A taste of Heavy Flavour physics at HERA

Luis Labarga (University Autonoma Madrid), on behalf of the H1 and ZEUS Collaborations

OUTLINE:

- Basics of HERA and HF production at HERA
- Current theoretical description
- Charmed hadron production:
 - charm Fragmentation
 - cross sections; p-QCD description
 - extraction of F₂^{cc} contribution to the proton's F₂
- Beauty (charm) production
 - reconstruction/tagging methods
 - cross-sections; p-QCD description
 - extraction of F_2^{bb} and F_2^{cc} contribution to the proton's F_2

II Workshop on Theory, Phenomenology and Experiments in Heavy Flavour Physics, Capri 17/06/2008

Basics of experimentation at HERA

Different reactions:

according to *charge* of ex. boson:
NC: γ, Z⁰ CC: W⁺⁻
according to its *virtuality*:
DIS: Q²> 2(?) GeV²;
γ-production: Q²≈ 0 GeV (γ*P* inter.)

 Q^2 : squared 4p transferred x (-1); x: in QPM fraction of **p** carried by parton; ...

Dominant production process in e-p collisions: boson-gluon-fusion

Multiple scales involved: • $M_b \sim 5 \text{ GeV}, M_c \sim 1.4 \text{ GeV}$ • $Q^2 \sim 0 \text{ GeV}^2$ (photoproduction - γp) • $Q^2 > \sim 1 \text{ GeV}^2$ (deep inelastic scattering - *DIS*) • $P_t^{c,b}$ few GeV Powerful tool for testing *p* structure and the applicability of *pQCD*

• when the exchanged γ is almost real its hadronic component plays a role:

Example of complete reaction involving Heavy Quark production: D^{*-} production and decay ($K^{+}\pi^{-}\pi^{-}$) in a \overline{cc} BGF reaction

Factorization is assumed:

 $\sigma = P(+\gamma)$ structure(s) \otimes QCD m.e. \otimes fragmentation & decays

⇒ In this talk we will address (almost) all the ingredients (and check indirectly the factorization assumption)

Theory calculations and Monte Carlo samples

MONTE CARLO

- leading order + parton shower models available, including flavour excitation, DGLAP evolution (PYTHIA, HERWIG)
- CCFM evolution with k_t factorisation (CASCADE)

THEORETICAL CALCULATIONS

- full NLO calculation (FMNR, HVQDIS) available
- massive scheme FFNS (heavy quark dynamically generated in the hard process)

Methods used for the

tagging/measuring of charm

by the HERA experiments

charmed-hadron full reconstruction (MOST USED TECHNIQUE)

Displaced Tracks (H1 05, 2 x H1 06)

charmed-hadron full reconstruction

Example signal (no golden)

Charm fragmentation

H1 EPJC38(2005)447 ZEUS EPJC44(2005)351 ZEUS JHEP07(2007)074

Charm fragmentation fractions

$$f(c \rightarrow D_j) = \sigma(D_j) / \sum_i \sigma(D_i)$$

10

Fragmentation ratios from charm mesons measurements

D meson (charm) production cross-sections; p-QCD comparisons

•
$$D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^- \pi^+) \pi_s^+$$
,
Golden channel:
 $m_{D^{*+}} - m_{D^0} = 146 \text{ MeV}$
 \Rightarrow very restricted kinematics
 $-> \text{ low phase space allower}$
 $\Rightarrow \text{ low combinatorial bkg.}$
 2000
 0.14
 0.15
 0.15
 0.16
 0.17
 $M(K\pi\pi) - M(K\pi) [GeV]$

Differential cross-sections

⇒ good description by NLO-QCD¹³

HERA II data analysis at full speed:

... conclusions qualitative similar but ...

⇒ we are reaching the stage of "high statistics physics" 14

D meson (charm) production: a comment about p-QCD comparisons

distribution of gluon in the p extracted from a DGLAP NLO analysis of F₂

H1 and ZEUS Combined PDF Fit

⇒ highly non trivial test of the validity of p-QCD

16

Extrapolation to obtain F₂^{cc}

 $F_{2,meas}^{c\bar{c}}(x_i, Q_i^2) = \frac{\sigma_{i,meas}(ep \to D^*X)}{\sigma_{i,theo}(ep \to D^*X)} F_{2,theo}^{c\bar{c}}$

⇒ Extrapolation factors: 1.4 - 4

- \Rightarrow impressive agreement to the μ VTX based H1 measurement (see later)
- ⇒ large scaling violations consistent with a g driven process
- \Rightarrow good description by NLO-QCD

The methods for the

tagging/measuring of beauty

at the HERA experiments exploit its characteristics of heavy mass and long life-time. There are several:

• events with at least $1 \mu^+$ (H1 99)

- events with 2 *jets* + 1 e^- (ZEUS 01, ZEUS 08)
- events with 1 .or. 2 *jets* + 1 μ^+ (2 x ZEUS 04, H1 05, ZEUS prel-08)
- events with 1 D^{*+} + 1 μ^+ (H1 05, ZEUS 07)
- events with 2 μ ,s (ZEUS prel-08)
- Displaced Tracks (H1 05, 2 x H1 06, H1 prel-08)

Tagging/measuring beauty: 2-muon events

ZEUS preliminary

- \Rightarrow large phase-space: large $\eta(\mathbf{b})$ range, reach of low values of $p_t(\mathbf{b})$
- classify in **4** samples based on the μ ,s charges and $\mu\mu$ invariant mass

Total bb cross sections VISible range:

⇒ reasonable NLO description of shape and normalization; data slightly above

Tagging/measuring charm and beauty: D*-muon events

Total cc and bb cross-sections $p_T(D^*) > 1.5 \,\text{GeV}$ in VISible region $|\eta(D^*)| < 1.5$ $p(\mu) > 2 \text{ GeV}$ $|\eta(\mu)| < 1.735$ **H1** 89 pb⁻¹ 0.05 < y < 0.75 $Q^2 < 1 \,\mathrm{GeV}^2$ $ep \rightarrow ec\bar{c}X \rightarrow eD^*\mu X'$ $ep \rightarrow eb\bar{b}X \rightarrow eD^*\mu X'$ Charm Cross section [pb] $250 \pm 57 \pm 40$ Data **PYTHIA** (direct) 242 (142) CASCADE 253 286^{+159}_{-59} FMNR Beauty CO 1 00

Data	$206 \pm 53 \pm 35$
PYTHIA (direct)	57 (44)
CASCADE	56
FMNR	52^{+14}_{-9}

FMNR⊕fragmen, PDF(p): CTEQ5M, PDF(γ): GRV-G HO

⇒ charm OK, beauty data above NLO

Azimuthal Correlations

Tagging charm and beauty: Signed Impact Parameter Analysis (SIPA)

- S₁ (S₂): Significance of highest (2nd high.) Significance tracks of those associated to a jet
- Calculate S₁ and S₂ from PYTHIA for (u,d,s), c and b events separately
- ⇒ Extract c and b contributions from fit to subtracted Significance distributions

Overall view of beauty photo-production at HERA

HERA

- ⇒ Many independent measurements performed
- ⇒ Trend to be slightly above NLO-QCD (particularly at low PT)
- ➡ HERA II data will reduce significantly stat. ⊕syst. uncertainties 24

Measurement of the contributions to the proton's F_2 from charm (F_2^{cc}) and beauty (F_2^{bb}) using SIPA

• F_2^{cc} and F_2^{bb} are obtained from the corresponding (x,Q²) differential σ

 \Rightarrow First meas. of F_2^{bb}

- ⇒ Agreement with other techniques
- ⇒ First NNLO calc. available
- Large spread in theo. predictions

Measurements consistent with theo. expectations

ZEUS preliminary jet-μ method 25

SUMMARY and CONCLUSIONS

- ⇒ charm is produced copiously at HERA
- ⇒ measurement of fragmentation variables consistent with universality
- ⇒ highly non trivial tests of p-QCD carried out
- ⇒ HERA II data opens the era of precision charm physics and p-QCD tests
- ⇒ low beauty cross-section at HERA
- ⇒ many different/independent measurements made with consistent results
- ⇒ beauty production slightly above NLO-QCD expectations
- ⇒ F₂^{cc} and F₂^{bb} measured at HERA; reasonably description by NLO-QCD
 ⇒ HERA II data will (further) allow to increase greatly our understanding of p-QCD