Luis Labarga 24/10/2006

The ATLAS experiment

OUTLINE:

- about the LHC, about multipurpose HEP experiments
- the ATLAS machinery; the electromagnetic calorimeter
- online / offline

Widely agreed "NEXT" in experimental HEP

Around the known:

- origin of mass at the EW scale
- characteristics of the top quark
- non abelian structure of the EW interaction
- CP violation in the SM
- QCD, high E_T jet production ...

Around the unknown:

- SUSY
- Dark Matter
- Extra Dimensions

Relevant LHC facts and some of their consequences

<image>

Proton energy: 7 TeV Peak Luminosity: 1x10³⁴ cm⁻² s⁻¹ (100 fb-1/year)

No. particles/bunch: 1,15x10¹¹ No. bunches: 2808 *Stored Energy: 362 MJ* Time between collisions: 25ns Half crossing angle: 0,143 mrad (vertical plane)

 σ (inelastic) \approx 70 mb Events/crossing \approx 20 Charged particle multiplicity \approx 200

Some relax: RMS bunch length: 7,55 cm RMS bunch trans. size: 0,017 gm

What is what we can direct detect/measure ?

⇒ particles stable within the detector volume

I.e. the only known particles to which we have a direct access are: $\Rightarrow e^+, e^-, \gamma$ $\Rightarrow \mu^+, \mu^ \Rightarrow \pi^+, \pi^-, K^+, K^-, p, \overline{p}$ $\Rightarrow K_{L}^0, n$ \Rightarrow Neutrinos

Basics of interaction radiation-matter (at high energy)

ATLAS has the typical structure of multipurpose detectors:

But we need to reconstruct/measure many others

 \Rightarrow always from those direct-measured !

- invariant mass techniques
- secondary vertices
- flavour tagging
- jet reconstruction

A non easy example: measuring the τ lepton

 \rightarrow EM-HAD *E* sharing

... which is only an intermediate step towards the physics of interest:

SM physics $Z \rightarrow \tau^{+} \tau^{-}$ $W^{+-} \rightarrow \tau^{+-} v_{\tau}$ (also important for commissioning)

```
HIGGS physics:

SM

q q H \rightarrow q q \tau^+ \tau^-, t t H \rightarrow t t \tau^+ \tau^-

MSSM

A / H \rightarrow \tau^+ \tau^-, H^+ \rightarrow \tau^+ \nu_{\tau}
```

Exotics process: SUSY with τ^+ , τ^- in the final state

••••

The ATLAS detector: schematics

The TRACKING system

→ Inside a 2 T solenoid field → $|\eta|$ <2.5 coverage

Momentum resolution: $\sigma(p_T)/p_T=0,05\% p_T(GeV) \oplus 1\%$ (ZEUS: 0,6% p_T ⊕ 0,7% ⊕ 0,14% / p_T) How to reconstruct trayectories, measure p_T , reconstruct secondary vertices in such dense events ?

Precision tracking:Pixel *detector*,

> Semi-Conductor Tracker (SCT)

Long range tracking for pattern recognition and e⁺⁻ ID: > *Transition Radiation Tracker* (TRT)

3 layers/disks of Si pixels in Barrel/EC; 8 x 10⁷ channels

TRT (barrel module shown)

a cosmic ray:

3 layers of multi-layer straw-tube modules in Barrel / 14 m-layer straw-tube disks in End-Cap; 4 x 10⁵ ch.

SCT

4 layers / 9 disks of 2 x [Si μ-strip det.] in barrel / End-Cap; 6 x 10⁶ channels

Spatial resolutions

	points	<mark>σ(Rφ)</mark> (μm)	<mark>σ(Rz)</mark> (μm)
pixel	3	12	60
SCT	4	17	580
TRT	36	170	14

typical multiplicities may be very large

judge by eye: pp -> H X -> 4e X

At peak luminosities:

- > more than 200 tracks
- > 15-20 secondary vertex candidates

quick online raw tracking for triggering will be rather complex

offline precise pattern recognition will be rather CPU-time consuming (and complex)

TRT+SCT barrel already in

Pixel: problems have delayed readiness by spring 07

TRT+SCT End-Caps to be integrated at end of Year

The calorimetric system

Electro Magnetic $\rightarrow |\eta| < 3$ $\rightarrow \sigma(E)/E \approx$ $10/\sqrt{E} \oplus 0.7 \%$ ZEUS: $17/\sqrt{E \oplus 1\%}$

Hadronic $\rightarrow |\eta| < 3$ $\rightarrow \sigma(E)/E \approx$ $50/\sqrt{E} \oplus 3\%$ ZEUS: $35/\sqrt{E} \oplus 2\%$

Forward jet tag $\rightarrow 3 < |\eta| < 5$ $\rightarrow \sigma(E)/E \approx$ $100/\sqrt{E \oplus 10}$ %

- Excellent measurement of high energy E.M. particles
- Hermetic hadronic energy measurement + forward jet tag
- High granularity and fast electronics

The Electromagnetic Calorimeter

Design driven mostly by the measurement of an intermediate mass SM Higgs $H \rightarrow \gamma \gamma$, $H \rightarrow Z Z \rightarrow e^+ e^- e^+ e^-$ [from LEPII limit of $\approx 114 \text{ GeV}$ to $2m_7 \approx 180 \text{ GeV}$]

> significance proportional to rapidity coverage

> $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b$ already high energy; a small constant term b is mandatory $b \le 0.7\%$

→ superb mechanics uniformity/reproducibility

- → superb electronics calibration stability/uniformity
- → time measurement (minimize pile-up effects)
- > excellent linearity, $\leq 0.1\%$ [also m_w measurement]
 - → presampler for dead material
 - \rightarrow electronics calibration
- > particle separation e⁺⁻/jet, γ/π^0 : Rej. > 3 at p_T \approx 50 GeV
- > angular measurement $50\sqrt{E}$ mrad
 - → segmentation lateral + longitudinal

Being able to measure all the available phase space for EM particles

> large dynamic range: 20 MeV \rightarrow 2 TeV

→ non trivial read-out electronics

Solution chosen by ATLAS: Liquid-Argon/Lead sampling calorimeter with accordion-like geometry

- → full azimuthal coverage
- <mark>→</mark> |η|<3
- \rightarrow high granularity (> 2x10⁵ ch.)
- → 3 longitudinal samples
- \rightarrow presampler for $|\eta| < 1.8$
- → radiation hard

Sampling Unit (S.U.):

lead absorber
 honey-comb spacer
 Cu-Kapton flexible PCB electr.
 honey-comb spacer
 lead absorber

Signal Collection:

The calorimeter signal depends on:

- lead/argon thicknesses
- High Voltage (E field map)
- Temperature
- Attachment, Ions build up ...

particles from I.P.

End-Cap read-out electrode before bending

Read-out granularity

First sampling: high granularity in η for γ/π^0 separation and first point for angular measurement

Second sampling: large containment for precise energy measurement and second angular point

Third sampling: monitoring of shower depth

particles from I.P.

End-Cap read-out electrode after bending

INTERLUDE

The construction of the ATLAS Electro Magnetic Calorimeter (End-Cap) by the UAM

4 Thesis presented:

C. Oliver (Oct. 2006, *del Peso*) Uniformity of the Electromagnetic End-Cap Calorimeter of ATLAS S. Rodier (Oct. 2003, Barreiro, del Peso) The ATLAS Liquid Argon Electromagnetic Calorimeter: Construction and Tests P. Romero (Oct. 2000, Labarga) On the design and construction of the End-Cap Liquid Argon Electromagnetic Calorimeter for the ATLAS experiment G. García (Apr. 2000, Labarga) Two different cases of calorimetry in High Energy Physics: the ATLAS Liquid Argon Electromagnetic End Cap and the ZEUS Forward Plug Calorimeter

Schematics of mechanical structure:

- each End-Cap is divided into 8 modules
- each End-Cap is divided into
 2 concentric wheels: Inner / Outer
- total no. of S.U. are 512 / 1536

All components vary with R:

- HV settings, capacitances
- fold angle, distances within S.U.

Electromagnetic calorimetry:

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \boldsymbol{b}$$

- if large E, σ (E)/E dominated by b
- **b** is built by non uniformities in reactions / perfomances
- as a result: in order to keep $\sigma(E)/E < 0.7$ % the contribution to *b* from geometrical non uniformities must be, $b_{mec} < 0.3$ %

 \Rightarrow a rather demanding mechanical project

Absorbers: the key of E resolution

- -> 1.7 / 2.2 mm thick lead protected and rigidified by 0.2 mm thick s. steal plates; pre-preg layers are used for sticking together
- To achieve $b_{mec} < 0.3 \%$:
- -> lead thickness uniform to 1% [17 / 22 μ m RMS]
- -> LArg. thick. uniform to 3% [abs. geometry reproducible to \approx 150 μ m RMS]

The lead was laminated in a standard foundry; with an online control of its thickness by a custom Refer (Settle permany)

Ultra-sound thickness mapping at UAM:

Thickness uniformity achieved: < 9 μm RMS

Absorbers: flat sandwich to accordion shape

2 presses built:

Mechanical tolerances of ≈150 µm along distances of ≈ 2 m Talleres Arantz (Vitoria, Spain)

The lead keeps its thickness unchanged (except at fold)

Absorbers: moulding and curing to precision shape

Logistics \otimes economy:

⇒ autoclave cycles of 10 Outer and 4 Inner Absorbers

\Rightarrow needed 10 OA + 4 IA moulds

⇒ mechanical reproducibility a must

The dispersions achieved are only ≈ 25 % of the tolerances of the absorbers ($\approx 40 \ \mu m$) Talleres Arantz (Vitoria, Spain)

Precision mould

44

Vacuum bag

PROCESS: Fibertecnic (Vitoria, Spain)

Autoclave P-T cycle (8 h.)

Absorbers: control (mass production)

Reproducibility achieved: 40 to 200 μ m

The modules were stacked at CPPM (Marseille) and UAM

Module transport to CERN

Removal from stacking frame

At CERN' test beam hall

In transport/storage frame to truck:

500

0 -5

800

600

400

200

0

-2.5

-2.5

0

Rfront - Rchambers (mm)

0

R_{Middle} - R_{chambers} (mm)

2.5

 $\sigma_{\text{RMiddle}} = 1.02 \pm 0.01 \text{ mm}$

2.5

5

5

0

0

6

2.5

0

-2.5

-5

0

0.2

0.2

η_{ba}

0.4

0.4

Middle (cell unit)

nbar Front (cell unit)

0.6

0.6

0.8

0.8

Rfront - Rchar

Raiddle - R_{chambers} (mm)

Module	ECC0	ECC1	ECC5
$\sigma / \langle E \rangle$	$0.57 {\pm} 0.02\%$	$0.51 {\pm} 0.02\%$	$0.50 {\pm} 0.02\%$
$\sigma_{\eta}/ < E >$	$0.42{\pm}0.02\%$	$0.49{\pm}0.02\%$	$0.43{\pm}0.02\%$
$\sigma_{\phi}/ < E >$	$0.47{\pm}0.02\%$	$0.43{\pm}0.02\%$	$0.38 {\pm} 0.02\%$

Consistent with b < 0.7 % !

END of INTERLUDE

back to main flow

The Hadronic Calorimeters

The tile calorimeter (barrel)

The Hadronic End-Cap (HEC) goes inside the EC cryostates

Testbeam Results: Pions Energy Resolution

34

All the Calorimeters: → barrel Larg-EM, Tile; End-Cap Larg-EM, Larg-Had, Forward ← are already in

The **MUON** system

Capable of standalone muon reconstruction

Minimization of multiple scattering: air toroid

Barrel by sept. 06 EC toroid by Dec. 06 Full EndCap by April 07

Spectra of MUONS at the LHC

 $p_T(\mu)$ spectra at characteristic reactions:

3 stations of precision chambers [drift tubes] interleaved with Trigger chambers of fast response (< 25 ns)

LV1 Trigger Chambers: Lower rate area (barrel): Resistive Plate Chambers (RPC) Higher rate area (forward): Thin Gap Chambers (TGC)

$p_T(\mu)$ resolution:

similar results for:

- End Cap standalone
- Combined with tracking system [slightly better resolution for intermediate $p_T(\mu)$]

```
Efficiency:
> 96% for p_T(\mu) > 20 \text{ GeV}
\approx 80\% for p_T(\mu) = 5 \text{ GeV}
```


TGC1 sectors

Installation is a puzzle of logistics but it is going \approx on time

Trigger and DAQ

Trigger and DAQ

Impossible (and non-desired !) to record more than 100 ev./s.

But 10⁸ ev/s are produced total

Trigger/DAQ systems-strategies should be capable of:

> correctly flag and record all interesting events of very low cross section (p.e. Higgs, tt)

events/sec

> flag, pre-scale[small] & record (only pre-scaled) interesting ev. of intermediate σ (p.e. W, Z)

> flag, pre-scale[large] & record (only pre-scaled) interesting ev. of large σ (p.e. bb) 42

The trigger and DAQ systems

For instance: LVL1 calorimeter trigger

LVL1 muon trigger

- > hit in RPC1
- > extrapolate straight line VX-RPC1 to RPC2
- > if coincidence hit at RPC2+window \Rightarrow low-p_T μ
- > extrapolate straight line VX-RPC1 to RPC3
- > if coincidence hit at RPC3+window \Rightarrow high-p_T μ

OFF-line computing

Worldwide LHC Computing Grid (WLCG)

46

The Spanish ATLAS tier-2: IFAE-IFIC-UAM

U.A.M. node currently foreseen 150 cpu,s 500 cpu,s

Top reconstruction with first luminosity

A bit of summary A bit of conclusions

A detector to be capable of carrying out the LHC physics program is necessarily a very large and complicated piece of machinery

as it is ATLAS, even though its design concept / performances are "conservative".

ATLAS will be operational (\approx 100%) by the first LHC Luminosity.

Additional Information

LHC planning

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_{T} \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

Straw tube diagram

Momentum resolution for μ^+ , μ^- by ATLAS and CMS

particulas detectables

reconstruccion de objetos: masas invarintes, taus, jets, bs, cantidades fisicas: higgs discovery, top couplings

-the trigger system -the offline/data processing system