SuperK-Gd

Luis Labarga, U. Autonoma Madrid

On behalf of

The Super-Kamiokande Collaboration

- physics benefits
- the EGADS demonstrator
- implementation in Super-Kamiokande

EPS-HEP 2017
2017/07/06, Lido, Venice
Super-Kamiokande: superb physics thanks to **water-cherenkov technique**

- discovery of ν oscillations in the atmospheric sector
- key in the understanding of the solar-ν problem
-
- evidence for the appearance of atmospheric ν_τ
- first indication of terrestrial matter effects on solar-ν

most stringent limits on:
- nucleon decay
- WIMP-type Dark Matter from indirect search
- Diffuse Supernova Neutrino Background

Superk-Gd (GADZOOKS!): go further with **high efficiency neutron tagging**

adding a 0.2 % by mass of a Gd compound, $\text{Gd}_2(\text{SO}_4)_3$, to SK water, the majority of final state neutrons produced in the interactions (90% captured \times 90% reconstructed) will, after thermalized, be **captured by Gd** after \sim30 μs and detected through the **8 MeV γ ray cascade** from its de-excitation
→ anti-neutrino tagging at inverse β reaction

• be in position of discovering DSNB from the very much reduced background

• improve pointing accuracy for Supernova
• Supernova early warning from Si burning ν_s
• high precision solar- ν_s elements from reactor ν_s (if available)
- neutrino / anti-neutrino discrimination by neutron counting

\[E_\nu : [0.5, 0.7] \text{ GeV} \]

- neutron veto
\[p \rightarrow e^+ \pi^0 \text{ MC} \]

- Atmospheric \(\nu \) MC

- Background probability reduced from 44% to 9%

- and more
EGADS @ hall near the SK area
Evaluating Gadolinium’s Action on Detector Systems

200 m³ tank with 240 PMTs

15 m³ tank to dissolve Gd
Gd water circulation system (purify water with Gd)
Gd-loaded water transparency within the SK ultrapure range

→ lossless (>99.99%) Gd-capable water system [> 500 turnovers so far]
Some **calibration results:**
mimicking inverse β decay signals with an Am/Be source and BGO scintillator

\[^{241}Am \rightarrow ^{237}Np + \alpha \]
\[\alpha + ^{9}Be \rightarrow ^{12}C^* + n, ^{12}C + n \]
\[^{12}C^* \rightarrow ^{12}C + \gamma (4.43 \text{MeV}) \]

<table>
<thead>
<tr>
<th>Gadolinium Sulfate Octahydrate Concentration</th>
<th>Data</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2178 ± 76 ppm</td>
<td>29.89 ± 0.33</td>
<td>30.03 ± 0.77</td>
</tr>
<tr>
<td>1055 ± 37 ppm</td>
<td>51.48 ± 0.52</td>
<td>53.45 ± 1.19</td>
</tr>
<tr>
<td>225 ± 8 ppm</td>
<td>130.1 ± 1.7</td>
<td>126.2 ± 2.0</td>
</tr>
</tbody>
</table>

mean capture time of neutron (µsec)
wonderful cleanness and shininess all around after more than two years

This is 0.2% Gd$_2$(SO$_4$)$_3$ water. The EGADS tank has been fully loaded for over two years.
Radioactivity Contamination at Gd$_2$(SO$_4$)$_3$ very seriously assessed [source of severe background signals all along the Fiducial Volume]

Typical activities of salts in the market: (from over 10 samples from 5 providers)

<table>
<thead>
<tr>
<th>Radioactive chain</th>
<th>Part of the chain</th>
<th>mBq/kg</th>
<th>SRN (mBq/kg)</th>
<th>Solar ν (mBq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>^{238}U</td>
<td>50</td>
<td>< 5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>^{226}Ra</td>
<td>5</td>
<td>-</td>
<td>< 0.5</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>^{228}Ra</td>
<td>10</td>
<td>-</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td>^{228}Th</td>
<td>100</td>
<td>-</td>
<td>< 0.05</td>
</tr>
<tr>
<td>^{235}U</td>
<td>^{235}U</td>
<td>32</td>
<td>-</td>
<td>< 3</td>
</tr>
<tr>
<td></td>
<td>$^{227}Ac / ^{227}Th$</td>
<td>300</td>
<td>-</td>
<td>< 3</td>
</tr>
</tbody>
</table>

Physics based requirements for radioactive contaminations

work done mostly at the Canfranc Underground Laboratory

- salts from different providers had in general similar contaminations
- Superk-Gd can not afford those amounts of RI, approaches to reduce them
 - by ourselves from received batches [a lot of work being done in Kamioka, not discussed here]
 - Cooperative development of pure salts with chemical Co.
we are cooperating with the following companies:

In the good track: reductions of x20 – x50 already achieved

<table>
<thead>
<tr>
<th>Chain</th>
<th>main subchain isotope</th>
<th>GSF-1703-C9-702142</th>
<th>ICPMS meas.</th>
<th>GSF-1604-C7-160303</th>
<th>ICPMS meas.</th>
<th>GSF-1611-C8-003</th>
<th>GSF-1703-C8-(RGD-OSF-005)</th>
<th>ICPMS meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>238U</td>
<td>238U</td>
<td>< 13</td>
<td>0.7</td>
<td>< 20</td>
<td>0.2</td>
<td>< 13</td>
<td>< 9.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>226Ra</td>
<td>0.7 ± 0.4</td>
<td>< 0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>232Th</td>
<td>228Ra</td>
<td>< 0.39</td>
<td>1.3</td>
<td>< 0.67</td>
<td>0.2</td>
<td>< 0.3</td>
<td>< 0.26</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>228Th</td>
<td>1.7 ± 0.4</td>
<td>0.5 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>235U</td>
<td>235U</td>
<td>< 1.3</td>
<td>< 0.7</td>
<td>< 0.6</td>
<td>< 0.51</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>227Ac/227Th</td>
<td>< 3.1</td>
<td>< 2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Intensive work at
- Canfranc Underground Laboratory
- Kamioka Observatory
- Boulby Underground Observatory (recently joined)
- probably LNGS also joints
SuperK-Gd time line \(\rightarrow \) 3-phase procedure:

- \(T_0 \): drain + leak stop work
- \(T_0 \): fill + purify water
- \(T_0 \): pure water circulation
- \(T_1 \): load \(\text{Gd}_2(\text{SO}_4)_3 \) up to 0.02%
- \(T_1 \): stabilize water transparency
- \(T_2 \): full \(\text{Gd}_2(\text{SO}_4)_3 \) up to 0.2%
- \(T_2 \): stabilize water trans. measurement

Decision about when to trigger it \((T_0) \) taken jointly by T2K and SK:
- \(\rightarrow \) proposed to start refurbishment by middle 2018
- \(\rightarrow \) final decision will be made at J-PARC PAC meeting (July 24-26)

Further key items:
- refurbishment / leak stop
- the new water system
Estimating the location of the leak

The data indicate that it is near the bottom of the SK detector.
• double coating with
 1. BIO-SEAL 197 epoxy resin: sneaks into small gaps
 2. Mine Guard C viscous material: allows more displacement (less penetration though)

BIO-SEAL 197

cover welded places with sealing material

Particularly suspicious: barrel PMT frame anchor at bottom
fixing the leak at SK tank
detailed, day-to-day schedule prepared by Mitsui & Co. Ltd:

<table>
<thead>
<tr>
<th>项目</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **water level**
- preparation
- primer coating for barrel
- Bio-Seal and primer coating for bottom
- MineGuard coating for bottom
- MineGuard coating for barrel
- water purification

In total: ~ 6 months needed for the job
SuperK-Gd water System

60 m³/hr selective filtration system

Scale-up of the EGADS system with sophisticated powder transport and dissolving systems
SuperK-Gd water system being built in Hall G (4K m³)

SK water system

SuperK- Gd water system hall
Summary / Conclusions / Outlook

- Superk-Gd enlarges significantly the window of SK’s physics measurements
- EGADS has demonstrated its viability and reliability
- The implementation of SuperK-Gd will most probably begin in 2018
additional
The Super-Kamiokande experiment at Kamioka Observatory

Kamioka Observatory

Mt. Ikenoyama

1000 m

SK

50 Kt water tank

40m Ω x 40m H

PMT, s

ID: 11148, 20''Ω

OD: 1885, 8''Ω

SK measures Cherenkov radiation
DSNB events number with 10 years observation

<table>
<thead>
<tr>
<th>model</th>
<th>10-16MeV (evts/10yrs)</th>
<th>16-28MeV (evts/10yrs)</th>
<th>Total (10-28MeV)</th>
<th>significance (2 energy bin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{eff} 8MeV</td>
<td>11.3</td>
<td>19.9</td>
<td>31.2</td>
<td>5.3 σ</td>
</tr>
<tr>
<td>T_{eff} 6MeV</td>
<td>11.3</td>
<td>13.5</td>
<td>24.8</td>
<td>4.3 σ</td>
</tr>
<tr>
<td>T_{eff} 4MeV</td>
<td>7.7</td>
<td>4.8</td>
<td>12.5</td>
<td>2.5 σ</td>
</tr>
<tr>
<td>T_{eff} SN1987a</td>
<td>5.1</td>
<td>6.8</td>
<td>11.9</td>
<td>2.1 σ</td>
</tr>
<tr>
<td>BG</td>
<td>10</td>
<td>24</td>
<td>34</td>
<td>----</td>
</tr>
</tbody>
</table>

→ Improvement of E_ν reconstruction with tagged neutrons

→ NC / CC discrimination by n-tagging

\[E_{\text{mis}} / E_{\text{vis}} \]

\[\# \text{Gd-tagged neutrons} \]

$E_\nu > 1$ GeV
The key to Superk-Gd:

Selective Water Purification System

Pure water plus $\text{Gd}_2(\text{SO}_4)_3$

Ultrafilter

$\text{Gd}_2(\text{SO}_4)_3$ plus smaller impurities (UF Product)

Nanofilter

Impurities larger than $\text{Gd}_2(\text{SO}_4)_3$ (UF Reject flushed periodically)

Impurities smaller than $\text{Gd}_2(\text{SO}_4)_3$ (NF Product)

Reverse Osmosis

Larger and smaller impurities to drain (UF Flush + RO Reject)

Pure water (RO product) plus $\text{Gd}_2(\text{SO}_4)_3$

$\text{Gd}_2(\text{SO}_4)_3$ (NF Reject)
Selective Water Purification System: sketch of its EGADS implementation
water transparency measurement

UDEAL measures absolute attenuation lengths at 7 wave-lengths: in nm (its contribution to Cherenkov light is indicated in brackets)

337 (0.25), 375 (0.25), 405 (0.21), 445 (0.14), 473 (0.11), 532 (0.04), 595 (.003)
Measured radioactivity in mBq/kg for the $\text{Gd}_2(\text{SO}_4)_3$ batches purchased to date

<table>
<thead>
<tr>
<th>Chain</th>
<th>Sub-chain</th>
<th>Standford Materials 09/04</th>
<th>Standford Materials 10/08</th>
<th>Beijing Jinhonganxin 12/08</th>
<th>Changshu Huanyu 13/02</th>
<th>Beijing Jinhonganxin 13/03</th>
<th>Standford Materials 13/08</th>
<th>HK Tai Kun 13/07a</th>
<th>HK Tai Kun 13/07b</th>
<th>Standford Materials 14/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>^{238}U</td>
<td>51 ± 21</td>
<td>< 33</td>
<td>292 ± 6</td>
<td>74 ± 28</td>
<td>242 ± 6</td>
<td>71 ± 20</td>
<td>47 ± 26</td>
<td>73 ± 27</td>
<td>< 76</td>
</tr>
<tr>
<td>^{226}Ra</td>
<td>8 ± 1</td>
<td>2.8 ± 0.6</td>
<td>74 ± 2</td>
<td>13 ± 1</td>
<td>13 ± 2</td>
<td>8 ± 1</td>
<td>5 ± 1</td>
<td>6 ± 1</td>
<td>< 1.4</td>
<td></td>
</tr>
<tr>
<td>^{232}Th</td>
<td>^{228}Ra</td>
<td>11 ± 2</td>
<td>270 ± 16</td>
<td>1099 ± 12</td>
<td>205 ± 6</td>
<td>21 ± 3</td>
<td>6 ± 1</td>
<td>14 ± 2</td>
<td>3 ± 1</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>^{228}Th</td>
<td>28 ± 3</td>
<td>86 ± 5</td>
<td>504 ± 6</td>
<td>127 ± 3</td>
<td>374 ± 6</td>
<td>159 ± 3</td>
<td>13 ± 1</td>
<td>411 ± 5</td>
<td>29 ± 2</td>
</tr>
<tr>
<td>^{235}U</td>
<td>< 32</td>
<td>< 32</td>
<td>< 112</td>
<td>< 25</td>
<td>< 25</td>
<td>< 32</td>
<td>< 12</td>
<td>< 30</td>
<td>< 1.8</td>
<td></td>
</tr>
<tr>
<td>^{227}Ac</td>
<td>214 ± 10</td>
<td>1700 ± 20</td>
<td>2956 ± 30</td>
<td>1423 ± 21</td>
<td>175 ± 42</td>
<td>295 ± 10</td>
<td>< 6</td>
<td>< 18</td>
<td>190 ± 6</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>^{40}K</td>
<td>29 ± 5</td>
<td>12 ± 3</td>
<td>101 ± 10</td>
<td>60 ± 7</td>
<td>18 ± 8</td>
<td>3 ± 2</td>
<td>3 ± 2</td>
<td>8 ± 4</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>^{138}La</td>
<td>8 ± 1</td>
<td>$< $</td>
<td>683 ± 15</td>
<td>3 ± 1</td>
<td>42 ± 3</td>
<td>5 ± 1</td>
<td>< 1</td>
<td>< 2</td>
<td>23 ± 1</td>
</tr>
<tr>
<td></td>
<td>^{176}Lu</td>
<td>80 ± 8</td>
<td>21 ± 2</td>
<td>566 ± 6</td>
<td>12 ± 1</td>
<td>8 ± 2</td>
<td>30 ± 1</td>
<td>1.6 ± 0.3</td>
<td>< 2</td>
<td>2.5 ± 0.6</td>
</tr>
</tbody>
</table>

For DSNB
- Expected signal ~ 5 events/year/FV
- ^{238}U Spontaneous Fission:
 - $\sim 5.5 \left[\gamma (E_\gamma > 10.5 \text{ MeV}) + 1n \right] / \text{year} / \text{FV}$ x10 reduction desirable

For solar neutrino
- Current BG ~ 200 events/day/FV
- U (n) ~ 320 events/day / FV x10 reduction desirable
- Th/Ra (β, γ) $\sim 3 \times 10^5$ events/day / FV x10^3 reduction needed
Procedure

• **Barrel**
 – If the origin of the leak is at the place, the strain deformation is the reason of the leak.
 – Bio-seal will break if the strain deformation happens.
 – → Do only the MineGuard-C *(reduce the total working time)*

• **Bottom**
 – Defect of welding might be the reason. If the distortion is expected to be less than 0.01mm, painting Bio-Seal will work.
 – → Do Bio-Seal and cover the MineGuard-C