric made of

polypropylene was screened too. All common radioisotopes were quantified

with activities of a few mBq/unit (row # 3 of the tables 5.1 and 5.2), which

are unacceptable for NEXT, and consequently the use of these polypropylene

capacitors was disregarded.

The Resistors of the base, necessary to divide the high voltage in different stages,

are Surface Mount Device (SMD). Several samples from some suppliers have

been screened in order to obtain the most radiopure possible units.

First of them was SM2 resistors, supplied by the Japanese company Finechem3

have an alumina ceramic substrate. The dimensions of each unit are

3.2x1.6x0.55mm3. Activities have been derived for 40K as well as for the 232Th

and 238U chains (row # 4 of the tables 5.1 and 5.2). In addition, the resistors

showed important activities from 134Cs and 137Cs isotopes, which could be

related to the Fukushima accident. For 134Cs (beta emitter with Q = 2058.98

keV, T1/2 = 2.06) y, activity was 32.7 ± 1.6µBq/unit. The obtained results

can be compared with the ones for SM5D Finechem resistors, showing no Cs

activity, presented at [Alvarez et al. 2013], [Aprile et al. 2011]; results are roughly

consistent taking into account that the volume of SM5 resistors is four times the

one of SM2 resistors.
2http://www.vishay.com
3http://www.jfine.co.jp
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Figure 5.3: Results of the MC simulation of the detection efficiency with GeLatuca
detector for Finechem resistors sample. This small sample with very small mass and
placed above the detector, achieve a very large detection efficiency

Other sample consisted of resistors produced by KOA Speer 4 and supplied by

RS (Thin Film 1206, 62Ω). Dimensions of each unit are 3.2x1.6x0.6mm3. No

one of the common radioisotopes has been quantified and upper limits to their

activities have been set (row #5 of tables 5.1 and 5.2).

Finally, resistors from Mouser5 (62Ω) were analyzed too. In this case, activity of

some isotopes has been quantified and upper limits for the other ones have been

set (row # 6 of the tables 5.1 and 5.2).

Comparing the results from the three considered resistors, it can be concluded

that the quantified activities or upper limits are at similar levels of a few

µBq/unit for all of them; finally, 14 units from Finechem and 5 from RS have

been selected.

The Pin receptacles from Mill Max6 (model 0327-0-15-15-34-27-10-0) having a

shell made of brass alloy 360 were screened. Activities for most of the common

radioisotopes have been quantified (row #7 of the tables 5.1 and 5.2).

4http://www.koaspeer.com
5http://www.mouser.com
6http://www.mill-max.com
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Chapter 5. Radioactive contamination in NEXT detector

Figure 5.4: Left side, Finechem Resistors. Center, Resistors KOA RS. Right side, Resistors
Mouser

Figure 5.5: Left side, Pin Receptacles. Center, Thermal Epoxy. Right side, Epoxy Araldite
2011

The Thermally Conductive Epoxy produced by Electrolube7 (division of HK

WENTWORTH LTD) was screened to be used at PMT bases to dissipate

heat in vacuum. To prepare the sample the epoxy (EER2074A) and

corresponding hardener (EER2074B) were mixed inside a clean container

following specifications. A sample of the Epoxy Araldite 20118 was screened

too. A mixture of Araldite2011-A (resin) and Araldite 2011-B (hardener) was

prepared. As shown in rows #8-9 of the tables 5.1 and 5.2, Araldite epoxy

showed a better radiopurity since only 40K was quantified and upper limits

for the other common radioisotopes were derived; these are more stringent

than those available at [Busto et al. 2002]. Therefore, the epoxy Araldite

2011 was finally used in the PMT bases because it fulfills our heat dissipation

requirements.

7http://www.electrolube.com
8http://www.go-araldite.com

112



5.2 Energy Plane

# Component, Supplier Detector Sample Size Time

1 Capacitors 1.5µF, AVX GeLatuca 392 units 37.8 days

2 Capacitors 4.7µF, AVX GeAnayet 156 units 28.0 days

3 Polypropylene Capacitors, Vishay GeAnayet 46 units 22.5 days

4 Resistors, Finechem GeLatuca 1200 units 38.5 days

5 Resitors, KOA RS GeTobazo 100 units 32.2 days

6 Resistors, Mouser Obelix 100 units 54.1 days

7 Pin Receptacles, Mill Max GeLatuca 1535 units 31.9 days

8 Thermal Epoxy, Electrolube GeLatuca 706 g 40.4 days

9 Epoxy 2011, Araldite GeLatuca 1712 g 29.6 days

10 Solder Paste, Multicore GeLatuca 457 g 44.3 days

11 Kapton-Cu cable, Allectra GeAspe 352 g 12.2 days

12 Cuflon, Polyflon GeOroel 1876 g 24.3 days

13 Kapton Substrate, Flexible Circuit GeAnayet 50 units 54.7 days

14 Windows, Prec. Sapphire Tech. GeAnayet 527 g 44.9 days

15 Optical Gel, Nye Lubricants GeAnayet 53.5 g 58.3 days

16 TPB, Sigma Aldrich GeAnayet 4.1 g 38.3 days

17 PEDOT:PSS, Aldrich Chemistry GeAspe 115 ml 77.1 days

18 Brazing paste GDMS

19 Brass bolts GDMS

20 SS screws GDMS

21 M4 screws (manual cleanning) GeLatuca 40 units 30.3 days

22 M4 screws (Alconox cleanning) GeLatuca 267 units 56.6 days

23 Vacuum Grease, Apiezon M GeAspe 85.4 g 44.4 days

24 Copper CuA1, Lugand Aciers GeAnayet 94 kg 68.6 days

25 CuA1 GDMS

26 CuC1 GDMS

27 CuSn braid, RS GeAnayet 1875 g 38.2 days

Table 5.1: Description of the samples measured for the Energy Plane of NEW
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# Component Unit 238U 226Ra

1 Capacitors 1.5µF AVX µBq/unit < 360 72± 3

2 Capacitors 4.7µF AVX µBq/unit < 900 123± 7

3 Capacitors Vishay mBq/unit 10.4± 2.7 5.3± 0.3

4 Resistors Finechem µBq/unit 85± 23 4.1± 0.3

5 Resitors KOA RS µBq/unit < 852 < 7.7

6 Resistors Mouser µBq/unit < 182 < 7.0

7 Pin Receptacles µBq/unit 217± 42 < 1.1

8 Thermal Epoxy mBq/kg (1.0± 0.2)103 169± 8

9 Epoxy 2011 Araldite mBq/kg < 182 < 1.4

10 Solder Paste mBq/kg < 310 < 2.7

11 Kapton-Cu cable mBq/kg < 1.1 · 103 46.8± 3.3

12 Cuflon mBq/kg < 33 < 1.3

13 Kapton Substrate µBq/unit < 2.8 · 103 < 23

14 Sapphire Windows mBq/kg < 275 < 2.7

15 Optical Gel mBq/kg < 1.7 · 103 < 22

16 TPB Bq/kg < 23 < 0.17

17 PEDOT:PSS µBq/ml < 626 < 6.9

18 Brazing paste µBq/kg 55± 10

19 Brass bolts µBq/kg 8.9± 0.7

20 SS Screws mBq/kg 3.25± 0.25

21 M4 screws (manual cleanning) µBq/unit < 2.2 · 103 < 21

22 M4 screws (Alconox cleanning) µBq/unit < 616 < 8.6

23 Vacuum Grease mBq/kg < 1.0 · 103 < 10

24 CuA1 mBq/kg < 4.1 < 0.16

25 CuA1 µBq/kg < 12

26 CuC1 µBq/kg 25± 5

27 CuSn braid mBq/kg < 168 < 2.4

Table 5.2: Results of the samples measured for the Energy Plane of NEW
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232Th 228Th 235U 40K 60Co 137Cs #

49± 3 38± 2 71± 9 < 1 < 1 1

95± 7 86± 6 123± 21 < 3 < 2 2

8.5± 0.5 8.8± 0.5 5.3± 0.6 < 0.04 < 0.04 3

5.6± 0.5 4.4± 0.3 83.6± 8.7 < 0.2 104± 11 4

< 14 < 4.1 < 3.5 < 29 < 2.1 < 1.5 5

5.3± 1.5 < 8.0 3.7± 1.1 < 37 < 1.7 < 1.8 6

5.6± 0.5 4.5± 0.4 6.1± 0.5 20.5± 0.4 < 0.3 < 0.2 7

52± 4 54.4± 3.2 105± 12 < 1.1 < 1.3 8

< 3.7 < 2.5 < 0.8 15.0± 2.4 < 0.4 < 0.4 9

< 4.7 < 2.5 < 5.2 < 13 < 1.0 < 1.6 10

< 40 < 32 166± 27 < 5.2 < 4.4 11

< 1.1 < 1.1 < 0.6 4.8± 1.1 < 0.3 < 0.3 12

77± 13 43.9± 7.2 < 18 < 216 < 6.4 < 6.7 13

< 7.6 < 5.5 < 2.1 < 18 0.7 < 1.0 14

< 49 < 18 < 16 < 173 < 4.5 < 5.8 15

< 0.57 < 0.15 < 0.11 < 1.7 < 0.05 < 0.05 16

< 23 < 4.8 < 3.9 49± 11 < 1.7 < 1.8 17

49± 4 < 31 18

6.9± 0.2 < 31 19

0.57± 0.08 < 0.19 20

< 60 20.0± 4.6 < 12 < 93 14.0± 1.8 < 6.0 21

14.9± 3.4 17.4± 1.8 3.7± 1.0 < 19 13.4± 1.1 < 1.4 22

< 43 < 8.5 < 6.1 < 49 < 3.5 < 2.9 23

< 0.15 < 0.13 < 0.17 < 0.37 0.04± 0.01 < 0.04 24

< 4.1 62 25

15± 4 190 26

< 7.1 < 2.1 < 1.8 < 14 < 0.6 < 0.5 27
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Figure 5.6: Left side, Solder Paste. Center, Kapton-Copper Cable. Right side, Cuflon

A sample of lead-free SnAgCu solder paste supplied by Multicore (ref. 698840)

was screened and results are presented in row # 10 of the tables 5.1 and 5.2.
108∗Ag, induced by neutron interactions and having a half-life of T1/2 = 438y,

has been identified in the paste, with an activity of (5.26± 0.40)mBq/kg, while

upper limits of a few mBq/kg have been set for the common radioactive isotopes.

A roll of the kapton-copper cable supplied by Allectra company9 was screened.

Activities of some isotopes were quantified (row # 11 of the tables 5.1 and 5.2)

and in addition, presence of 108∗Ag (decaying by electron capture with a half-life

of 418y) can be reported through the identification of its most intense gamma

lines.

Concerning the base substrate, cuflon and kapton have been considered.

Cuflon c© offers low activity levels, as shown in the measurement of samples

from Crane Polyflon10 by GERDA [D. Budjas et al. 2009] and at [Nisi et al.

2009], using both ICPMS and Ge gamma spectroscopy. As presented in [Alvarez

et al. 2013], a measurement of Polyflon cuflon made of a 3.18-mm-thick PTFE

layer sandwiched by two 35−µm-thick copper sheets was made for NEXT and

results are shown in row #12 of the tables 5.1 and 5.2. Only activity of 40K could

be quantified. Although cuflon could have been used too, kapton was finally

selected and a sample of the produced 0.5-mm-thick base substrates by Flexible

Circuit11 was screened. Upper limits were set for all common radioisotopes

except for 232Th (row # 13 of the tables 5.1 and 5.2).

9http://www.allectra.com
10http://www.polyflon.com
11http://www.flexiblecircuit.com
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5.2.2 Windows, PMT enclosures and other components

Other components also used in the energy readout plane have been taken into

consideration. Four Sapphire Crystals to be used as PMT windows were

screened; each crystal is 6 mm high and has a diameter of 83.8 mm. They were

measured on a teflon support for protection. No isotope was quantified (row #

14 of the tables 5.1 and 5.2). Since the upper limits obtained from germanium

spectrometry are quite high, results from Neutron Activation Analysis (NAA)

presented at measurement # 155 in [Leonard et al. 2008] by EXO collaboration

have been considered for the moment in the development of the NEXT-100

background model.

Figure 5.7: Left side, Kapton Substrate. Center, Sapphire Crystals placed in a Teflon
support. Right side, Optical Gel

The Silicone-based Optical Gel from Nye Lubricants Inc.12 (SmartGel NyoGel

OCK-451), used for PMTs coupling, was screened. Optical fluid and thickening

agent were mixed at the clean room of LSC and left there for 26 hours in order

to get a solid disk. The sample was prepared on a clean container. No isotope

was quantified and upper limits were set for all of them (row # 15 of the tables

5.1 and 5.2). The quantity to be used per window is estimated to be about 2 g.

A sample of the TPB material coating the enclosure windows, supplied by Sigma

Aldrich13, was analyzed. The powder was prepared inside a clean Petri dish.

Upper limits on the specific activity were set for all the radiosotopes (row # 16

of the tables 5.1 and 5.2). Due to the small mass of our sample, better results

for this material from the same supplier can be found at [Lawson and Cleveland

12http://www.nyelubricants.com
13http://www.sigmaaldrich.com
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Figure 5.8: Spectrum of the Sapphire windows in the region of interest of the 208Tl and
214Bi. We can observe that both fits in 583 keV are overlapping and the only result that
we can obtain is an upper limit for this value

2011] and [Vacri et al. 2015]; activities for 238U and 232Th at the level of tenths of

mBq/kg or even lower are reported there.

A sample of PEDOT:PSS (1.3 wt% dispersion in water) also from Aldrich

Chemistry to be used as conductive coating on sapphire windows was screened

too (row # 17 of the tables 5.1 and 5.2); only activity of 40K could be quantified.

It is applied by spin-coating and then dried to evaporate water, resulting in a

∼100-nm-thick layer.

Other materials or components to be used at the PMT enclosures were analyzed

by GDMS, made by Shiva Technologies (Evans Analytical Group14) in France.

A sample of Brazing Paste made of 72% Ag and 28% Cu with dimensions

12x12x12mm3 was measured quantifying the U and Th content (row # 18 of the

tables 5.1 and 5.2). M4 vented screws made of 316 stainless steel were screened;

the mass of each 2-cm-long unit is 2.32 g. A sample of a M4 bolt made of

brass, with length 22.65 mm and mass 3.08 g, was also analyzed. Following

results at rows # 19-20 of the tables 5.1 and 5.2, and since 28 units are needed

per PMT can, brass bolts were preferred instead of the vented screws from the

14http://www.eaglabs.com
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radiopurity point of view. However, in principle, stainless steel have been used

for mechanical reasons in the NEW set-up.

Figure 5.9: Left side, Brass Bolt for GDMS. Center, CuA1 sample for GDMS. Right side,
CuC1 sample for GDMS

Samples of M4 screws were screened using germanium detectors. Since these

screws were pre-greased, a cleaning procedure was necessary to remove the

grease, which could affect the purity of the xenon gas and is expected to be

non-radiopure; two options were analyzed. A manual cleaning was applied to a

sample, by wiping the screws several times with alcohol by hand, cleaning them

in ultrasounds bath with soap and afterwards rinsing with alcohol. For another

sample of screws, cleaning was made using Alconox15 detergent 8 (5% solution

in water) in ultrasound bath. Activities from 60Co, 235U and for the 232Th chain

have been quantified (rows # 21-22 of the tables 5.1 and 5.2). Results obtained

for the two samples with different cleaning procedures are compatible; upper

limits derived for sample cleaned using Alconox are more stringent thanks to

the larger number of screened units. Once removed the original grease of the

screws, Vacuum Grease must be used; a sample of Apiezon16 M grease designed

for high vacuum applications was analyzed and only upper limits were set (rows

# 25 of the tables 5.1 and 5.2). Due to the very relevant contribution of these M4

screws (quoted for reference in table 4) the use of the much more radiopure

brass bolts is foreseen in the NEXT-100 detector.
15http://alconox.com
16http://www.apiezon.com
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Figure 5.10: Left side, TPB. Center, PEDOT:PSS. Right side, M4 Screws

Two types of Copper supplied by Lugand Aciers company17 were screened for

use at the energy plane: CuA118 for PMT enclosures and base caps and CuC119

for both the tracking and energy readout plates. The weight of each PMT copper

enclosure is 4.1 kg and that of the energy plate 475.6 kg. A large mass of

CuA1 copper was accumulated to carry out a measurement using a germanium

detector at LSC; a special cleaning procedure typically used for copper shielding

was performed at LSC before the measurement, consisting of soap cleaning,

nitric acid etching, passivation with citric acid and drying.

As shown in row # 24 of the tables 5.1 and 5.2, only 60Co activity was quantified.

Peaks from other cobalt isotopes also common cosmogenic products in copper

induced by the exposure of the material to cosmic nucleons at sea level were

identified (56Co with T1/2 = 77.27d and 58Co with T1/2 = 70.86d); since their

half-lives are of the order of the live time in the screening measurement, the

direct quantification of their activities was not performed. GDMS analysis was

additionally made for two samples, with dimensions 12x12x12mm3, made of

CuA1 and CuC1 copper, having received the same cleaning protocol. Following

results presented in rows # 25-26 of the tables 5.1 and 5.2, GDMS upper limits

for CuA1 sample are much lower than the ones derived from germanium

spectrometry in # 24. The good results obtained for this copper advised to use it

also for the shielding against gamma radiation to be placed inside the pressure

copper vessel made of 316Ti stainless steel. Results for CuA1 from Lugand

17http://lugand-aciers.fr
18This type of copper is also referred as Cu-ETP (Electrolytic Tough Pitch) or C11000. Its copper

purity is 99.90% (minimum).
19This type of copper is also referred as Cu-OF (Oxygen-Free) or C10200. Its copper purity is

99.95%.
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Figure 5.11: Results of the MC simulation of the detection efficiency with GeOroel
detector for CuA1 sample. This large sample of 98kg, has a very low efficiency because
of the strong shielding capacity of the copper

Aciers, at the level of a few µBq/kg for 238U and 232Th, are equivalent to those

obtained for C10100 copper supplied by the Luvata company [Alvarez et al.

2013] and similar to those for the Norddeutsche Affinerie20 copper [Laubenstein

et al. 2004]. Results at or even below tenths of µBq/kg have been presented for

electroformed and also commercial copper analyzed by ICPMS for the Majorana

experiment [LaFerriere et al. 2015] [Abgrall et al. 2016].

A sample of the CuSn braid used to dissipate heat at the PMT cans was

measured using a germanium detector. It is soft tinned copper wire braid 2536P

provided by RS. The total length of the sample was 19.4 m. Upper limits were

set for all the common radioisotopes (row # 27 of the tables 5.1 and 5.2).

Finally, the expected contribution to the background level in the region of

interest of NEXT- 100, assuming a NEW-like design having 60 PMT modules,

from the activities of all the relevant components of the energy plane has been

evaluated by Monte Carlo simulation (see details at [J. Martín-Albo et al. 2016]).

20Re-branded as Aurubis, http://www.aurubis.com
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Figure 5.12: Left side, Vacumm Grease. Center, part of the CuA1 sample for HPGe. Right
side, CuSn Braid

Energy (keV)
900 920 940 960 980 1000 1020

C
o
u
n
ts

0

10

20

30

40

50

60

70

80

Vacuum grease ’Apiezon M’ (geAspe)// 44.4 days //  Signal (BLACK) vs Bkg (RED)

Figure 5.13: Spectrum of the Vacuum Grease in the region of interest of the 228Ac and
234*Pa. We can observe that both fits in 911 keV are overlapping and the only result that
we can obtain is an upper limit for this value

5.2.3 PMTs: PMT campaign

The photomultiplier tubes are the basic element of the energy readout plane of

NEXT. The 55 available units of the selected model, Hamamatsu21 R11410-10, to

be used at NEW and NEXT-100 detectors have been screened. The number of

required PMTs is 12 for NEW and 60 for NEXT-100.

When the campaign started, no information about the radiopurity of these

PMTs was published. The first condition for the experiment was to define

like bad PMT those with a radioactivity > 10mBq/unit and to define like

21http://www.hamamatsu.com
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dangerous PMTs those with a radioactivity > 5mBq/unit. Bad PMTs are

unacceptable for our requirements and the number of dangerous PMTs must

be controlled. Additionally, all the PMTs should be measured, because of the

manual production process of these photosensors.

Figure 5.14: Left side, horizontal configuration of the PMTs, with the unit above the
detector. Right side, 3 PMTs configuration, with them around the detector.

Two position configuration was chosen for this measurements (see figure 5.14):

first was a PMT alone, horizontal and above the detector. Second configuration

was with 3 vertical PMTs around the detector. For both cases, was designed

and builded a teflon support to hold the PMTs. For the background runs of the

detectors, this support was still inside the shielding, giving a small contribution

of 40K to the background. The simulation of the efficiency, done with Geant

4.9.5 and shown in the figure 5.15, concluded that the efficiency is better with

horizontal mode. But, using the 3PMTs configuration the efficiency is slightly

worst but enough for our requirements and, also, we need less time to finish this

campaign.

The detector chosen for this campaign was GeAnayet because it is a detector

with a very low level of background and because it was a detector that was

available for carry out these measurements during two years. GeAnayet was

used for this campaign at LSC along 2013, 2014 and 2015.

The final decision was to measure 3 PMTs simultaneously, a good compromise

between time of the measurement and capability to detect radioactive PMTs.

A first estimation of the upper limits (in case of non-detectable activity) was

made for GeAnayet. This estimation, dependent of the background of the

detector, the efficiency of the configuration and the duration of the measurement.
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Figure 5.15: In green, the MC efficiency with the horizontal configuration. In orange,
with the 3PMTs configuration

According to figure 5.16, two weeks enough time to detect a PMT too dirty for

our requirements.

In the case of a very dirty PMT, a second measurement can be done to find out

it

Figure 5.16: Time evolution for the two most dangerous radiosotopes for our experiment.

First, a single photomultiplier was analyzed (row # 1 of of table 5.3) and then

eighteen runs of measurements with three units altogether placed around the

detector on a teflon support were carried out; data taking at each run ranged
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from 18.3 to 41.0 days per run and several reference backgrounds were measured

in between. For the detection efficiency simulation, emissions are assumed to be

uniformly generated in the kovar PMT enclosure.

Figure 5.17: Montecarlo simulation of PMTs

Activities for the three PMTs at each independent measurement were deduced

and are summarized in table 3. The results obtained from different runs are

roughly compatible; 60Co activity has been always quantified, those of 40K and
54Mn only in the most sensitive runs while upper limits have been obtained in

general for all the other common isotopes, more or less stringent according to

the different sensitivity of each measurement.
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Run Serial numbers Start Duration 228 Ac 228Th

PMT-hor1 KA 0126 24-01-2013 33.7 days <5.4 <3.4

PMT01 KA 0029, KA 0036, KA 0134 04-03-2013 30.6 days <7.8 <6.1

PMT02 KA 0086, KA 0093, KA 0064 09-04-2013 20.2 days <9.1 <7.9

PMT03 KA 0065, KA 0087, KA 0074 02-05-2013 22.0 days <10 <7.3

PMT04 KA 0104, KA 0123, KA 0078 30-05-2013 18.3 days <9.5 <9.6

PMT05 KA 0085, KA 0094, KA 0050 19-06-2013 41.0 days <6.6 <7.2

PMT06 KA 0076, KA 0059, KA 0057 01-08-2013 39.8 days <9.3 <6.2

PMT07 KA 0075, KA 0119, K A0055 31-10-2013 23.0 days <9.1 <6.5

PMT08 KA 0122, KA 0124, KA 0131 26-11-2013 38.7 days <9.3 <5.9

PMT09 KA 0100, KA 0097, KA 0088 07-01-2014 19.5 days <9.2 <10

PMT10 KA 0090, KA 0095, KA 0058 28-01-2014 27.8 days <9.4 <6.3

PMT11 KA 0073, KA 0099, KA 0107 10-04-2013 30.4 days <11 < 6.8

PMT12 KA 0106, KA 0136, KA 0077 12-05-2014 33.5 days <6.9 <6.5

PMT13 KA 0080, KA 0098, KA 0083 17-06-2014 23.6 days <8.3 <8.7

PMT14 KA 0011, KA 0092, KA 0084 14-07-2014 38.6 days <8.9 <6.9

PMT15 KA 0082, KA 0081, KA 0089 10-09-2014 24.2 days <8.6 <6.2

PMT15-2 KA 0082, KA 0081, KA 0089 20-05-2015 25.3 days <11 <8.5

PMT16 KA 0103, KA 0125, KA 0110 07-10-2014 24.1 days <11 <7.9

PMT17 KA 0079, KA 0102, KA 0120 05-03-2015 19.3 days <10 <8.6

PMT18 KA 0054, KA 0109, KA 0101 27-03-2015 23.6 days <8.8 <9.0

Table 5.3: Results of the PMT Campaign, carried out during two years. Results are
presented in mBq/sample and each sample consist of 3 PMTs

126



5.2 Energy Plane

238U 226Ra 235U 40K 60Co 137Cs 54Mn Run

<187 <1.8 <1.6 <29 2.8± 0.3 <0.6 PMT-hor1

<266 <2.7 <3.4 30.4± 8.1 12.2± 1.0 <1.0 1.1± 0.3 PMT01

<340 <3.3 <3.4 <60 11.1± 0.9 <1.3 <1.7 PMT02

<320 <3.3 <4.4 39.5± 9.4 10.4± 0.9 <1.2 <1.3 PMT03

<351 <4.3 <3.8 41± 10 11.5± 1.0 <1.4 1.1± 0.3 PMT04

<229 <2.5 <3.1 32.3± 7.7 10.8± 0.8 <0.8 1.1± 0.2 PMT05

<232 <2.7 <3.1 30.0± 7.5 10.4± 0.8 <0.8 1.0± 0.3 PMT06

<317 <4.3 <2.6 34.2± 8.9 10.9± 0.9 <1.1 <1.4 PMT07

<234 <3.0 <3.2 35.5± 7.9 12.3± 1.0 <0.8 <1.2 PMT08

<330 <3.4 <4.3 34.8± 9.5 11.3± 0.9 <1.2 <1.8 PMT09

<293 <3.9 <4.4 36.9± 8.6 12.0± 0.9 <1.0 <1.4 PMT10

<286 2.7± 0.8 <2.2 38.0± 8.7 11.1± 0.9 <1.3 <1.4 PMT11

<405 <3.2 <3.8 28.3± 7.9 11.0± 0.9 <0.8 0.9± 0.3 PMT12

<361 <5.2 2.5± 0.7 50± 10 11.4± 0.9 <1.1 1.2± 0.3 PMT13

<337 <3.7 <3.0 30.7± 7.8 11.7± 0.9 <0.8 0.9± 0.2 PMT14

<470 3.0± 0.9 <4.3 34.5± 9.0 10.3± 0.8 <1.2 <1.4 PMT15

<341 <3.4 <2.7 42.5± 9.1 9.9± 0.8 <1.1 <1.1 PMT15-2

<418 <4.5 <4.1 41.6± 9.4 12.2± 1.0 <1.1 0.8± 0.2 PMT16

<443 <4.9 <3.5 <61 12.1± 1.0 <1.2 <1.7 PMT17

<448 <5.6 <2.6 45.3± 9.3 12.5± 1.0 <1.0 <1.1 PMT18
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Chapter 5. Radioactive contamination in NEXT detector

After the analysis of 3PMT15, we observed a unexpected excess of 214Bi that was

supposed to be from radon intrusion. This measurement was repeated at the

end of the campaign with normal values.

Since, following these results, it seemed that the activity levels of all the screened

PMTs was similar, a joint analysis of the available data was done to increase the

sensitivity. The idea is to combine the information of the eighteen independent

runs performed with three PMTs, assuming that we have repeat the same

measure 18 times. This result has been obtained following the criteria for large

background, presented in Chapter 4.

Isotope Activity (mBq/unit)
228 Ac < 0.66
228Th 0.50± 0.31
238U < 32
226Ra 0.36± 0.15

40K 11.46± 1.86
60Co 3.70± 0.06
137Cs
54Mn 0.27± 0.03

Table 5.4: Results of the global fit with all the data of the PMT Campaign

The obtained results are shown in the table 5.4 and it must be interpreted as an

statistical analysis of the activity of the PMTs. Since it was assumed that all the

PMTs were equivalent, activity values per PMT were estimated just considering

one third of the net signal measured; these results are shown in table 5.3. In

this joint analysis, activity of 235U has been properly evaluated; although there

is also a clear net signal from 54Mn, since its half-life (312.3 days) is comparable

to the time span of the measurements, a direct quantification of the activity has

not been performed. Concerning the lower parts of the 232Th and 238U chains,

several lines show an excess of events above background statistically significant

thanks to the accumulation of data; therefore, it has been possible to quantify
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the activity of some of their isotopes and a quite safe estimate of the average

activity per PMT of 226Ra and 228Th has been achieved.

Figure 5.18: First part of the Spectrum of 3PMT5. It can be observe that that, in this part
of the spectrum, the number of counts measured is similar.

Figure 5.19: First part of the Spectrum of 3PMT5. In this case, we can observe 1173 keV
and 1333 keV peaks, corresponding to 60Co.

The same model of PMT has been screened for other experiments too [Aprile

et al. 2011], [D. S. Akerib et al. 2013], [Wang et al. 2016] and our results are

in very good agreement with those found by XENON; in particular, 60Co and
40K activities are virtually the same. The XENON1t collaboration has carried

out a deep study of the radioactivity of the new PMT version Hamamatsu

R11410-21 [Barrow et al. 2016], based on the analysis by GDMS and germanium

spectrometry of individual components and units [Aprile et al. 2015]. The main

differences with respect to the version R11410-10 are the use of Cobalt-free kovar

body and high purity (instead of standard purity) Al seal. Comparing results for

the two versions, it can be concluded that 40K and 235U activities are compatible,
60Co has been reduced about a factor 5 in the new version and for the lower

parts of the natural chains of 232Th and 238U, activity is at the same level, about

129



Chapter 5. Radioactive contamination in NEXT detector

a half mBq/PMT. Results for the version R11410-20 have been presented by LUX-

ZEPLIN collaboration [D. S. Akerib et al. 2015].

5.3 Tracking plane

In the other side of the detector, we will find the Tracking Plane, designed to

precisely observe the track of the measured events. In terms of radiopurity, the

most complicated part are SiPMs, because they are very small, but we will use

thousands of them. Then we have to know very precisely the specific activity

this component.

Almost all the information of this section can be found in Radiopurity assessment

of the tracking readout for the NEXT double beta decay experiment, [Cebrián et al.

2015]

Figure 5.20: Tracking plane with some teflon masks covering the DICE-Boards
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5.3.1 Printed Circuit Boards and cables

Printed Circuit Boards (PCBs) are commonly made of different materials and a

large number of radiopurity measurements can be found in ILIAS database22.

Therefore, several options have been taken into consideration for the substrate of

SiPMs arrays. FR4 was disregarded because of both an unacceptable high rate of

outgassing and bad radiopurity; glass fiber-reinforced materials at base plates of

circuit boards are generally recognized as a source of radioactive contamination

[Heusser 1995].

Cuflon c© offers low activity levels, as shown in the measurement of samples

from Crane Polyflon23 by GERDA [D. Budjas et al. 2009] and at [Nisi et al. 2009],

using both ICPMS and HPGe gamma spectroscopy. As presented in [Alvarez

et al. 2013], a measurement of Polyflon cuflon made of a 3.18-mm-thick PTFE

layer sandwiched by two 35-µm-thick copper sheets was made for NEXT and

results are shown in row #12 of the tables 5.1 and 5.2.

Adhesive films to glue cuflon sheets are used to prepare multilayer PCBs; a

sample of bonding films made of a polyolefin co-polymer and supplied also by

Crane Polyflon were screened and results are presented in row # 1 of the tables

5.5 and 5.6. Four cuflon DB produced by Pyrecap company using these Polyflon

materials were screened.

Each DB, with a surface of 79x79mm2 and a mass of 35 g, was made of

three cuflon sheets glued with two bonding films; results are shown in row

# 2 of the tables 5.5 and 5.6, being fully consistent with the individual

measurements of components. Total activity from each cuflon DB was too

high for NEXT requirements, since they could produce a background of

2.1x10−4countskeV−1kg−1y−1 in the region of interest; consequently, other

option was searched for.

Components made of just kapton (like cirlex) and copper offer very good

radiopurity, as shown in the measurement of kapton-copper foils in [Aznar et al.

2013] and [Cebrian et al. 2011]. Therefore, new DB produced by Flexible-circuit

22http://radiopurity.in2p3.fr
23http://www.polyflon.com
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Figure 5.21: Left side, Bolding Film. Center, Cuflon DBs. Right side, Kapton-Cu DBs

using only kapton, metallized copper and adhesive were analyzed. A two layer

adhesiveless base substrate with plyimide coverlay on both sides, wich only

requires a little amount of adhesive, was chosen for the boards manufacturing.

As shown in figure 3, each DB consists of a square part with 8 cm side, where

SiPMs are fixed; and with a long flexible tail which allows to locate connectors

behind the inner copper shielding ICS. The mass of each kapton DB is 16.7 g. A

total of 12 units, together with residual pieces from production to increase the

mass sample, were screened.

Figure 5.22: View of the Kapton-Cu DBs placed in the detector. Inner Copper Shielding
will partially shield the tail of the DBs

Results normalized to the DB part actually exposed to the detector are presented

in # 3 of the tables 5.5 and 5.6. Although a higher content of 40K (of relevance

for the study of the double beta decay mode with neutrinos) has been observed.

Activities for the isotopes in the lower parts of 238U and 232Th chains are

almost one order of magnitude lower than cuflon DB. As shown in table 4, the

quantified activity of 208Tl and 214Bi gives a rate of 2.8x10−5countskeV−1kg−1y−1
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and consequently Kapton-DBs have been chosen as the final option for the

tracking readout substrate.

5.3.2 Connectors

Information on the radiopurity of different types of connectors is available at

ILIAS database, [Arpesella et al. 2002], [Lawson and Cleveland 2011]. Different

kinds of board-to-cable connectors were measured [Alvarez et al. 2013] and

results are reported in rows # 4-6 of the tables 5.5 and 5.6. In particular,

FFC/FCP (Flexible Printed Circuit & Flexible Flat Cable) connectors supplied by

Hirose24 and similar P5K connectors from Panasonic25 were considered, finding

activities of at least a few mBq/pc for isotopes in 232Th and the lower part of
238U chains and for 40K. Thermoplastic connectors 503066-8011 from Molex26

were also screened, giving values slightly smaller but of the same order.

Figure 5.23: Left side, FFC Connectors. Center, P5K Connectors. Right side,
Thermoplastic Connectors

Since all these connectors contain Liquid Crystal Polymer (LCP), it seems that

the activity measured is related to this material. As the activity of connectors

would give an unacceptable high rate in the region of interest, a direct bonding

of the cables to the cuflon DBs was originally foreseen; however, in the final

design using the all-in-one kapton DBs, connectors are easily placed behind the

inner copper shield.

24http://www.hirose.com
25http://www.panasonic-electric-works.com
26http://www.molex.com
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5.3.3 Soldering materials

Different materials intended to be used to solder electronic components on

boards have been analyzed [Alvarez et al. 2013]. A sample of lead-free SnAgCu

Solder Paste supplied by Multicore (Ref. 698840) was screened and results

are presented in row # 10 of the tables 5.1 and 5.2. As we commented in

the previous section, 108∗Ag, induced by neutron interactions and having a

half-life of T1/2 = 438y, has been identified in the paste, with an activity of

(5.26± 0.40)mBq/kg, while upper limits of a few mBq/kg have been set for the

common radioactive isotopes. Consequently, some tens of grams of the solder

paste could be used without concern.

Solder Wire with similar composition from Multicore (Ref. 442578) was also

screened (see row #7 of the tables 5.5 and 5.6), finding in this case a high activity

of the lower part of the 238U chain. An activity of 210Pb of (1.2± 0.4)x103Bq/kg

was deduced using the bremsstrahlung emission from its daughter nuclide 210Bi

[Nachab and Hubert 2012].

Figure 5.24: Left side, Solder Wire. Center, Silver Epoxy. Right side, NTC Sensors

A sample of Circuit Works Conductive Epoxy CW2400 mainly made of silver

was measured. It was prepared at LSC just before screening by mixing epoxy

and hardener following specifications. Results are presented in row # 8 of the

tables 5.5 and 5.6. Activity of 108∗Ag has been measured in this sample too at a

level of (24.6± 1.6)mBq/kg. Even though the use of this type of silver epoxies

was finally disregarded for electronic boards, it could be used for the field cage

components.
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5.3 Tracking plane

# Component, Supplier Detector Sample Size Time

1 Bonding Film, Polyflon GeAnayet 288 g 30.8 days

2 Cuflon DBs, Pyrecap GeOroel 140 g 45.1 days

3 Kapton-Cu DBs, Flexiblecircuits GeOroel 647 g 26.6 days

4 FFC Connectors, Hirose Paquito 19 units 6.8 days

5 P5K Connectors, Panasonic Paquito 15 units 7.6 days

6 Thermopl. Connect., Molex GeLatuca 29 units 17.2 days

7 Solder Wire, Multicore Paquito 91 g 7.7 days

8 Silver Epoxy, Multicore GeLatuca 125 g 55.1 days

9 SiPMs 1x1 mm, SensL GeAspe 102 units 41.4 days

10 SiPMs 6x6 mm, SensL GeAspe 99 units 59.6 days

11 SiPMs TSV 3x3 mm, SensL Obelix 20 units 38.2 days

12 SiPMs 1x1 mm, Hamamatsu GeTobazo 53 units 30.45 days

13 NTC sensors, Murata GeLatuca 1000 units 28.3 days

14 LED, Osram GeLatuca 989 units 32.4 days

15 Plexiglas (PMMA), Evonik GeLatuca 1669 g 48.9 days

16 Ta Capacitors, Vishay Sprague GeAnayet 227 units 20.0 days

Table 5.5: Description of the samples measured for the Tracking Plane of NEW
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# Component Unit 238U 226Ra

1 Bonding Film mBq/kg 1140± 300 487± 23

2 Cuflon DBs mBq/unit < 7.6 0.28± 0.08

3 Kapton-Cu DBs mBq/unit < 1.3 0.031± 0.004

4 FFC Connectors mBq/unit < 50 4.6± 0.7

5 P5K Connectors mBq/unit < 42 6.0± 0.9

6 Thermopl. Connect. mBq/unit < 7.3 1.77± 0.08

7 Solder Wire mBq/kg < 4900 (7.7± 1.2) · 102

8 Silver Epoxy mBq/kg < 1.0 · 103 13.6± 2.8

9 SiPMs SensL 1x1 mm µBq/unit < 320 < 2.7

10 SiPMs SensL 6x6 mm µBq/unit < 410 < 3.2

11 SiPMs TSV 3x3 mm µBq/unit < 400 < 21

12 SiPMs Hamamatsu 1x1 mm µBq/unit < 1300 33± 3

13 NTC sensors µBq/unit < 96 < 0.8

14 LED µBq/unit < 90 1.4± 0.2

15 Plexiglas (PMMA) mBq/kg < 208 < 1.3

16 Ta Capacitors mBq/unit < 0.8 0.043± 0.004

Table 5.6: Results of the samples measured for the Tracking Plane of NEW
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232Th 228Th 235U 40K 60Co 137Cs #

79.8± 6.6 66.0± 4.8 832± 87 < 4.4 < 3.8 1

< 0.28 < 0.16 < 0.13 < 1.2 < 0.07 < 0.06 2

0.027± 0.008 0.042± 0.004 12.1± 1.2 < 0.01 < 0.01 3

6.5± 1.2 6.4± 1.0 < 0.75 3.9± 1.4 < 0.2 < 0.5 4

9.5± 1.7 9.4± 1.4 < 0.95 4.1± 1.5 < 0.2 < 0.8 5

3.01± 0.19 2.82± 0.15 < 0.31 2.12± 0.25 < 0.022 0.27± 0.03 6

< 147 < 14 < 257 < 30 < 36 7

< 18 < 16 < 4.5 < 52 < 1.9 < 2.2 8

< 6.9 < 2.0 < 1.0 < 16 < 0.8 < 2.0 9

< 12 < 2.8 < 2.5 < 25 < 1.2 < 1.3 10

< 11 10± 6 < 9 1092± 91 3± 2 < 10 11

65± 7 46± 5 < 9 < 80 < 3 < 6 12

< 0.9 < 0.3 < 0.3 < 2.9 < 0.2 < 0.2 12

3.5± 0.4 3.0± 0.3 < 0.6 < 4.0 < 0.2 < 0.3 13

< 2.2 < 1.0 < 1.1 < 8.1 < 0.4 < 0.6 14

0.034± 0.004 0.032± 0.003 < 0.01 < 0.002 < 0.003 15
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5.3.4 The SiPM case

Although silicon is, as germanium, a very radiopure material with typical

intrinsic activities of 238U and 232Th at the level of few µBq/kg [Heusser 1995].

Very low specific activities have been recently obtained by Neutron Activation

Analysis for bare devices from FBK manufacturer [Ostrovskiy et al. 2015], but

materials used in the substrate or package of the chip can be radioactive.

The first sample that we evaluated were Hamamatsu SiPMs, model S10362-11-

050P/NG. The sample consisted of 53 units with 1x1mm2 of active area. We did

measure several radioimpurities, (as can be seen in row # 12 of the tables 5.5 and

5.6) that were estimated to be too large for the experiment. Therefore, we had to

evaluate other commercial options.

Two samples of non-functional SiPMs from SensL27, reported as MLP (Moulded

Lead-frame Package) plastic SMT (Surface-Mount Technology) elements, were

screened. One consisted of 102 units with an active area of 1x1mm2 each, and

the other of 99 units with 6x6mm2 of active area (rows # 9 and 10 of the tables

5.5 and 5.6). In these cases, no activity was quantified for any isotope and upper

limits were derived. Limits per unit are very similar for both samples, but since

the production process is the same and the proportion of components scales

with area, results from the large 6x6mm2 units allow to set limits on activities

per surface much more stringent.

Another different sample of SensL was also screened. This sample consisted

of 20 units of SensL SiPMs, type TSV (Through Silicon Via), with 3x3mm2 of

active area and made of different materials. A slightly worse radiopurity was

observed.

Finally, the last measurements are included in a R&D program with

Hamamatsu. The program consist of the screening of several components to

choose the most appropriate and build a radiopure SiPM. Nowadays, these units

are still in prototype versions, but the results are very promising.

27http://sensl.com
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Figure 5.25: Left side, SiPMs SensL 1x1mm. Center, SiPMs SensL 6x6mm. Right side,
Hamamatsu SiPMs 1x1mm

With all of this information, we finally decided to use for NEW detector the 1x1

SensL SiPMs.

5.3.5 Other components

NTC thermistors chip type from Murata Manufacturing Co. Ltd28, to be used

as temperature sensors at DB, were screened. Each unit is 1.6 mm long and 0.8

mm wide. As shown in row # 13 of the tables 5.5 and 5.6, upper limits of a few

µBq/pc have been set for the common radioisotopes.

Chip LEDs 0603 supplied by Osram29, with blue emission at 470 nm (LBQ39E)

and made with InGaN technology, were measured. Each unit has a volume of

1.6x0.8x0.3mm3. Results are presented in row # 14 of the tables 5.5 and 5.6; high

specific activities for 40K, 232th and 238U chains have been quantified, despite

the very small mass of the sample, which correspond to levels of a few µBq/pc.

NUMERO DE LEDS y NTC to minimize the impact on radiopurity due to this

sensors.

SiPMs have high photon detection efficiency in the blue region. For this reason,

they need to be coated with a wavelength shifter (TPB), to shift the UV light

of the scintillation of xenon to blue, as the windows of the PMTs at the energy

readout plane. Instead of directly coating the DBs, an envisaged solution was to

place quartz or PolyMethyl Methacrylate (PMMA) thin windows coated with

TPB in front of DBs. A sample made of 134 PMMA sheets (79x79x1.5mm3 and a

28http://www.murata.com
29http://www.osram.com
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mass of 12.46 g each one) was screened. Material is reported as Plexiglas GS/XT

from Evonik Industries AG30. Results are shown in row # 15 of the tables 5.5 and

5.6, setting upper limits to the analyzed radioisotopes. Although these results

are not bad, the final option is to use a quartz anode, having this material also

an acceptable radiopurity [Leonard et al. 2008].

Figure 5.26: Left side, LEDs . Center, PMMA. Right side, Ta Capacitors

In a first design of the cuflon DBs, Capacitors were needed. According to

ILIAS Database, Ceramic capacitors were disregarded for being radioactive.

Tantalum capacitors (Vishay Sprague 597D31) were screened at LSC and results

are presented in row # 16 of the tables 5.5 and 5.6; activity levels are lower

than for other tantalum capacitors [Alvarez et al. 2013]. In addition to activities

shown in table 3, the presence of 182Ta, beta emitter with Q = 1814.3 keV

and T1/2 = (114.74± 0.12)days, produced by neutron activation on 181Ta, was

identified. In any case,in the final design of kapton-DBs no capacitor is used.

As mentioned in the previously, Section 5.2), the Copper used for this Copper

Plate was the same of the Energy Plane, CuC1 from Lugand Aciers Company.

5.4 Vessel and External parts

We have talk about the two planes of the detector, but now is time to talk about

the other parts of it. It is important to remark that some of these components

are the most massive components of the detector. In the case of only an upper

limit of the measurement, it is necessary to reduce this specific activity limit as

30http://www.evonik.com
31http://www.vishay.com
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much as possible because it will be produce a large uncertainty in the activity of

massive components.

The main part of this work can be found in Radiopurity control in the NEXT-100

double beta decay experiment: procedures and initial measurements, [Alvarez et al.

2013].

5.4.1 Vessel

The pressure vessel of NEXT must be able to hold 15 bar of xenon. It consists of a

cylindrical center section (barrel) with two identical torispherical heads on each

end [Alvarez et al. 2012]. The vessel orientation is horizontal, so as to minimize

the overall height. Although it will be ultimately made of stainless steel, the

first considered option was titanium, so several samples of both materials have

been screened. Inconel (nickel-chromium alloy) will be used to bolt the end-

caps to the main body due to its excellent strength properties and therefore its

radiopurity has been analyzed too.

Figure 5.27: Left side, Lead sample . Center, 316Ti Stainless Steel. Right side, Polyethilene

Grade 2 Titanium was initially proposed to be used for the main components

of the vessel. Two samples were screened at LSC, one from a Spanish supplier,

Titanio SMP32 and the other from Titanium Metal Supply33. Information of

this measurement is shown in rows # 11-13 of of the tables 5.7 and 5.8. The Ti

SMP sample was screened using two different germanium detectors, GeOroel

(row # 11) and GeTobazo (row # 12) as a cross-check exercise; the small

differences found can be well understood taking into account the differences

32http://www.titaniosmp.com
33http://www.titaniummetalsupply.com
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in the background rates of the detectors in several energy ranges. Thanks to

the much larger mass available in the sample, upper limits on activities derived

for the Ti Metal Supply sample are much lower than for the Ti SMP sample

and it has been possible to quantify the activity of the lower part of the 232Th

chain. Production of 46Sc, beta emitter with Q=2366.7 keV and T1/2 = 83.8days,

has been also observed for this sample; it must have been generated by (n,p)

reactions on 46Ti induced by fast neutrons. The LUX collaboration has carried

out an exhaustive analysis of Ti samples [D. Akerib et al. 2012], obtaining

different levels of radiopurity for them; the presence of 46Sc is usually identified.

A great deal of activity measurements for different types of Stainless Steel

(SS) can be found in the literature (see for example refs. [Arpesella et al.

2002], [Lawson and Cleveland 2011], UKDMC Radioactivity Data34 and ILIAS

Database) showing a wide range of values. One sample of type 304L (a vacuum

system piece from Pfeiffer35) was screened using the Paquito detector (see

results in row # 14 of the tables 5.7 and 5.8), obtaining the usual quite high

levels of activity from natural chains. Material referenced as austenitic 1.4571

(also 316L) has been extensively studied by XENON [Aprile et al. 2011] and

GERDA [Maneschg et al. 2008] experiments, finding materials supplied by the

Nironit36 company with activity levels (values or upper limits) of even tenths of

mBq/kg for isotopes from the natural chains in the best cases. Three samples

of 316Ti stainless steel supplied by Nironit were screened at LSC and results are

presented at rows # 15-17 of the table 5.8; they have different thickness since they

are intended to be used in different parts of the NEXT pressure vessel (10 mm

for body, 15 mm for end-caps and 50 mm for flanges). Activities from 60Co and
54Mn, commonly present in steel, have been quantified for the three samples.

Results for cosmogenic 54Mn are 0.29± 0.05, 0.5± 0.07 and 0.97± 0.14 mBq/kg

for increasing thickness of sample. For the 10- and 15-mm-thick samples, upper

bounds for all the other emitters investigated have been derived; for the 50-mm-

thick sample, the activity of the isotopes of the 232Th chain has been quantified,

pointing to secular equilibrium. It is worth noting that the sensitivity for the

thickest sample was worse than for the other two, because of the lower mass

34http://hepwww.rl.ac.uk/UKDMC/Radioactivity/
35http://www.pfeiffer-vacuum.com
36http://www.nironit.de
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available in the sample (see table of the tables 5.7) and the lower efficiency

detection due to self-absorption. The activity values obtained for Nironit 316Ti

stainless steel are of the order or below NEXT requirements; therefore, the

booked batches from where the samples were taken will be used for pressure

vessel construction.

Samples of Inconel 718 and Inconel 625 from the Spanish company

Mecanizados Kanter37 were screened at LSC and results are shown in rows #

18-19 of table 5.8. No previous results on radiopurity of this material have been

found; upper limits on activities of the lower parts of the 238U and 232Th chains

have been set at some mBq/kg for both types of inconel. Presence of 58Co was

identified for Inconel 625.

Inside the vessel, we will find the Inner Copper Shielding, ICS, the last shielding

of the experiment. It consist of 12-cm-thick inner layer of copper to attenuate

the radiation originated in the vessel material [Alvarez et al. 2012]. Copper

is expected to shield in-vessel electronics components if necessary and for the

photomultipliers enclosures too.

Three Copper samples having different origins were also screened by GDMS

for this shielding. Other copper measurements are explained in detail in 5.2.

One of this GDMS samples is Electrolytic Tough Pitch (ETP) copper supplied

by the Spanish company Sanmetal38 while the other two were made of C10100

copper from the Luvata39 company, having different production mechanism (hot

versus cold rolling). The Luvata copper samples were screened together using

the Paquito detector as well. All results on copper are shown in rows # 7-

10 of table 5.8. The upper bounds on activities derived from the germanium

spectrometry measurement were much less stringent than those from GDMS due

to its limited sensitivity; hence a new measurement, with much more mass and

time and using a bigger germanium detector is foreseen. The cleanest copper

we are aware of is that supplied by Norddeutsche Affinerie (Germany)40; very

low upper limits for its activity were set in measurements at the Gran Sasso

37http://www.mecanizados-kanter.es
38http://www.sanmetal.es
39http://www.luvata.com
40Now re-branded as Aurubis, http://www.aurubis.com
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Underground Laboratory [Laubenstein et al. 2004] and by the EXO Collaboration

[Leonard et al. 2008] and even activity from the natural chains and 40K was

quantified by the XENON experiment [Aprile et al. 2011], at levels of a few tens

of µBq/kg.

Although the GDMS measurement of Luvata copper has given information only

on U and Th concentration, the upper limits derived are at the same level or

even better than the results for the Norddeutsche Affinerie copper, and Luvata

copper has therefore been chosen as the first option for the NEXT shield.

5.4.2 High Voltage and electroluminescence components

The main body of the field cage to be placed inside the vessel will be made of

high density polyethylene, with attached copper strips connected to resistors

[Alvarez et al. 2012]; PEEK was also considered as an alternative. Wire

meshes separating the different field regions of the detector, including the

electroluminescence volume, will be made of stainless steel. To improve the light

collection efficiency of the detector, reflector panels coated with a wavelength

shifter will cover the inner part of the field cage. This light tube will be made

of Tetratex c©fixed over a 3M substrate, coated with tetraphenyl butadiene (TPB)

[Alvarez et al. 2012]. The ArDM experiment has screened specifically polyte-

trafluoroethylene (PTFE) Tetratex from Donaldson Membranes41 by Inductively

Coupled Plasma Mass Spectrometry (ICPMS) [Boccone et al. 2009] and TPB from

two different manufacturers were measured at SNOlab [Lawson and Cleveland

2011]. A sample of PEEK from Sanmetal Spanish company was screened using

the Paquito detector; values obtained are shown in row # 20 of table 5.8, pointing

to a non-negligible activity. Only upper bounds on activity of PEEK were

presented in [Lawson and Cleveland 2011].

Polyethylene from IN2 Plastics company42 has a very good radiopurity

according to XENON results [Aprile et al. 2011] and a sample of High Molecular

Weight polyethylene (type PE500) was therefore chosen for screening at LSC.

First results, shown in row # 21 of table 5.8, have produced only upper limits

41http://www.donaldson.com
42http://www.in2plastics.com
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for common radioisotopes. Semitron c© ES225 plastic produced by Quadrant

Engineering Plastic Products43 has been also measured and the results on its

radiopurity are presented in row # 22 of table 5.8; in this case, a quite high

activity of 40K has been registered.

For the Field Cage, are necessary to use high resistance resistors. Our

provisional option chosen to be screened is Ohmcraft resistors HVC-G3512-FDD

with 10GΩ. Results of this measurement are shown in row # 21 of table 5.8. We

can observe a strong contribution of 214Bi that makes them unacceptable for a

low background experiment. Other options are now under study.

Light Tube, a surface to be coated with a WLS, is a inner barrel of Teflon.

AIMPLAS is the supplier of Teflon powder that will be melted and converted in

the barrel. A sample of the Teflon powder (grain diameter 0.5-1 mm) with a mass

of 1.058 kg was screened. Results of this measurement are shown in row # 24 of

table 5.8. Results are very promising but is tentative to repite the measurement

with a larger mass sample to reduce the upper limits of this material.

Figure 5.28: Left side, 10GOhm Ohmcraft Resistors. Center, Teflon Powder. Right side,
Getter pills

5.4.3 External components of the detector

The external castle is designed to stop the radiation coming from the mountain

and the laboratory. This external passive shielding for NEXT-100 is made of lead

bricks forming a 20-cm-thick lead castle and there will placed in a steel structure.

43http://www.quadrantplastics.com
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Lead samples from different suppliers (Mifer44, using two different raw

materials, and Tecnibusa45 from Spain and COMETA46 from Italy) were screened

by GDMS. Results are shown in rows # 1-4 of table 5.8; it must be noted that

the quantified U and Th concentrations were reported to be at the ultimate

limit of detection. The results obtained for COMETA lead are in agreement

with the specifications given by the company. Since a large amount of the

lead bricks will be ultimately provided by Tecnibusa, two different half-brick

samples (10x10x5cm3 each) from this company were measured at LSC; results

are presented in rows # 5-6 of table 5.8. This lead has a low activity of 210Pb at

the level of some tens of Bq/kg. U and Th contamination in lead are normally

not very important [Heusser 1995], since radioactive contaminants are effectively

removed from lead together with silver [Alessandrello et al. 1991]. For instance,

for Dow Run lead produced by JL Goslar47, activities of tens of µBq/kg were

measured in [Laubenstein et al. 2004] and even lower values have been presented

by EXO [Leonard et al. 2008] and GERDA [B. Budjas et al. 2008] experiments as

upper limits.

44http://www.mifer.com
45http://www.tecnibusa.com
46http://www fonderiaroma.com
47http://www.doerun.com, http://www.jlgoslar.de
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# Component, Supplier Detector Sample Size Time

1 Pb, Cometa GDMS

2 Pb, Mifer GDMS

3 Pb, Mifer GDMS

4 Pb, Tecnibusa GDMS

5 Pb, Tecnibusa GeAnayet 5585 g 19.4 days

6 Pb, Tecnibusa GeAnayet 5585 g 36.0 days

7 Cu (ETP), SanMetal GDMS

8 Cu (C10100), Luvata (hot rolled) GDMS

9 Cu (C10100), Luvata (cold rolled) GDMS

10 Cu (C10100) Luvata (hot+cold rolled) Paquito 681 g 39.2 days

11 Ti, SMP GeOroel 121 g 38.5 days

12 Ti, SMP GeTobazo 121 g 43.1 days

13 Ti, Ti Metal Supply GeOroel 1804 g 47.2 days

14 304L Stainless Steel, Pfeiffer Paquito 347 g 19.6 days

15 316Ti Stainless Steel, 10 mm, Nironit GeTobazo 7684 g 33.0 days

16 316Ti Stainless Steel, 15 mm, Nironit GeTobazo 10205 g 35.6 days

17 316Ti Stainless Steel, 50 mm, Nironit GeAanyet 4816 g 34.7 days

18 Inconel 625, Mecanizados Kanter GeTobazo 1004 g 28.0 days

19 Inconel 718, Mecanizados Kanter GeOroel 611 g 27.9 days

20 Peek, SanMetal Paquito 459 g 24.3 g

21 Polyethylene, IN2 Plastics GeAnayet 1315 g 36.8 days

22 Semitron ES225, Quadrant EPP GeOroel 1618 g 35.1 days

23 Field Cage Resistors, Ohmcraft GeAspe 409 units 12.78 days

24 Teflon Powder, AIMPLAS GeLatuca 1058 g 36.7 days

25 Getters Pills Lot F0458102574, SAES GeTobazo 102.7 g 32.3 days

26 Getters Pills Lot F0458102593, SAES GeLatuca 99.6 g 30.49 days

27 Getters Pills Lot F0458102597, SAES GeAspe 99.8 g 53.7 days

Table 5.7: Description of the samples measured for the Vessel and the External Parts of
NEW
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# Component Unit 238U 226Ra

1 Pb mBq/kg 0.37

2 Pb mBq/kg < 1.2

3 Pb mBq/kg 0.33

4 Pb mBq/kg 0.37

5 Pb mBq/kg < 94 < 2.0

6 Pb mBq/kg < 57 < 1.9

7 Cu (ETP) mBq/kg 0.062

8 Cu (C10100) mBq/kg < 0.012

9 Cu (C10100) mBq/kg < 0.012

10 Cu (C10100) mBq/kg < 7.4

11 Ti mBq/kg < 233 < 5.7

12 Ti mBq/kg < 361 < 6.6

13 Ti mBq/kg < 14 < 0.22

14 304L SS mBq/kg 14.3± 2.8

15 316Ti SS mBq/kg < 21 < 0.57

16 316Ti SS mBq/kg < 25 < 0.46

17 316Ti SS mBq/kg 67± 22 < 1.7

18 Inconel 625 mBq/kg < 120 < 1.9

19 Inconel 718 mBq/kg 309± 78 < 3.4

20 Peek mBq/kg 36.3± 4.3

21 Polyethylene mBq/kg < 140 < 1.9

22 Semitron ES225 mBq/kg < 101 < 2.3

23 Field Cage Resistors µBq/unit (0.56± 0.15) · 103 217± 10

24 Teflon Powder mBq/kg < 281 < 1.8

25 Getters Lot F0458102574 mBq/kg (5.2± 1.0) · 103 < 15

26 Getters Lot F0458102593 mBq/kg (6.7± 1.2) · 103 < 13

27 Getters Lot F0458102597 mBq/kg (6.2± 0.5) · 103 < 8

Table 5.8: Results of the samples measured for the Vessel and the External Parts of NEW
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232Th 228Th 235U 40K 60Co 137Cs #

0.073 < 0.31 1

< 0.41 0.31 2

0.10 1.2 3

0.14 0.91 4

< 3.8 < 4.4 < 30 < 2.8 < 0.2 < 0.8 5

< 1.7 < 2.8 < 22 < 1.7 < 0.1 < 0.5 6

< 0.020 7

< 0.0041 0.061 8

< 0.0041 0.091 8

< 0.8 < 4.3 < 18 < 0.8 < 1.2 10

< 8.8 < 9.5 3.4± 1.1 < 22 < 3.3 < 5.2 11

< 11 < 10 < 8.0 < 15 < 1.0 < 1.8 12

< 0.5 3.6± 0.2 0.43± 0.08 < 0.6 < 0.07 < 0.07 13

9.7± 2.3 16.2± 3.9 3.2± 1.1 < 17 11.3± 2.7 < 1.6 14

< 0.59 < 0.54 < 0.74 < 0.96 2.8± 0.2 < 0.12 15

< 0.69 < 0.88 < 0.75 < 1.0 < 4.4± 0.3 < 0.17 16

2.1± 0.4 2.0± 0.7 2.4± 0.6 < 2.5 4.2± 0.3 < 0.6 17

< 3.4 < 3.2 < 4.6 < 3.9 < 0.4 < 0.6 18

< 5.1 < 4.4 15.0± 1.9 < 13 < 1.4 < 1.3 19

14.9± 5.3 < 11.0± 2.4 < 7.8 8.3± 3.0 < 3.3 < 2.6 20

< 3.8 < 2.7 < 1.0 < 8.9 < 0.5 < 0.5 21

< 3.8 < 2.7 < 1.0 < 8.9 < 0.5 < 0.5 22

44± 4 32± 5 < 0.20 95± 13 < 2 < 2 23

< 4.5 < 3.3 < 1.0 < 6.8 < 0.5 < 0.6 24

< 37 < 18 165± 15 < 40 < 3.2 < 4.2 25

< 27 < 27 222± 19 < 42 < 2.7 < 3.1 26

< 27 < 14 192± 5 < 26 < 1.1 < 2.1 27
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5.4.4 Gas System

The gas system is the responsible to produce vacuum, fill the detector with

xenon, circulate the gas and clean the gas removing impurities. Mainly, all

the gas system is outside the castle and it is not a priority to measure these

components. But, to purify the gas we need to use getters to remove the

impurities. Unfortunately, the getters can be a strong source of background

because of the radon emanated from the active materials of the getters.

The option chosen for NEW is a hot Getter SAES GT707, model MC4500-902FV,

from SAES Advanced Technologies48. Three different samples of active material,

small cylindrical pills with 4-mm diameter and 2-mm height were screened. The

composition of the pills is 70% Zirconium, 24.6% Vanadium and 5.4% Iron.They

become active only at a temperature well above 200 degrees. The samples are

from 3 different production batches.

At room temperature the samples are passive components (i.e. do not interact

with the medium), thus no special preparation was needed for the radiopurity

measurement. A Petri dish was used to place them on the detector.

Energy (keV)
900 920 940 960 980 1000 1020

C
o
u
n
ts

0

20

40

60

80

100

120

140

160

180
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Figure 5.29: Spectrum of the selected getter for the Gas System of NEW. In this case, we
can observe the big activity in 1001 keV peak, 234*Pa

48https://www.saesgetters.com
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Activities of these three sample are in row # 25, 26 and 27 of table 5.8. None

of the most dangerous isotopes, 208Tl and 214Bi have been observed and only

upper limits are set. These two isotopes are in equilibrium with the activity of

the radon of their chains. That means that, in the moment of the measurement,

the number of radon atoms is very small. However, strong non-equilibrium

activities for the whole 235U chain and also from the upper part of 238U series

have been measured.

We can observe in figure 2.10 that 238U will decay in 222Rn, the longest half-lived

isotope of radon and a dangerous source of background because it can emanate

from the getters and mix with the xenon that is passing through the purification

system.

A study of the possible presence of radon in this pills is necessary, following the

equation 2.27 presented in Chapter 2. We are only going to consider the four red

coloured (with larger half-lifes) isotopes,238U, 234U, 230Th and 226Ra; that is in

equilibrium with 222Rn. 234Th and 234∗Pa are not considered because their half

lifes are very small in comparison with the others.

To simplify this equation, we have consider that 234U, 230Th and 226Ra initial

number of atoms is ∼= 0. Therefore, the time evolution of the number of atoms

of a chain with 4 elements follows this equation:

S = λ1λ2λ3P0(
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)
+

e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)

+
e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
+

e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
) (5.1)

Where P0, P and λ1 are the initial number of atoms, the final number of atoms

and the decay constant of 238U. Where λ2 is the decay constant of 234U. Where

λ3 is the decay constant of 230Th. Where λ4 is the decay constant of 226Ra.
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After this study, we have conclude that no significative presence of radon will

be produced in the xenon caused by the radon emanation of the getters.

In addition, presence of naturally occurring isotope 138La has been identified

and assessed too T1/2 = 1011y.

5.5 Impact of the Radioimpurities on the Physics of NEXT

This section is destined to estimate how these activities measured can affect to

the background of the detector. With all the information of the measurements

and using the Background Model, we can estimate the contribution of these

activities to the total background of the detector. As explained in Subsection

3.1.3, simulations have estimated a Rejection Factor that shows the capability of

the detector to detect these events as background. This factor is bigger than 106

for all the studied components of the detector.

For a more complete explanation of this work, please read Sensitivity of NEXT-

100 to neutrinoless double beta decay, NEXT collaboration (J. Martín-Albo et al.),

[J. Martín-Albo et al. 2016]

Detector SubSystem 208Tl 214Bi TOTAL

Pressure vessel < 0.14 < 0.14 < 0.28

Energy Plane < 0.37 < 0.61 < 0.98

Tracking Plane < 0.08 < 0.48 < 0.56

Electric-Field Cage < 0.16 < 1.00 < 1.16

Inner Shield < 0.18 < 0.73 < 0.91

Outer Shield 0.015(3) 0.130(30) 0.140(30)

TOTAL < 0.94 < 3.09 < 4.03

Table 5.9: Estimated contributions for detector NEXT-100 in 10−4keV−1kg−1yr−1
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We can observe in Table 5.9 the estimated contribution of several parts and

the Total contribution of the future detector NEXT-100. Finally, we obtain the

estimated overall background rate for NEXT-100:

< 4 · 10−4counts/(keV · kg · year) (5.2)

In figure 5.30, are shown the most significant contributions of some elements

of the detector. These is a very good reference to decide where to improve the

radiopurity measurements or what elements must to be replace.

Figure 5.30: Estimated contribution to the Background of NEXT-100. Asterix (*)
contributions indicates a measure; in the other cases there are only an upper limit.
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6
Radioactive Contamination in

SuperK-Gd

6.1 Introduction

SuperK-Gd will be an improved version of the Super-Kamiokande detector. In

this new version, a salt of gadolinium, Gd2(SO4)3, will be solved in the ultrapure

water tank making this salt the larger possible source of radioimpurities.

A complete program of Market-survey of Gd is a key point to reduce the

background and achieve the detector goals.
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6.2 Measurements and results

SuperK-Gd, as a low background experiment, needs to carry out a radiopurity

campaign to evaluate as much as possible the contribution of the background to

the sensibility of the detector. Two underground laboratories have been involved

in this radiopurity campaign: the Kamioka Observatory and the Canfranc

Underground Laboratory. In the last years, also the Boulby Underground

Laboratory (U. Sheffield) has joined efforts.

The usual samples to measure were Gd2(SO4)3, the salt to be solved in the

water of the detector tank. But, to study the purification process, we also

measured Gd2O3, that was mixed with H2SO4 to get Gd2(SO4)3. The study of

both Gadolinium samples can show us some very important information about

the purification process and how to improve it.

These works all together with a thorough market-survey to find the best samples

has been very fruitful: the evolution of the radiopurity in time with new samples

is clearly observable.

Tha naming convention for the Gd samples is material-date-company-lot where

each item is as follows:

• Material: type of salt, using GSF for Gadolinium Sulphate and GOX for

Gadolinium Oxide.

• Production date: writing first the two last numbers of the year and later

the two numbers of the month.

• Company: we nickname them as shown in the table

• Lot number or number of the sample: it is the last parameter to

differentiate samples. In cases of no information, 1 is the default value

employed.
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Supplier Name Sample name

Beijing Jinghonganxin BEJ

Changshu Huanyo Intl. CHS

Kojundo Ch. Lab. Co. Ltd. KJD

Kanto Chemical KNT

Molycorp Inc. MLC

Nippon Yttrium Company NYC

Stanford Materials Co. SFM

Shinetsu Chemical Co., Ltd. SHT

HK Tai Kun Intl. TAI

6.2.1 Sample Preparation for Gd measurements

Sample preparation was clearly explained in Chapter 4, but we want to remark

that Gadolinium Sulphate has moderate health hazards: can irritate eyes

and mucous membranes. Security procedures have been followed in sample

preparation using goggles and working with ventilation to avoid eye contact or

inhalation of the powder.

To measure this powder sample, the marinelli is always closed to avoid any

contamination to the detector. That means that some radon can be trapped inside

the marinelli, making some of the first datafiles contaminated in the lower part

of the 238U with an excess of activity from atmospherical radon.

6.2.2 Measurements of Gd samples with HPGe

These are the mains part of the Radiopurity Campaign for SuperK-Gd. 26

different samples (including Gadolinium Sulphate and Gadolinium Oxide) were

screened during almost the seven years of this Campaign.
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Typical radioisotopes found in Gd samples

The samples have the three usual chains, showed in figures 2.9, 2.10 and 2.11.

But, not usual strong contributions of the 235U has been observed, especially in

the lower part of chain. Figure 6.1 is a good example of this strong activity.

There are also 4 radiosiotopes observed mainly in these samples: the two first of

them are well understood and the other two are under study:

• 176Lu, is a rare earth that undergo beta decay emitting two gamma photons

with 201.8 keV (with 77.97% of probability) and 306.8 keV (with 93.6% of

probability)

• 138La is also a rare earth undergo β− (with 34.4% of probability) emitting

one gamma photon with 788.7 keV; but also can undergo β+ (with 65.6%

of probability) emitting one gamma photon with 1435.8 keV.

• 7Be is a cosmogenic radioisotope produced by spallation several elements,

por example 14C. This isotope has a gamma photon with an energy of

477.6 keV, where we are also observing a peak.

• 148∗Pm The two peaks are clearly observed in several measurements with

energies of 550.3 keV and 630.0 kev that can correspond to 148∗Pm. The

main problem is that is Pm is a very uncommon element and only can

be produced in trace quantities after a spontaneous fission of 238U, a

spontaneous fission of 235U or an alpha decay of 151Eu. These 3 isotopes

were present in Gd samples. Finally, 148∗Pm can be produced by (n, γ) in
147Pm [Eldridge and Lyon 1961].
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# Name Detector Sample Size Time

1 GSF-0904-SFM-1 GeOroel 5.00 kg 24.08 days

2 GSF-1008-SFM-100723 GeAnayet 1.00 kg 47.15 days

3 GSF-1208-BEJ-1 GeAnayet 0.87 kg 15.76 days

4 GSF-1302-CHS-1 GeOroel 2.00 kg 12.02 days

5 GSF-1303-BEJ-1 GeOroel 2.01 kg 22.28 days

5-2 GSF-1303-BEJ-1 GeLatuca 2.01 kg 18.30 days

6 GSF-1308-SFM-1 GeOroel 1.00 kg 17.38 days

6-2 GSF-1308-SFM-1 GeOroel 1.00 kg 18.50 days

7 GSF-1307-TAI-1 GeAsterix 1.00 kg 11.38 days

8 GSF-1307-TAI-2 GeOroel 1.00 kg 15.68 days

9 GSF-1412-SFM-1 GeAspe 2.96 kg 11.32 days

10 GSF-1508-KJD-1 GeOroel 2.00 kg 25.19 days

11 GOX-1510-MLC-1 GeAspe 2.18 kg 11.59 days

12 GSF-1512-NYC-1 GeOroel 0.60 kg 26.11 days

13 GOX-1512-NYC-1 GeAspe 0.60 kg 28.61 days

14 GOX-1602-NYC-1 GeAspe 1.44 kg 29.59 days

15 GOX-1603-SHT-237 GeAspe 2.22 kg 32.79 days

16 GOX-1603-SHT-239 GeLatuca 2.24 kg 29.90 days

17 GOX-1603-SHT-236 GeOroel 2.23 kg 17.26 days

18 GSF-1604-NYC-160303 Asterix 2.23 kg 30.50 days

19 GSF-1604-NYC-160311 GeTobazo 1.90 kg 33.26 days

20 GOX-1604-NYC-160353 Asterix 1.98 kg 31.25 days

21 GSF-1604-SHT-1 GeLatuca 2.23 kg 26.48 days

21-2 GSF-1604-SHT-1 Obelix 2.23 kg 26.52 days

22 GSF-1611-SHT-003 Asterix 2.50 kg 77.89 days

23 GSF-1701-MLC-003 Asterix 5.00 kg 17.45 days

24 GSF-1703-SHT-(RGD-OSF-005) Asterix 3.00 kg 70.32 days

25 GSF-1703-KNT-702142 Obelix 3.00 kg 46.18 days

26 GSF-1705-MLC-001 Obelix 5.00 kg 18.34 days

Table 6.1: Description of the samples of Gadolinium for SuperK-Gd experiment
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# Component 238U 226Ra 232Th

1 GSF-0904-SFM-1 51± 21 8± 1 11± 2

2 GSF-1008-SFM-100723 < 33 2.8± 0.6 270± 16

3 GSF-1208-BEJ-1 292± 67 74± 2 1099± 12

4 GSF-1302-CHS-1 74± 28 13± 1 205± 6

5 GSF-1303-BEJ-1 334± 76 9± 1 20± 2

5-2 GSF-1303-BEJ-1 < 108 < 6 187± 4

6 GSF-1308-SFM-1 < 56 1.2± 0.6 4± 1

6-2 GSF-1308-SFM-1 14± 7 1.0± 0.4 12.0± 1.0

7 GSF-1307-TAI-1 < 105 < 2 11.4± 2

8 GSF-1307-TAI-2 < 98 4± 1 3± 1

9 GSF-1412-SFM-1 < 76 < 1.4 2± 1

10 GSF-1508-KJD-1 < 34 < 0.8 < 1.1

11 GOX-1510-MLC-1 1606± 109 4.1± 1.2 245.3± 3.9

12 GSF-1512-NYC-1 < 139 < 2.1 2.8± 1.9

13 GOX-1512-NYC-1 < 280 < 4 < 10

14 GOX-1602-NYC-1 1221± 112 29± 2 274± 5

15 GOX-1603-SHT-237 < 63 < 0.8 < 2.7

16 GOX-1603-SHT-239 < 113 < 0.9 < 2.1

17 GOX-1603-SHT-236 < 38 < 0.7 < 1.4

18 GSF-1604-NYC-160303 < 20 < 0.64 < 0.67

19 GSF-1604-NYC-160311 < 59 < 0.7 3.2± 1.0

20 GOX-1604-NYC-160353 < 21 < 1.0 8.2± 0.7

21 GSF-1604-SHT-1 < 160 < 1.2 < 2.9

21-2 GSF-1604-SHT-1 < 25 < 0.6 < 0.7

22 GSF-1611-SHT-003 < 10 < 0.2 < 0.2

23 GSF-1701-MLC-003 < 45 0.4± 0.2 28.5± 1.1

24 GSF-1703-SHT-(RGD-OSF-005) < 7.0 < 0.24 < 0.20

25 GSF-1703-KNT-702142 < 7.0 < 0.7 < 0.22

26 GSF-1705-MLC-001 < 11 2.5± 0.4 12.2± 1.0

Table 6.2: Results of the samples of Gd for SuperK-Gd experiment. Units are in mBq/kg.
MC errors (∼ 10%) are not included
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228Th 235U 227Th 40K 138La 176Lu #

29± 3 < 32 214± 10 29± 5 8± 1 80± 8 1

86± 5 < 32 1700± 20 12± 3 21± 2 2

504± 6 < 112 2956± 30 101± 10 683± 15 566± 6 3

127± 3 < 25 < 60 3± 1 11± 1 4

360± 4 < 12 < 12 43± 3 6± 2 5

211± 2 3± 1 < 11 < 13 44± 1 7± 1 5-2

117± 2 < 3 231± 6 < 10 3.5± 0.5 25± 1 6

62± 2 < 2.5 196± 5 < 4.4 3.2± 0.3 24± 1 6-2

8± 2 < 3 < 11 4± 3 < 3 1.4± 0.4 7

411± 5 < 28 < 16 < 22 < 2 < 1.2 8

29± 2 < 1.8 190± 6 < 5 23± 1 2.5± 0.6 9

2.0± 0.5 < 0.6 11± 4 < 3 < 0.6 2.9± 0.2 10

116± 2 28.7± 1.5 < 33 21± 6 < 3.2 7.4± 1.2 11

1.8± 0.9 < 2.4 < 10 < 14 < 1.9 < 1.6 12

< 9 < 7 < 11 < 11 < 1.7 2.6 13

233± 4 50± 4 1813± 14 219± 11 10± 1 78± 2 14

< 1.7 < 1.3 < 3.5 < 3.0 < 0.5 < 0.7 15

< 1.3 < 0.8 < 3.1 < 0.6 < 0.6 16

< 0.8 < 1.0 < 0.9 < 4.1 < 0.6 < 0.5 17

0.5± 0.2 < 0.7 < 2.3 < 1.6 < 0.3 < 0.4 18

< 1.4 < 1.2 < 4.1 < 2.7 < 0.2 < 0.7 19

1.5± 0.5 1.0 < 3.4 < 5.3 0.4± 0.1 9.1± 0.5 20

< 2.5 < 0.9 < 3.6 < 3.3 < 0.5 1.3± 0.3 21

0.9± 0.3 < 3 < 6 < 2 < 0.5 0.4± 0.2 21-2

< 0.3 < 0.5 < 1.2 < 1.8 < 0.15 0.4± 0.2 22

6.3± 0.5 < 1.5 < 5.5 < 1.0 < 0.25 26.5± 0.8 23

< 0.35 < 0.4 < 1.3 < 1.2 < 0.21 0.23± 0.09 24

1.6± 0.3 < 0.8 < 4.7 < 1.8 < 0.2 2.6± 0.2 25

4.6± 0.7 < 1.0 3.4± 1.4 < 1.8 < 0.4 6.0± 0.4 26
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Figure 6.1: Spectrum of the gadolinium sulphate sample GSF-1412-SFM-1. We can
observe the strong contribution in the lower part of the spectrum of the 235U chain.
Also, we can observe the shift of the background Compton around the peaks, produced
by the strong activity of this sample.

First and one of the most remarkable difference between with NEXT

measurements is that is usual to find gamma lines from other rare earth

radioisotopes. An important topic about rare earth is that they have a very

similar chemical behavior and is harder to isolate one element from the others.

In our case, we observe two cosmogenic radionuclides, 176Lu and 138La. The

two last columns of the tables are used to quantify the activities of these two

isotopes.

An important point for the radiopurity measurements for SuperK-Gd is to

quantify the activity of 238U. This isotope, that is observed with the gamma

line emitted from 234∗Pa (γ emission at 1001.03 keV) is in equilibrium with

the activity of 238U. But, the very low intensity of this gamma line makes

very complicated to achieve low quantifications of this isotope. Only very

detectors with very low backgrounds in this energy are recommended for these

measurements. For this reason, the most recommended detectors for SuperK-Gd

measurements are GeOroel, Asterix and Obelix.

First measurements, done by L. Labarga before the start of my PhD period, were

the first contact with Gd samples. GSF-0904-SFM-1 and GSF-1008-SFM-100723.
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Strong contributions were found in almost all the isotopes studied, see rows #

1 and 2 of the tables 6.1 and 6.2. GSF-0904-SFM-1 was the first sample and

necessary to understand the typical radioisotopes we can find in these samples.

In these sample was the first where we observed 138La and 176Lu. GSF-1008-

SFM-100723 was also used in early stages of EAGDS, in a non-instrumented

version of it.

GSF-1208-BEJ-1, a small test sample (∼ 0.9 kg) from Beijing Jinghonganxin was

measured, with the largest activities observed in this campaign (row # 3 of the

tables 6.1 and 6.2). This is the first case were very careful with the 40K peak,

because the strong activity of 228 Ac can mimic this peak. We have calculate how

many counts can come from 228 Ac and the number is similar to the number of

measured counts. Then, we finally only can put an upper limit on this activity.

Figure 6.2: Different packaging of the some Gadolinium samples. Left side, GSF-1308-
SFM-1 sample. Center, GSF-1604-SHT-1, GSF-1604-NYC-160303, GSF-1604-NYC-160311
and GSF-1604-NYC-160353. Right side, GSF-1701-MLC-1

The only sample from Changshu Huanyo Intl., GSF-1302-CHS-1, ∼ 2 kg of

Gd2(SO4)3 is one of the dirtier samples measured, specially in the lower part of
235U (row # 4 of the tables 6.1 and 6.2). But no time evolution were observed

and that means that one long half-life isotope is still present in the chain.

GSF-1303-BEJ-1 and GSF-1308-SFM-1 (∼ 2.6 kg of Gd2(SO4)3 from the 500 Kg

batch from the American supplier Stanford Materials Co.) where two samples

used in the instrumented period of EGADS. The activities for relevant isotopes

for both samples are large. Additionally, these two samples where measured

two times to observe the time evolution of the decay chains. GSF-1303-BEJ-1

is one of the most complete and important samples of all the campaign of Gd

measurements. Results are in rows # 5, 5-2, 6 and 6-2 of the tables 6.1 and 6.2.
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Several long half-lifes isotopes have been removed and can be observed the

evolution of the chains clearly, during the time of the measurement and also a

in the second measurement. In GSF-1303-BEJ-1 we can observe the two different

cases of time evolution studied: short and long time evolution of the activity

GSF-1308-SFM-1 is also a example of long time evolution of the decay chains

(see subsection 6.4).

Two samples of Gd2(SO4)3, GSF-1307-TAI-1 and GSF-1307-TAI-2, ∼ 1 kg each,

from a new supplier from China, HK Tai Kun International. Unfortunately,

first measurements of both samples measurement were very short, a few days

time each. The reason for this was the limited availability of LSC detectors.

Later, these two samples were screened again with duration of about two weeks,

showed in rows # 7 and 8 of the tables 6.1 and 6.2

Even though the shortness of the last 2 measurements, their results are of large

interest and importance. Namely, there is no significant radioactivity from the
235U chain downstream. These samples were a step in the right direction,

with activities and limits that would imply a reduction of the radioactivity

induced neutrons within the Super-Kamiokande water by at least one order of

magnitude.

Figure 6.3: Figures with the daily activity of 227Th in two samples of Gd GSF-1208-BEJ-
1 and GSF-1303-BEJ-1. Left side, GSF-1208-BEJ-1 with non-observable time evolution.
Right side, GSF-1303-BEJ-1 with a clear evolution of the daily activity.
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6.2 Measurements and results

GSF-1412-SFM-1 is the fourth sample from Stanford Materials Co., with ∼ 3 kg

(row # 9 of the tables 6.1 and 6.2). Despite its activities aren’t still good enough,

we can observe an improvement in the purification process of the samples, for

example in 226Ra and 176Lu activities.

GSF-1508-KJD-1 was in the measurement moment the cleanest Gd2(SO4)3

sample, showed in row # 10 of the tables 6.1 and 6.2. But, unfortunately, we

do see significant amounts of 134Cs and 137Ca in this sample. These isotopes

make are suppose that this Gd was related to a Nuclear Fission process.

GOX-1510-MLC-1 was the first sample of Gadolilium Oxide. This sample

consisted of ∼ 2.2 kg from Molycorp Inc. It was extremely dirty, remarking

the isotope, 238U, one of the most dangerous sources of background. This step

was necessary to understand properly the purification process. Results are in

row # 11 of the tables 6.1 and 6.2

Following the campaign, three samples from a new provider, NIPPON

YTTRIUM CO., LTD, were measured. These samples are considered a first

contact with it. One is GSF-1512-NYC-1, measured with the detector geOroel,

the other is GOX-1512-NYC-1 measured with geAspe. Both are very small

samples, 0.6kg. Even though the statistics is limited, the two samples are found

rather clean (rows # 12 and 13 of the tables 6.1 and 6.2)

The third sample, 1.44 Kg of Gd2O3, GOX-1602-NYC-1, measured with geAspe.

This sample is of the same batch as GOX-1512-NYC-1 above, but before any

cleaning procedure. It is found extremely dirty, with 238U chain in an amazingly

large non-equilibrium and the presence of a large amount of in the lower part of
235U (see rows # 14 of the tables 6.1 and 6.2).

Three Gd2O3 samples from SHINETSU of ∼ 2.2 kg Chemicals were measured:

GOX-1603-SHT-237 measured at detector geAspe, GOX-1603-SHT-239 at

geLatuca, and GOX-1603-SHT-236 at geOroel. Results of these three

measurements are presented in rows # 15, 16 and 17 of the tables 6.1 and 6.2.

They are very clean, probably the cleanest ones measured by SuperK-GD. With

their very clean background was possible to observe (for the first time) the small
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peaks of 550 keV and 630 keV, supposed to be from 148∗Pm and also a peak of

478 keV (only present in GOX-1603-SHT-239), supposed to be from 7Be.

Figure 6.4: Peaks of 550 keV and 630 keV in GOX-1603-SHT-237. 148∗Pm is the main
candidate to emit these photons

The following samples are again from NIPPON YTTRIUM CO., LTD (see rows

# 18, 19 and 20 of the tables 6.1 and 6.2). One sample of Gd2(SO4)3, GSF-1604-

NYC-160303 (2.23 kg), in the detector Obelix. It was processed from the same

Gd2O3 batch from where the sample GOX-1604-NYC-160353 (1.90 kg) that is

measured afterwards, was taken. This sample was again the cleanest Gd2(SO4)3

sample measured for SuperK-Gd at LSC.

Another sample of Gd2(SO4)3 from NYC, GSF-1604-NYC-160311 (1.98 kg). This

comes from the same raw material as GOX-1604-NYC-160353 and GSF-1604-

NYC- 160303; but has undergone a different production process than the latter.

The sample of 2.23 kg Gd2(SO4)3 from Shinetsu Chemicals GSF-1604-SHT-001

was measured first with the geLatuca detector. This sample was produced from

a Gd2O3 from the same batch as the sample GOX-1603-SHT-236 previously

measured. The batch of GSF-1604-SHT-001 was the final product of a process

for which high purity was expected. As the precision obtained was not enough,

the measurement was repeated in the Obelix detector. Only upper limits were

observed, expect for the lower part of 232Th. Both measurements are presented

in rows # 21 and 21-2 of the tables 6.1 and 6.2.
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One sample of 2.5 kg of Gd2(SO4)3 from a new production batch by Shinetsu

Chemicals GSF-1611-SHT-003 was measured with the detector Asterix (row # 22

of the tables 6.1 and 6.2). This batch features the use of a more radio pure H2SO4

at the last stage of production in an attempt to further reduce the impurities

currently achieved in GSF-1604-SHT-001.

A large sample of 5 kg of Gd2(SO4)3 from a new production iteration by

Molycorp Inc. GSF- 1701-MLC-003 with the detector Asterix. There is a

dramatic improvement in radioimpurities cleanness with respect to the first

sample provided by the Company time ago. See rows # 23 of the tables 6.1

and 6.2)

A sample of 3 kg of a new ’ultrapure-production’ batch by Shinetsu Chemicals

GSF-1703-SHT-(RGD-OSF-005) was measured with the detector Asterix. The

results are excellent (rows # 24 of the tables 6.1 and 6.2), of similar quality as

the GSF-1611-SHT-003. Because of its incredible cleanness, we decided to extend

this measurement as long as we could.

One sample of Gd2(SO4)3 of 3 kg from Kanto Chemicals GSF-1703-KNT-702142

with the detector Obelix. Up to now, all the samples provided by Kanto were

small and produced at the Company’s laboratories, and all the radioimpurities

information about them was provided by the Company itself from ICP-MS

measurements. They featured excellent cleanness of isotopes 238U and 232Th.

This is the first Kanto sample produced at Factory (regular production process)

and, also, it is the first sample measured by Ge detectors, thus accessing to the

whole radioactive chains and also to other isotopes with intermediate life-times.

In fact our measurements confirm the lack of 238U and 232Th isotopes but they

show instead small but significant contaminations from the lower parts of the

chains (rows # 25 of the tables 6.1 and 6.2). This is relevant information that will

be transmitted to Kanto Chemicals for any possible correction.

The last sample of this campaign was GSF-1705-MLC-001, 5 kg of Gd2(SO4)3.

(rows # 26 of the tables 6.1 and 6.2)
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6.2.3 Measurements of Gd samples with ICP-MS

Mass Spectrometry has a strong point for Gd samples: it is powerful to

measure very long half-lifes isotopes, like the initial radioisotopes of the chains.

That means that can quantify precisely the concentration of 238U. These

measurements are very fast and are very useful to choose those Gd samples

that seem to be radiopure. Some companies also gave us this confidential

information of the ICP-MS analysis about their samples to show us the quality

of their Gd samples.

We considered necessary to complement our HPGe measurements with ICP-MS.

The measurements presented in this subsection were carried out at ’Servicio

Interdepartamental de Investigación’ (SIdI) of UAM.

The first measurement was the concentration of different isotopes in three

selected samples: GSF-1208-BEJ-1 and GSF-1307-TAI-2.

Element GSF-1208-BEJ-1 GSF-1307-TAI-2

K 0.000 0.000

La 650.685 0.251

Th 0.000 0.000

Tl 0.005 0.00

U 0.000 0.000

Bi 0.011 0.00

In these analysis, Lu is not considered because of the possible interference with

Gd, producing an overestimation in this measurement. It is necessary to repeat

this measurement with a MS with high resolution to validate this concentration.

To validate both measurement methods, HPGe and ICP-MS, we have compared

both measurements. We have convert concentration of La to activity of 138La,

following the procedure presented at the end of Chapter 4.

ICP-MS measurement:

650ppm La⇔ 527mBq/kg 138La (6.1)
168



6.2 Measurements and results

HPGe measurement:

685± 15mBq/kg (6.2)

If we add a 10% of error coming from the MC, we can affirm that both

measurements are slightly compatible.

The second interesting analysis were the Isotopic Composition of each

Gadolinium isotope. MS can precisely estimate the isotope concentration of one

element. This analysis have be done for several samples:

Gd Isot. N. Abund. GSF-1208-BEJ-1 GSF-1307-TAI-2

152 0.20 0.20± 0.01 0.20± 0.01

154 2.18 2.17± 0.02 2.13± 0.01

155 14.80 14.84± 0.04 14.84± 0.04

156 20.47 20.50± 0.08 20.57± 0.08

157 15.65 15.64± 0.02 15.63± 0.04

158 24.84 24.80± 0.01 24.76± 0.01

160 21.86 21.86± 0.06 21.87± 0.05

Table 6.3: Isotopic Composition of GSF-1208-BEJ-1 and GSF-1307-TAI-2 samples. In this
case, the samples have an Isotopic Composition compatible with Natural Abundance

Gd Isot. N. Abund. GSF-1008-SFM-100723 GSF-1308-SFM-1 GSF-1307-TAI-1

152 0.20 0.20± 0.01 0.20± 0.01 0.20± 0.01

154 2.18 2.18± 0.01 2.16± 0.02 2.16± 0.01

155 14.80 14.77± 0.10 14.62± 0.10 14.61± 0.06

156 20.47 20.78± 0.15 20.91± 0.09 20.93± 0.06

157 15.65 14.70± 0.04 14.54± 0.09 14.45± 0.05

158 24.84 25.22± 0.01 25.36± 0.01 25.35± 0.01

160 21.86 22.15± 0.06 22.22± 0.05 22.31± 0.09

Table 6.4: Isotopic composition of GSF-1008-SFM-100723, GSF-1308-SFM-1 and GSF-1307-
TAI-1. Significant differences can be observed in the Natural Abundance
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We can clearly observe lower values of odd Gadolinium isotopes and larger

values of odd+1 Gadolinium isotopes. It is important to remark than odd

Gadolinium isotopes have a Thermal Neutron Capture Cross Section orders of

magnitude larger than the others isotopes. A strong neutron flux can explain this

effect in the different natural abundance of the Gadolinium samples studied.

6.2.4 Other Measurements for SuperK-Gd

Not only Gd samples were studied, other 3 different samples from the water

tank were evaluated for SuperK-Gd, see figure 6.5.

Figure 6.5: Three samples of the water tank of SuperK. Left side, FRP (Fibre-reinforced
plastic) sample. Center, Stainless Steel from the water tank. Right side, SiO2 candidate to
seal a small leak in the water tank

After the chain implosions of a hundreds of PMTs in the water tank, all the PMTs

were covered with a FRP (Fibre-reinforced plastic) case to prevent chain reaction

implosions. As the typical PCBs samples, these sample has a large activity, in

the order of 20-40 mBq/kg in the chains of 238U, 232Th and also in 40K

We also measured the Stainless Steel of the Water Tank, where the results were

very similar to samples of normal Stainless Steel. Activities of 6.4± 2.4 mBq/kg

for 228 Ac, 1.6± 1.3 mBq/kg for 208Tl, 3.0± 1.1 mBq/kg for 214Bi and 10.5± 0.6

mBq/kg for 60Co were quantified.

The last measurement consisted of 2 kg of High Purity SiO2 powder, a good

option to glue a water leak. The sample was provided by Kojundo Ch. Lab. Co.

Ltd. The activity observed was very large, with activities about ∼0.5 mBq/kg in
238U chain, ∼40 in 232Th chain and 0.9 Bq/kg in 40K.
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6.3 Study of natural abundance: the 235U case

Uranium has mainly 3 different isotopes: 238U with a natural abundance of

99.274%, 235U with a natural abundance of 0.720% and 234U with a natural

abundance of 0.005%. Therefore, if we observe in a spectrum a strong

contribution of 238U chain, we also will expect some peaks from the 235U chain.

Therefore, in very contaminated samples with Uranium, we can estimate the

ratio between 238U and 235U. If one sample doesn’t have this equilibrium, the

most simple explanation we found was that the sample was in contact with

enriched uranium.

It is recommended to use 205.3 keV peak of 235U because in 185.7 keV, is very

close the peak of 226Ra and can make us overestimate the peak.

Using this equation to convert natural abundance to activity:

A = λN (6.3)

We conclude that a factor ∼ 20 must relate both activities. In our case, GOX-

1510-MLC-1 (row # 11 of the tables 6.1 and 6.2) shows a good agreement with

this ratio if we consider the 10% of MC error.

The agreement in GOX-1602-NYC-1 (row and 14 of the tables 6.1 and 6.2) is not

so good, but gives us slightly compatible result for this study.

6.4 The non-equilibrium of the decay chains

The time evolution of the chains have been observed in several samples of Gd.

It is necessary to have previously a large contamination in the sample and, after

the production process, a strong removal of a long half-life isotope. Depending

of the half-life of the observed isotopes, we can observe this evolution in during

the measurement or we have to repeat ir several years later.
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6.4.1 Short time evolution of the activity

We have observe this evolution in samples where the equilibrium was broken

and one isotope with a long half-life have been removed from the sample and

its daughters have half-lifes in the order of the days. In this case, the activity is

reduced with the time and can also been observed during the measurement; in

our case, thanks to the daily data taken.

The most significant sample of short time evolution is GSF-1303-BEJ-1 in the

lower part of 235U chain. This chain is showed in figure 2.11.

Figure 6.6: Figures with some peaks of GSF-1303-BEJ-1 of the chain 235U. These three
figures show that the chain is not in equilibrium. Left side, peak of 235U with 185.7 keV.
Center, peak of 231Pa with 302.7 keV. Right side, of 219Rn with 401.7 keV

235U is the first isotope of the chain and has the longest half-life of the chain,

with a half-life of 7 · 108 years. 235U has several photons to quantify its activity.

The most important is 185.7 keV with an intensity of 57.2%. This peak has very

close a peak from 226Ra (186.1keV, with 3.5%). Despite this overlap, we can

use the technique presented in Subsection 2.2.2 and estimate that the activity is

small, lower than a few of mBq/kg

231Th is the second isotope of the chain. Painted in green color in figure 2.11,

that means that is a short half-life isotope and its activity will be almost the same

that 235U.

231Pa is the third isotope of the chain, with a long half-life of 3 · 104 years. It has

one peak that can be used quantify its activity, 302.7 keV with an intensity of

2.5%. This peak is in a very clean region surrounded by these peaks:227Th (299.9

keV, with 2.0%), 231Pa (300.0 keV, with 2.4%), 212Pb (300.1 keV, with 3.3%) and
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6.4 The non-equilibrium of the decay chains

227Th (304.4 keV 1.1%). In this case, again is not possible to observe a peak, only

upper limits were found.

227 Ac is the fourth isotope of the chain, with a half-life of 22 years. The intensity

and the energy of the emitted gamma is small and direct quantification of 227 Ac

is very complicated. But in case of equilibrium it can be quantified with the

several gamma photons emitted by its daughters.

227Th and 223Ra are the fifth and sixth isotopes of the chain, painted in yellow

(intermediate half-life) in figure 2.11 with a half-life of 19 days and 11 days,

respectively. In these two isotopes we started to observe evolution on the daily

activity measured.

Figure 6.7: Time evolution of four different isotopes are plotted.

The rest of the chain is very fast to decay, with half-lifes in the order of the

minutes or lower. We will always observe this part in equilibrium. The most

recommended peak for this part of the chain is one from 219Rn, 401.7 keV, with

6.6%, without any peak in the interval ±2 keV.

227 Ac was removed by some kind of purification process within a time interval

not longer than few weeks before receiving it in Canfranc. The strong

disequilibrium of the parts of the chain with absence of the long half-life isotopes

makes possible to observe this process. Plotting the specific activity obtained per
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datafile versus the day when it was taken, we can observe clearly the exponential

law.

We also have measured this sample again almost three years later to observe

the state of the time evolution and we observed that almost all the low part has

disappear. That probes that the presence of long half-lifes isotopes is very small

in this sample.

Figure 6.8: Status of the sample in two different measurements. Left side, April 2013.
Right, January 2016. Both figures have the same scale

6.4.2 Long time evolution of the activity

In these cases, we have measure the sample a second time to observe clearly

the evolution. Because of the two different measurements we have to use some

isotopes as a reference, to be sure that the measurements conditions are the

same. For this purpose, we have use the two cosmogenical isotopes we have in

Gd samples, 138La and 176Lu.

The expected results are strong activity changes in isotopes with a half-life in

the order of days and some evolutions in isotopes with half-lifes in the orders of

years. Two samples are used to observe it: GSF-1303-BEJ-1 and GSF-1308-SFM-1.

In GSF-1303-BEJ-1 we can observe a large reduction of the activity of 238U,

that only can be explained with the partial removal of U and the progressive

reduction of the number of atoms of 234Th that finally will produce the 1001 keV

peak.
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Also, we can observe a increase of 232Th in the upper part its the chain. It can

be explained with the partial removal of Ra in the sample and the contribution

of 232Th with higher activity.

Estimation of concentration of 232Th

In GSF-1308-SFM-1 the time difference between both measurements were 1.874

years. In this case, we are going to estimate the activity of 232Th, the initial

part of its chain that doesn’t have any measurable gamma line. The Bateman

equations for only two elements:

P = P0e−λ1t (6.4)

Q =
λ1P0

λ2 − λ1
e−λ1t + (

λ1P0

λ1 − λ2
+ Q0)e−λ2t (6.5)

Looking the second equation, we can rewrite this equation as follows:

P0 =
Q−Q0e−λ2t

λ1
λ2−λ1

e−λ1t + λ1
λ1−λ2

e−λ2t
(6.6)

With the information of these measurements (rows # 6 and 6-2 of the tables

6.1 and 6.2), we can define all the parameters of the second Bateman equation:

Q0 = (12.0± 1.0mBq/kg)/λ2, Q = (4.0± 0.7mBq/kg)/λ2, λ1 = 4.78 · 10−11y−1,

λ2 = 0.121y−1 and t = 1.874y.

Finally, we get the activity of 232Th, 41± 5 mBq/kg
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6.5 Current status and expectations

As May 2017, we have several samples ready to be measured: one by Molycorp

Inc. already shipped to Spain and two new samples by NYC produced by a new

optimized (and cheaper) production process. All the experience accumulated by

the companies makes us believe that these samples will be very radiopure.

Now, we are in an advanced phase of the project characterized by the presence of

several major companies interested in our project; remarkably are the Japanese

Nippon Yttrium Co., Ltd., Shinetsu Chemicals and Kanto Chemicals, and the

American Molycorp Inc. This interest has produced the opening of those

companies to their production and purification processes showing us their

interest in our Project and improving their knowledge about how to produce

radio-pure Gd salts. The progress is indeed very good. We have very good

candidates for the final Gadolinium sample for our experiment.

Once selected the final Gadolinium sample, we start a progressive loading of the

Gadolinium in the water tank in several stages. The final state of the detector

will have 100 Tons of Gd2(SO4)3, load to 0.2%.

We must measure at least one sample of every batch of the full production. One

of the companies has confirmed that 1 production batch corresponds to 500 kg

approximately. Therefore, in the most probable scenario with a first phase of 10

ton loading, 20 measurements have to be done and 180 for the remaining 90 ton.

They will be carried out in a pass/no-pass screening campaign (15-20 days

measurement time per sample), measuring ∼20 samples/year/Ge-detector. In

any instance, the final strategy will be getting conformed along the relevant

informations about mass production become available.
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7
Summary and Conclusions

Neutrino Experimental Physics is still a cave filled of treasures to discover.

This elusive particle has many open questions to answer: a precise measure

of the mixing parameters, exact masses of the neutrinos and their hierarachy

and leptonic CP violation are of most importance. And there is overall the

fundamental question of the nature of the neutrino particle: Majorana or Fermi,

i.e. wether the neutrino is its own antiparticle or not. To find these answers,

several neutrinos detectors are working or under construction. The kind of

signal that we want to see is very tiny: rare events physics. Low background

detectors are a must to maximaze the visibility of the events.

Radiopurity is the part of these experiments destined to study, understand and

quantify the different sources of radioactive background that can mimic the

expected signal. The main source of radioactivity are the three natural decay
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chains: 238U, 232Th and 235U. Using High Purity Germanium (HPGe) and Mass

Spectrometry, the activity of the samples can be precisely estimated.

My work during my PhD period was in two radiopurity groups for two

Collaborations: NEXT and Super-Kamioande. Right now, both Radiopurity

Campaigns (still in progress) are in the right direction: almost all the

requeriments and goals are being fulfilled.

NEXT (Neutrino Experiment with a Xenon TPC) is a Majorana neutrino detector,

a TPC filled with almost 100 kg of enriched 136Xe isotope capable to track the

2β0ν events and also to measure the energy with a resolution < 1% at Qββ.

For the NEXT experiment, a team composed by members of Universidad

de Zaragoza (UNIZAR), Laboratorio Subterráneo de Canfranc (LSC) and our

Universidad Autónoma de Madrid (UAM) has carried out this Campaign, also

with the help of Background Model people and the engineers of the project.

About 200 measurements were carried out in this radiopurity campaign, most

of them at the LSC with HPGe’s. The results are rather satisfactory indicating

a rather correct selection of the materials conforming the NEXT project. Some

of the measured components showed relatively high activities, this discarding

their use in NEXT. In these cases replacements were searched for, measured

their radioactivity contamination, and used if acceptable.

The NEXT photomultiplier tubes (PMT) were a very complicated part of the

campaign. The selected model was R11410-10 from Hamamatsu. They were

produced manually with no information of their radiopurity. The 55 available

units were screened during the three years of the Campaign. The positive results

obtained were excellent and in good agreement with those reported on previous

units by other experiments.

SuperK-Gd is the upgrade of the sucessfull experiment Super-Kamiokande.

This upgrade consist on dissolving 100 Tons of Gadolinium Sulphate on its

water to make the detector capable to tag neutrons. They will be captured by

the Gadolinium, the element with the highest thermal neutrino capture cross

section. A ∼ 8 MeV gamma cascade is emitted at the capture which can be

detected by SK. With SuperK-Gd, it will be possible to observe for the first time
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the Supernova Relic Neutrino (SRN) and improve dramatically other key and

fundamental measurements by SK.

In the SuperK-Gd project, the first part of the campaign is a Market-survey of

possible providers of Gadolinium. The initial samples were very dirty, with

activities orders of magnitude larger that we could accept

In this Campaign, 26 Gadolinium samples have been measured at the LSC

with HPGe. Nowadays, GSF-1703-SHT-(RGD-OSF-005) is the most promising,

with no signal observed in the dangerous isotopes; only upper limits could be

estimated. Some of these upper limits fulfill our very stringent backgrounds

requeriments but it is not enough.

After the approval of SuperK-Gd by the Super-Kamiokande Collaboration in

June 2015 and, also, the 2015 Nobel Price in Physics awarded to T. Kajita, several

major Japanese Rare Earth companies, Shinetsu Chemicals, Kanto Chemicals and

Nippon Yttrium Co., got interested and fully involved in our project. Since then,

the radioactive contaminations of the produced samples have been decreased

dramatically.

This generation of Neutrino Physics Experiments cannot be understood without

a strong Radiopurity Group in their Collaborations. The work of these two

radiopurity groups have helped both experiments to walk in the right direction,

to clear up the eyes of the detectors. Amazing results are awaiting...
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Chapter 7. Summary and Conclusions

La Física Experimental de Neutrinos es una cueva llena de tesoros por descubrir.

El neutrino, esta esquiva partícula, tiene muchas preguntas por responder: una

medida precisa de sus parámetros de mezcla, el valor exacto de su masa y su

jerarquía y la violación CP de tipo leptónica son las más importante. Además,

hay una pregunta por encima de todas ellas: si los neutrinos son de Majorana

o de Dirac, es decir, si son su propia antipartícula o no. Para hallar estas

respuestas, varios experimentos están ahora mismo en construcción. El tipo

de señal que esperamos ver es muy pequeña: estamos en física de eventos raros.

Para poder maximizar estas señales, es necesario trabajar con detectores de muy

bajo fondo.

La Radiopureza es la parte de estos experimentos en los que se estudia, entiende

y cuantifica las diferentes fuentes de fondo radioactivo que pueden imitar a

la señal esperada. La principal fuente de radioactividad son las 3 cadenas

naturales: 238U, 232Th y 235U. Usando High Purity Germanium (HPGe) y Mass

Spectrometry, la actividad de las muestras puede ser cuantificada con precisión.

Mi trabajo durante mi periodo doctoral ha sido dentro de dos grupos de

radiopureza de dos colaboraciones: NEXT y Super-Kamiokande. Ahora mismo,

con ambas campañas aún a medias, estamos en la dirección adecuada: casi todos

los requisitos de radiopureza han sido alcanzados.

NEXT (Neutrino Experiment with a Xenon TPC) es un detector de neutrinos de

Majorana, una TPC llena con casi 100 kg de isótopo 136Xe, capaz de reproducir

las trazas de eventos 2β0ν y además medir su energía con una resolución < 1%

at Qββ.

Para el experimento NEXT, un grupo compuesto por gente de la Universidad de

Zaragoza (UNIZAR), el Laboratorio Subterráneo de Canfranc (LSC) y nuestra

Universidad Autónoma de Madrid (UAM) ha llevado a cabo esta campaña;

también con la ayuda de la gente del grupo de Background Model y los

ingenieros de la colaboración. Unas 200 medidas se han hecho dentro de esta

campaña, la gran mayoría en los HPGe’s del LSC. Los reultados son bastante

satisfactorios y una muy adecuada selección de los materiales ha sido llevada a

cabo. A pesar de todo, algunos materiales han sido reemplazados debido a sus

elevados niveles de actividad radioactiva.
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Los tubos fotomultiplicadores (PMT) de NEXT han sido una parte complicada

de la campaña. El modelo seleccionado, R11410-10 de Hamamatsu era

de fabricación manual y no existía ninguna información previa sobre su

radiopureza. El estudio de las 55 unidades disponibles durante los 3 años de

la campana nos ha servido para obtener resultados muy positivos y en sintonía

con los obtenidos en otras experimentos previamente.

SuperK-Gd es una mejora del exitoso detector Super-Kamiokande. La mejora

consiste en la disolución de 100 toneladas de sulfato de gadolinio en el agua

para poder detectar la captura de neutrones; la cual producirá posteriormente

una cascada de fotones con una energía de ∼ 8MeV. Con SuperK-Gd será

posible observar por primera vez los Supernova Relic Neutrino (SRN) y mejorar

dramáticamente otras medidas fundamentales del experimento.

En la campaña de SuperK-Gd, primero hemos empezado con un estudio de

mercado de los proveedores de Gadolinio. En las primeras muestras, la actividad

era muy elevada, ordenes de magnitud superior a lo que podemos aceptar.

Durante la campaña, se han medido 26 muestras de Gadolinio. Ahora mismo,

tenemos una muestra, GSF-1703-SHT-(RGD-OSF-005), de la que solo se han

cuantificado límites superiores pero no señales de los picos más peligrosos. Pero

esas cotas no llegan aún a cubrir todos los requisitos experimentales.

Después de la aprobación de SuperK-Gd por la Super-Kamiokande

Collaboration en junio de 2015 y el Premio Nobel de T. Kajita en ese mismo año,

varios proveedores (Shinetsu Chemicals, Kanto Chemicals y Nippon Yttrium

Co) han aumentado su interés en producir muestras más limpias y sus niveles

de contaminación disminuido dramáticamente.

Este generación de Física Experimental de Neutrinos no puede ser explicada sin

un grupo fuerte de Radiopureza en sus colaboraciones. El trabajo de estos dos

grupos ha servido en ambos experimentos a trabajar en la dirección adecuada,

a aclarar los ojos del detector. Increíbles resultados nos están esperando...





References

Abgrall, N. et al. (2016). “The Majorana Demonstrator Radioassay Program.” In:

Nucl. Instrum. Meth. 828, pp. 22–36 (cit. on p. 121).

Agostinelli, S. et al. (2003). “GEANT4 - A Simulation Toolkit.” In: Nucl. Instrum.

Meth. A 506, p. 250 (cit. on p. 98).

Ahmad, Q. R et al. (2002). “Direct Evidence for neutrino flavor transformation

from neutral-current interactions in the Sudbury Neutrino Observatory.” In:

Physical Review Letters 89.011301 (cit. on p. 4).

Akerib, D. et al. (2012). “Radio-assay of Titanium samples for the LUX

Experiment.” In: arXiv:1112.1376 [INSPIRE] (cit. on p. 142).

Akerib, D. S. et al. (2013). “An Ultra-Low Background PMT for Liquid Xenon

Detectors.” In: Nucl. Instrum. Meth. A 703.1-6 (cit. on p. 129).

Akerib, D. S. et al. (2015). “LUX-ZEPLIN Conceptual Design Report.” In:

arXiv:1509.02910v2 [physics.ins-det] (cit. on p. 130).

Alessandrello, A. et al. (1991). “Measurements on radioactivity of ancient roman

lead to be used as shieldin searches for rare events.” In: Nucl. Instrum. Meth.

B 61, p. 106 (cit. on p. 146).

183



References

Alvarez, V. et al. (2012). “NEXT-100 Technical Design Report (TDR): Executive

Summary.” In: JINST 7, T06001. doi: 10.1088/1748-0221/7/06/T06001.

arXiv: 1202.0721 [physics.ins-det] (cit. on pp. 141, 143, 144).

Alvarez, V. et al. (2013). “Radiopurity control in the NEXT-100 double beta decay

experiment: procedures and initial measurements.” In: JINST 8, T01002. doi:

10.1088/1748-0221/8/01/T01002. arXiv: 1211.3961 [physics.ins-det]

(cit. on pp. 110, 116, 121, 131, 133, 134, 140, 141).

Aprile, E. et al. (2015). “Lowering the radioactivity of the photomultiplier tubes

for the XENON1T dark matter experiment,” in: Eur. Phys. J 75, p. 546 (cit. on

p. 129).

Aprile, E. et al. (2011). “Material screening and selection for XENON100.” In:

Astroparticle Physics 35.2, pp. 43–49 (cit. on pp. 110, 129, 142, 144).

Arpesella, C. et al. (2002). “Measurements of extremely low radioactivity levels

in BOREXINO.” In: Astroparticle Physics 18, pp. 1–25 (cit. on pp. 133, 142).

Aznar, F. et al. (2013). “Assssment of material radiopurity for Rare Event

experiments using Micromegas.” In: JINST 8, p. C11012 (cit. on p. 131).

Bahcall, J. N., J. Davis, and L. Wolfenstein (1988). “Solar Neutrinos: a Field in

Transition.” In: Nature 344, pp. 487–493 (cit. on p. 4).

Barrow, P. et al. (2016). “Qualification Tests of the R11410-21 Photomultiplier

Tubes for the XENON1T Detector.” In: arXiv:1609.01654v1 [astro-ph.IM] (cit.

on p. 129).

Bateman, Harry (1910). “Solution of a System of Differential Equations

Occurring in the Theory of Radio-active Transformations.” In: Proceedings

of the Cambridge Philosophical Society, Mathematical and physical sciences. 423,

pp. 423–427 (cit. on p. 50).

184

https://doi.org/10.1088/1748-0221/7/06/T06001
http://arxiv.org/abs/1202.0721
https://doi.org/10.1088/1748-0221/8/01/T01002
http://arxiv.org/abs/1211.3961


References

Baudis, L et al. (2011). “Gator: a low-background counting facility at the Gran

Sasso Underground Laboratory.” In: Journal of Instrumentation 6.08, P08010

(cit. on p. 97).

Baudis, L. et al. (2015). “Cosmogenic activiation of xenon and copper.” In: The

European Physical Journal C 75.485 (cit. on p. 20).

Boccone, V. et al. (2009). “Development of wavelength shifter coated reflectors for

the ArDM argon dark matter detector.” In: JINST 4, P06001 (cit. on p. 144).

Budjas, B. et al. (2008). “Highly sensitive gamma-spectrometers of GERDA for

material screening. Part I.” In: arXiv:0812.0723 [INSPIRE] (cit. on p. 146).

Budjas, D. et al. (2009). “Gamma-ray spectrometry of ultra low levels of

radioactivity within the material screening program for the GERDA

experiment.” In: Applied Radiation and Isotopes 67, p. 755 (cit. on pp. 116,

131).

Busto, J. et al. (2002). “Radioactivity measurements of a large number of

adhesive.” In: Nucl. Instrum. Meth. A 492, pp. 35–42 (cit. on p. 112).

Cebrian, S. et al. (2011). “Radiopurity of micromegas readout planes.” In:

Astroparticle Physics 34, pp. 354–359 (cit. on p. 131).

Cebrian, S. et al. (2017). “Radiopurity assessment of the energy readout for the

NEXT double beta decay experiment.” In: https://arxiv.org/abs/1706.06012v1

(cit. on p. 108).

Cebrián, S. et al. (2015). “Radiopurity assessment of the tracking readout for the

NEXT double beta decay experiment.” In: JINST P05006 (cit. on p. 130).

Cherenkov, P. (1937). “Visible radiation produced by electrons moving in a

medium with velocities exceeding that of light.” In: Physical Review 52.4,

p. 378 (cit. on p. 16).

185



References

Cottingham, W. N. and D. A. Greenwood (2001). An Introduction to Nuclear

Physics. Cambridge University Press (cit. on p. 28).

Cowan, P. M. and R. C. Barber (2010). “Q value for the double-beta decay of

Xe-136.” In: Physical Review C 82, p. 024603 (cit. on p. 62).

Eldridge, J. S. and W.S. Lyon (1961). “Promethium 148.” In: Nuclear Physics 23,

pp. 131–138 (cit. on p. 158).

Fermi, Enrico (1974). Nuclear Physics: A Course Given by Enrico Fermi at the

University of Chicago. The University of Chicago Press (cit. on p. 34).

Fernández, Pablo (2016). “Neutrino Physics in Present and Future Kamioka

Water-Cherenkov Detectors with Neutron Tagging.” PhD thesis.

Universidad Autónoma de Madrid (cit. on p. 65).

Gamow, George (1928). “Zur Quantentheorie des Atomkernes.” In: Zeitschrift für

Physik 51.3, pp. 204–212 (cit. on p. 30).

Geiger, H. and J.M. Nuttall (1911). “The ranges of the alpha particles from

various radioactive substances and a relation between range and period of

transformation.” In: Philosophical Magazine Series 6 22.120, pp. 613–621 (cit.

on p. 30).

Goeppert-Mayer, M. (1935). “Double Beta-Disintegration.” In: Physical Review 48,

pp. 512–516 (cit. on p. 7).

Gonzalez-Garcia, M. C., M. Maltoni, and T. Schwetz (2014). “Updated fit to three

neutrino mixing: status of leptonic CP violation.” In: arXiv:1409.5439 (cit. on

p. 6).

Hahn, Otto and Fritz Strassmann (1939). “Nachweis der Entstehung aktiver

Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung;

Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung.” In: Naturwiss

27.89, p. 163 (cit. on p. 36).
186



References

Heaviside, O. (2008). Electromagnetic Theory. Vol. 3. Cosimo Inc. (cit. on p. 16).

Heusser, G. (1995). “Low-Radioactivity Background Techniques.” In: Annual

Review of Nuclear and Particle Sciencie 45, pp. 543–590 (cit. on pp. 18, 75,

131, 138, 146).

Hirata, K. S. et al. (1990). “Constraints on neutrino oscillation parameters from

Kamiokande II solar neutrino data.” In: Physical Review Letters 65, pp. 1301–

1304 (cit. on p. 4).

Knoll, Glenn F. (2000). Radiation Detection and Measurement. John Wiley and sons,

Inc (cit. on p. 28).

Krane, Kenneth S. (1987). Introductory Nuclear Physics. John Wiley and sons, Inc

(cit. on p. 28).

LaFerriere, B. D. et al. (2015). “A novel assay method for the trace determination

of Th and U in copper and lead using inductively coupled plasma mass

spectrometry.” In: Nucl. Instrum. Meth. A 775, pp. 93–98 (cit. on p. 121).

Laubenstein, M. et al. (2004). “Underground measurements of radioactivity.” In:

Applied Radiation and Isotopes 61, pp. 167–172 (cit. on pp. 121, 144, 146).

Lawson, I. and B. Cleveland (2011). “Low Background Counting At SNOLAB.”

In: AIP Conf. Proc. 1338, pp. 68–77 (cit. on pp. 117, 133, 142, 144).

Leo, W.R. (2012). Techniques for Nuclear and Particle Physics Experiments: A How-

to Approach. Springer Berlin Heidelberg. isbn: 9783642579202. url: https:

//books.google.es/books?id=yc4qBAAAQBAJ (cit. on p. 28).

Leonard, S. et al. (2008). “Systematic study of trace radioactive impurities in

candidate construction materials for EXO-200.” In: Nucl. Instrum. Meth. A

591, p. 490 (cit. on pp. 117, 140, 144, 146).

187

https://books.google.es/books?id=yc4qBAAAQBAJ
https://books.google.es/books?id=yc4qBAAAQBAJ


References

Lopez-March, N. (2016). “Sensitivity of the NEXT-100 detector to neutrinoless

double beta decay.” In: NEUTRINO 2016 (cit. on p. 63).

M. Redshaw E. Wingfield, J. McDaniel and E. G. Myers (2007). “Mass and

double-beta decay Q value of Xe-136.” In: Physical Review Letters 98,

p. 053003 (cit. on p. 62).

Magill, Joseph and Jean Galy (2005). Radioactivity Radionuclides Radiation.

Springer (cit. on p. 28).

Majorana, E. (1937). “Theory of the Symmetry of Electrons and Positrons.” In:

Nuovo Cimento 14, pp. 171–184 (cit. on p. 7).

Maneschg, W. et al. (2008). “Measurements of extremely low radioactivity levels

in stainless steel for {GERDA}.” In: Nucl. Instrum. Meth. A 593.3, pp. 448–453

(cit. on p. 142).

Martín-Albo, J. et al. (2016). “Sensitivity of NEXT-100 to neutrinoless double

beta decay.” In: JHEP 05, p. 159. doi: 10.1007/JHEP05(2016)159. arXiv:

1511.09246 [physics.ins-det] (cit. on pp. 63, 108, 121, 152).

Martín-Albo, Justo (2015). “The NEXT experiment for neutrinoless double beta

decay searches.” PhD thesis. Valencia U., IFIC. url: http://roderic.uv.

es/handle/10550/41728 (cit. on pp. 63, 108).

N. Soppera, M. Bossant and E. Dupont (2014). “An Improved Version of the NEA

Java-based Nuclear Data Information System.” In: Nuclear Data Sheets 120,

pp. 294–296 (cit. on p. 98).

Nachab, A. and Ph. Hubert (2012). “210Pb activity by detection of

bremsstrahlung in 210Bi beta-decay.” In: Nucl. Instrum. Meth. B 274, pp. 188–

190 (cit. on p. 134).

Nebot-Guinot, M. (2016). “The NEW detector: construction, commissioning and

first results.” In: NEUTRINO 2016 (cit. on p. 58).
188

https://doi.org/10.1007/JHEP05(2016)159
http://arxiv.org/abs/1511.09246
http://roderic.uv.es/handle/10550/41728
http://roderic.uv.es/handle/10550/41728


References

Nisi, S. et al. (2009). “Comparison of inductively coupled mass spectrimetry and

ultra low-level gamma-ray spectroscopy for ultra low background material

selection.” In: Applied Radiation and Isotopes 67, p. 828 (cit. on pp. 116, 131).

Ostrovskiy, I. et al. (2015). “CharacterizationofSiliconPhotomultipliersfornEXO.”

In: arXiv:1502.07837 [physics.ins-det] (cit. on p. 138).

Petrzhak, K. A. and G. N. Flerov (1940). “Spontaneous Fission of Uranium.” In:

Physical Review Letters 58.89 (cit. on p. 36).

Petrzhak, K. A. and G. N. Flerov (1941). “Spontaneous Fission of Uranium.” In:

Uspekhi Fizicheskikh Nauk 25.2, pp. 171–178 (cit. on p. 36).

Racah, G. (1937). “On the symmetry of particle and antiparticle.” In: Nuovo

Cimento 14, pp. 512–516 (cit. on p. 7).

Reines, F. and C. L. Cowan (1956). “The Neutrino.” In: Nature 178, pp. 446–449

(cit. on pp. 2, 3).

Relly, Doug et al. (1991). Passive Nondestructive Assay of Nuclear Materials. United

States - Nuclear Regulatory Commission (cit. on p. 36).

Sobel, H. W. et al. (1973). “High-Energy Gamma Rays from Spontaneous Fission

of 238U.” In: Physical Review C 7.4, pp. 1564–1579 (cit. on p. 38).

Spiering, C. (2012). “Towards High-Energy Neutrino Astronomy.” In: The

European Physical Journal H 37, pp. 515–565 (cit. on p. 8).

Turkevich, L. (1991). “Double-beta decay of 238U.” In: Physical Review Letters

67.3211 (cit. on p. 40).

Vacri, M. L. di et al. (2015). “ICP MS selection of radiopure materials for the

GERDA experiment.” In: AIP Conf. Proc. 1672.15001 (cit. on p. 118).

189



References

Valentine, T. E. (2001). “Evaluation of prompt fission gamma rays for use in

simulating nuclear safeguard measurements.” In: Annals of Nuclear Energy

28, pp. 191–201 (cit. on p. 38).

Wang, X. et al. (2016). “Material Screening with HPGe Counting Station for

PandaX Experiment.” In: JINST 11.T12002 (cit. on p. 129).

190


	Contents
	1 Introduction to the Neutrino Physics
	1.1 Experimental neutrino Physics; the physics cases of the experiments NEXT and SuperK-Gd
	1.1.1 NEXT experiment
	1.1.2 SuperKamiokande experiment

	1.2 Radioactive contamination in materials
	1.2.1 Origin of the radioisotopes
	1.2.2 Sources of radioactive


	2 Introduction to radioactivity physics
	2.1 Type of nuclei radioactivity decays
	2.2 Decay chains
	2.2.1 Radon Emanation in Decay Chains
	2.2.2 Most important gamma lines in the decay chains

	2.3 Other radioctive isotopes

	3 Experimental techniques in NEXT and SuperK-Gd; the impact of radioactivity on them
	3.1 NEXT
	3.1.1 The NEW Detector
	3.1.2 Impact of radioactivity
	3.1.3 The NEXT background model

	3.2 SuperK-Gd
	3.2.1 Neutrino-Neutron Physics
	3.2.2 Gadolinium as a Neutron Capturer
	3.2.3 EGADS R&D
	3.2.4 Impact of radioactivity in SuperK-Gd
	3.2.5 Impact of radioactivity in SuperK-Gd


	4 The characterization of radioactivity contamination in materials: experimental techniques
	4.1 High Purity Germanium detector (HPGe)
	4.1.1 Gamma-ray interaction with matter
	4.1.2 Gamma-ray energy deposited in a HPGe detector

	4.2 Radiopurity Services of the LSC
	4.3 Typical measurement procedure
	4.3.1 Sample preparation

	4.4 Signal Extraction
	4.4.1 Case of Large Background
	4.4.2 Case of Low Background

	4.5 JANIS database for Nuclear decays
	4.6 Monte Carlo simulation
	4.6.1 Efficiency Estimation: typical examples

	4.7 Quantification of the radioactive contamination of the materials
	4.8 Other techniques
	4.8.1 GDMS and ICPMS
	4.8.2 Radon emanation

	4.9 Conversions between ppb and Bq/kg

	5 Radioactive contamination in NEXT detector
	5.1 Introduction
	5.2 Energy Plane
	5.2.1 PMT base
	5.2.2 Windows, PMT enclosures and other components
	5.2.3 PMTs: PMT campaign

	5.3 Tracking plane
	5.3.1 Printed Circuit Boards and cables
	5.3.2 Connectors
	5.3.3 Soldering materials
	5.3.4 The SiPM case
	5.3.5 Other components

	5.4 Vessel and External parts
	5.4.1 Vessel
	5.4.2 High Voltage and electroluminescence components
	5.4.3 External components of the detector
	5.4.4 Gas System

	5.5 Impact of the Radioimpurities on the Physics of NEXT

	6 Radioactive Contamination in SuperK-Gd
	6.1 Introduction
	6.2 Measurements and results
	6.2.1 Sample Preparation for Gd measurements
	6.2.2 Measurements of Gd samples with HPGe
	6.2.3 Measurements of Gd samples with ICP-MS
	6.2.4 Other Measurements for SuperK-Gd

	6.3 Study of natural abundance: the 235U case
	6.4 The non-equilibrium of the decay chains
	6.4.1 Short time evolution of the activity
	6.4.2 Long time evolution of the activity

	6.5 Current status and expectations

	7 Summary and Conclusions
	References

