The NEXT-100 experiment for Neutrino-less Double Beta decay: Main features, Results from Prototypes and Radio-Purity issues

> JAVIER PÉREZ PÉREZ NEXT Collaboration UAM – IFT (CSIC) JULY 20TH 2013

THE NEXT-100 DETECTOR: GENERAL IDEAS

NEXT-100 is an asymmetric Time Projection Chamber. It is filled with 100 kg enriched ¹³⁶Xe (90%) at 10-15 atm

It features an excellent energy resolution (0.5 - 1 % at $Q_{\beta\beta}$) and tracking, thus allowing a superb Signal-to-Background ratio

The design is easily scalable to its next-generation NEXT-1000

It will operate in the *Canfranc Underground Laboratory* (LSC) NEXT-100 Technical Design Report; Executive Summary 2012 JINST 7 T06001 in the Spanish Pyrenees under the *Tobazo* mountain (800 m overburden)

Physics runs are expected to start in 2015

NEXT CONCEPTUAL IDEA

- Advantages of Xe: high Q_{ββ}, only noble gas (low attach.) with ββ decay, high natural abundance of 136 isotope, easy to enrich.
- Advantages of gas Xe: good energy resolution (<1%), allows tracking
- Tracking and Radio-purity: background minimized
- Scalability: NEXT 1000

NEXT CONCEPTUAL IDEA, LIGHT PRODUCTION

LIGHT PRODUCTION PROCESS

- Electrons excite and ionize Xe
- Excited Xenon emits scintillation
 light (172nm) that is detected by the
 PMTs at Energy Plane (SIGNAL 1)
- Electrons from ionization are
 drifted by a weak electric field to the
 Electro-Luminescence (EL) region
- There, a larger E field accelerate electrons such to excite the Xe, but not enough to ionize it. This process produce a large amount of 172nm (SIGNAL 2)
- -The **PMTs** in the energy plane will accurately measure the energy
- The **SiPMs** in the tracking plane will allow to reconstruct the track followed by the original particle.

Tetra Phenyl Butadiene (TPB) Wave-Length-Shifter is used to convert the light from UV to 430 nm to make it visible and increase the light production

NEXT CONCEPTUAL IDEA, TRACKING

Prototypes

NEXT-DEMO PROTOTYPE

Clean room at IFIC (Valencia)

NEXT DEMO HIGHLIGHTS

- Energy plane: 19 Hamamatsu R7378A PMTs
- Tracking plane: 256 SiPM coated with TPB •
- Electric field drift region ~ 300 V/cm •
- Electric field EL region ~ 25 kV/cm •
- Pressure = 10 atm•
- $HV_{cathode} = 25kV; HV_{anode} = 10kV$ ٠
- Cylindrical active volume: 30 cm long and 30 cm diameter
- $\rho \sim 5 \cdot 10 2 \text{ g/cm}^3$ •

⁸⁰70₆₀50 × (mm) ⁴⁰30₂₀60

Particles observed: Photons (²²Na, ¹³⁷Cs, • Cosmic Muons, Alphas (²²⁶Ra)

195

190

185

165

160

155

8

0

20 10

30

40

50

Initial Results of NEXT-DEMO, a Large-scale Prototype of the NEXT-100 Experiment, 2013 JINST 8 P04002

NEXT-DBMD PROTOTYPE: HIGHLIGHTS

LBNL (CA, USA) per keV 120 Counts Counts Counts per 0.25 keV 60 80 50 60 5.0% FWHM 40 X-Rays peaks K-alpha (29.7 keV) 20 K-beta (33.6 keV) 10 25 30 15 Calibrated Charge of First S2 Pulse (keV)

atm) in the EL region.

Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Inst. Meth. A708 (2013) 101

Energy plane: 19 Hamamatsu R7378A PMTs Tracking plane: 64 SiPM coated with TPB Pressure = 10 to 15 atm $\rho \sim 5 \cdot 10 - 2 \text{ g/cm}^3$

These data were taken at 10.1 atm with a These data were taken at 10.1 atm with a 1.03 0.16 kV/cm field in the drift region and kV/cm field in the drift region and 2.68 kV/(cm 2.08 kV/(cm atm) in the EL region

NEXT-100 AT LSC

Platform for NEXT-100 at LSC

NEXT-100 vessel under construction (before cleaning) Movesa factory, Madrid (Spain). June 2013

radio-purity issues

RADIOPURITY: BACKGROUND MODEL

Simulations of the Background Model are made with **NEXUS**, a GEANT4 based software developed by NEXT

Example 1: Electron photo-produced by 2448 keV gamma from ²¹⁴Bi decay Example 2: Electron photo-produced by 2448 keV gamma from ²⁰⁸Tl decay that undergoes Bremsstrahlung Example 3: Two electron Compton scattered from 2615 keV gamma from ²⁰⁸Tl decay

Preliminary estimates from Background Model (*counts/kg/keV/year*) ²¹⁴Bi: 0.18 - 0.40·10⁻³ ²⁰⁸Tl: 0.21 - 0.48·10⁻³ Total: 0.38 - 0.88·10⁻³

RADIOPURITY: MEASUREMENTS

Background counting rates of detectors used by NEXT (counts/day/Kg)

Detector name	Mass (kg)	100–2700 keV	583 keV	609 keV	1461 keV
GeOroel	2.230	490±2	$0.8{\pm}0.1$	3.0 ± 0.2	$0.41 {\pm} 0.07$
GeAnayet	2.183	714 ± 3	$3.8{\pm}0.2$	$1.7{\pm}0.1$	$0.38{\pm}0.07$
GeTobazo	2.185	708 ± 3	$4.0{\pm}0.2$	1.3 ± 0.1	$0.40{\pm}0.06$
GeLatuca	2.187	710 ± 3	$3.3 {\pm} 0.2$	$5.9 {\pm} 0.3$	$0.56{\pm}0.08$
Paquito	1	79 ± 2	$0.27{\pm}0.09$	$0.5 {\pm} 0.1$	$0.25{\pm}0.09$

Radiopurity control in the NEXT-100 double β decay experiment: procedures and initial measurements. 2013 JINST 8 T01002

RADIOPURITY: NEXT SCREENING PROGRAM

#	Material	Supplier	Technique	Unit	²³⁸ U	²²⁶ Ra	²³² Th	²²⁸ Th	²³⁵ U	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs
	Shielding											
1	Pb	Cometa	GDMS	mBq/kg	0.37		0.073			< 0.31		
2	Pb	Mifer	GDMS	mBq/kg	<1.2		< 0.41			0.31		
3	Pb	Mifer	GDMS	mBq/kg	0.33		0.10			1.2		
4	Pb	Tecnibusa	GDMS	mBq/kg	0.73		0.14			0.91		
5	Pb	Tecnibusa	Ge	mBq/kg	<94	<2.0	<3.8	<4.4	<30	<2.8	< 0.2	< 0.8
6	Pb	Tecnibusa	Ge	mBq/kg	<57	<1.9	<1.7	<2.8	<22	<1.7	<0.1	< 0.5
7	Cu (ETP)	Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020					
8	Cu (C10100)	Luvata (hot rolled)	GDMS	mBq/kg	< 0.012		< 0.0041			0.061		
9	Cu (C10100)	Luvata (cold rolled)	GDMS	mBq/kg	< 0.012		< 0.0041			0.091		
10	Cu (C10100)	Luvata (hot+cold rolled)	Ge	mBq/kg		<7.4	<0.8	<4.3		<18	<0.8	<1.2
	Vessel											
11	Ti	SMP	Ge	mBq/kg	<233	<5.7	<8.8	<9.5	3.4 ± 1.0	<22	<3.3	<5.2
12	Ti	SMP	Ge	mBq/kg	<361	<6.6	<11	<10	<8.0	<15	<1.0	<1.8
13	Ti	Ti Metal Supply	Ge	mBq/kg	<14	< 0.22	<0.5	3.6 ± 0.2	0.43 ± 0.08	<0.6	< 0.07	< 0.07
14	304L SS	Pfeiffer	Ge	mBq/kg		14.3 ± 2.8	9.7±2.3	16.2 ± 3.9	3.2 ± 1.1	<17	11.3 ± 2.7	<1.6
15	316Ti SS	Nironit, 10-mm-thick	Ge	mBq/kg	<21	< 0.57	< 0.59	< 0.54	<0.74	< 0.96	2.8 ± 0.2	< 0.12
16	316Ti SS	Nironit, 15-mm-thick	Ge	mBq/kg	<25	<0.46	< 0.69	< 0.88	<0.75	<1.0	4.4 ± 0.3	< 0.17
17	316Ti SS	Nironit, 50-mm-thick	Ge	mBq/kg	67±22	<1.7	2.1 ± 0.4	2.0 ± 0.7	2.4 ± 0.6	<2.5	4.2 ± 0.3	<0.6
18	Inconel 625	Mecanizados Kanter	Ge	mBq/kg	<120	<1.9	<3.4	<3.2	<4.6	<3.9	<0.4	<0.6
19	Inconel 718	Mecanizados Kanter	Ge	mBq/kg	309±78	<3.4	<5.1	<4.4	15.0 ± 1.9	<13	<1.4	<1.3
	HV, EL components											
20	PEEK	Sanmetal	Ge	mBq/kg		36.3±4.3	14.9 ± 5.3	11.0 ± 2.4	<7.8	8.3±3.0	<3.3	<2.6
21	Polyethylene	IN2 Plastics	Ge	mBq/kg	<140	<1.9	<3.8	<2.7	<1.0	<8.9	<0.5	< 0.5
22	Semitron ES225	Quadrant EPP	Ge	mBq/kg	<101	<2.3	<2.0	<1.8	1.8 ± 0.3	513 ± 52	<0.5	<0.6
23	SMD resistor	Farnell	Ge	mBq/pc	2.3 ± 1.0	0.16 ± 0.03	0.30 ± 0.06	0.30 ± 0.05	< 0.05	$0.19{\pm}0.08$	< 0.02	< 0.03
24	SM5D resistor	Finechem	Ge	mBq/pc	0.4 ± 0.2	0.022 ± 0.007	< 0.023	< 0.016	$0.012 {\pm} 0.005$	$0.17 {\pm} 0.07$	< 0.005	< 0.005
	Energy, tracking planes											
25	Kapton-Cu PCB	LabCircuits	Ge	mBq/cm ²	< 0.26	< 0.014	< 0.012	< 0.008	< 0.002	< 0.040	< 0.002	< 0.002
26	Cuflon	Polyflon	Ge	mBq/kg	<33	<1.3	<1.1	<1.1	<0.6	4.8 ± 1.1	< 0.3	< 0.3
27	Bonding films	Polyflon	Ge	mBq/kg	1140 ± 300	487±23	79.8±6.6	66.0 ± 4.8	60.0 ± 5.5	832 ± 87	<4.4	<3.8
28	FFC/FCP connector	Hirose	Ge	mBq/pc	<50	4.6±0.7	6.5 ± 1.2	6.4±1.0	< 0.75	3.9±1.4	< 0.2	< 0.5
29	P5K connector	Panasonic	Ge	mBq/pc	<42	6.0±0.9	9.5±1.7	9.4±1.4	< 0.95	4.1±1.5	< 0.2	< 0.8
30	Thermopl. connector	Molex	Ge	mBq/pc	<7.3	$1.77 {\pm} 0.08$	3.01 ± 0.19	$2.82{\pm}0.15$	< 0.31	$2.12{\pm}0.25$	< 0.022	$0.27{\pm}0.03$
31	Solder paste	Multicore	Ge	mBq/kg	<310	<4.9	<8.0	<6.0	<5.2	<13	<1.0	<1.6
32	Solder wire	Multicore	Ge	mBq/kg	<4900	$(7.7 \pm 1.2)10^2$	<147	<14		<257	<30	<36
33	Ta capacitor	Vishay Sprague	Ge	mBq/pc	< 0.8	$0.043 {\pm} 0.003$	$0.034{\pm}0.004$	$0.032{\pm}0.003$	< 0.010		< 0.002	< 0.003

Radiopurity control in the NEXT-100 double β decay experiment: procedures and initial measurements. 2013 JINST 8

RADIOPURITY: PMTS

- 64 PMTs in NEXT-100's energy plane
- Expected to be [one of] the largest source of background to the ββ0v signal
 - → a complete screening of all PMTs is a must
 - → aim for as much measured info as possible to minimize systematics from MC description

Further:

- The PMT Hamamatsu R11410-MOD is the first low background-designed commercial PMT
- Our sample of R11410-MODs is rather large: their Measured radio-purities will provide very valuable information to the low background physics community
 For instance: the LUX and XENON experiments have measured several units, but wee need more information

→ Our strategy: measure *first* all the PMTs making sure that they pass the requirements of NEXT, as estimated with the background model; perform *afterwards* as many detailed measurement as time permits before NEXT-100 final assembly

RADIOPURITY: PMTS

our ultimate goal is to classify the PMTs asBad PMTact > 10 mBqDangerous PMT5 mBq < act <10 mBq</th>

Good PMT3 mBq < act < 5mBq</th>Very good PMT1 mBq < act < 3mB</th>Excellent PMTact < 1mBq</th>(activities considered separately for both isotopes)

As time runs short we *first* ensure the rejection of **Bad** and the identification of **Dangerous** PMTs

In order to finish this phase by beginning 2014 we measure groups of 3 PMTs simultaneously

In addition to pass/don't-pass, this method provides the upper limit of the activity in the region, where the 3 PMTs from the same measurement will be placed in the detector

MONTECARLO SIMULATIONS (GEANT 4.9.5)

RADIOPURITY: PMTS, WORK PLAN AND RESULTS

- So far 5 measurement of 3 PMT ensembles + 1 single PMT
- Typical duration of measurement: ≈ 20 days
- *Preliminary* results are (activity/3PMTs):

	3PMT01	3PMT02	3PMT03	3PMT04	3PMT05
Time of measurement [days]	30.64	20.22	16.57	18.31	26.81
²³² Th Chain (²⁰⁸ Tl) [mBq]	< 7.1	< 9.2	< 8.8	< 7.9	< 7.5
²³² Th Chain (²²⁸ Ac) [mBq]	< 9.5	< 11.1	< 11	< 11	< 9.1
²³⁸ U Chain (²¹⁴ Bi) [mBq]	< 3.2	< 3.9	< 4.2	< 5.0	< 3.7
²³⁸ U Chain (²³⁴ Pa(m)) [mBq]	< 329	< 420	< 610	< 386	< 307
⁴⁰ K [mBq]	37.2 ± 9.9	< 73	< 58	< 68	< 51
⁶⁰ Co [mBq]	14.6 ± 1.1	13.3 ± 1.1	12 ± 1	13 ± 1	13 ± 1
⁵⁴ Mn [mBq]	1.40 ± 0.35	< 2.1	< 2.2	< 1.6	< 1.3

- The measured activities are well within expectations and appropriate for the experiment
- We expect to finish this pass/don't-pass phase by beginning of next year
- Afterwards we will proceed with as many precision measurements as possible

RADIOPURITY: PMTS, WORK PLAN AND RESULTS

- So far 5 measurement of 3 PMT ensembles + 1 single PMT
- Typical duration of measurement: ≈ 20 days
- *Preliminary* results are (activity/3PMTs):

	3PMT01	3PMT02	3PMT03	3PMT04	3PMT05
Time of measurement [days]	30.64	20.22	16.57	18.31	26.81
²³² Th Chain (²⁰⁸ Tl) [mBq]	< 7.1	< 9.2	< 8.8	< 7.9	< 7.5
²³² Th Chain (²²⁸ Ac) [mBq]	< 9.5	< 11.1	í ¹	< 11	< 9.1
²³⁸ U Chain (²¹⁴ Bi) [mBq]	< 3.2	< 3.9	N	< 5.0	< 3.7
²³⁸ U Chain (²³⁴ Pa(m)) [mBq]	< 329	MS	< 610	< 386	< 307
⁴⁰ K [mBq]	37.2 +	< /3	< 58	< 68	< 51
⁶⁰ Co [mBq]	DI	13.3 ± 1.1	12 ± 1	13 ± 1	13 ± 1
⁵⁴ Mn [mBq]	1.40 ± 0.35	< 2.1	< 2.2	< 1.6	< 1.3

- The measured activities are well within expectations and appropriate for the experiment
- We expect to finish this pass/don't-pass phase by beginning of next year
- Afterwards we will proceed with as many precision measurements as possible

Summary and Conclusions

- NEXT is an excellent option for this generation of ββ0v experiments, thanks to its energy resolution, its ability to reject background and its scalability
- The results from the DEMOs are extremely important milestones. That have proven the technology, the energy resolution and tracking

- A thorough screening program is being carried out at the LSC
- The materials chosen for NEXT are showing good radio-purity properties
- A special campaign for the 64 PMTs is also ongoing. The units measured so far show very small radioactive contamination.

THAT'S ALL

XENON SCINTILLATION

EVENT FROM NEXT-DBDM WITH X-RAYS

TPB EFFECTS ON NEXT-DEMO

TetraPhenyl Butadiene (TPB) converts UV light to blue (peak at ~430 nm)

Illuminated with UV light

NEXT-100 SENSITIVITY

year

HAMAMATSU R11410-MOD

Maximum Ratings (Absolute Maximum Values)

Parameter		Value	Unit
Supply voltage	Between Anode and Cathode	1750	V
Suppry voltage	Between Anode and Last Dynode	300	V
Average Anode Output		0.1	mA
Pressure-resistance (Gauge)		0.2	Mpa

Characteristics at 25 deg. C

Parameter		Min.	Тур.	Max.	Unit
	Luminous (2856K)	-	90	-	uA/lm
Cathode Sensitivity	Quantum Efficiency at 175 nm	-	26	-	%
	Blue Sensitivity Index (CS 5-58)	-	10	-	-
Anode Sensitivity Luminous (2856K)		-	450	-	A/lm
Gain		-	5.0 x 10 ⁶	-	-
Anode Dark Current (after 30 min. storage in darkness)		-	10	100	nA
	Anode Pulse Rise Time	-	5.5	-	ns
Time Response	Electron Transit Time	-	46	-	ns
	Transit Time Spread (FWHM)	-	6.5	-	ns
Pulse Linearity at +/-2% deviation		-	20	-	mA

RESULTS: PMT HORIZONTAL MODE

PMT_hor01: (04-03-13 to 09-04-13)

Time of measurement	33.70 days
²³² Th (²⁰⁸ Tl)	< 3.4 mBq
²³² Th (²²⁸ Ac)	< 5.4 mBq
²³⁸ U (²¹⁴ Bi)	< 1.8 mBq
²³⁸ U (²³⁴ Pa(m))	< 187 mBq
⁴⁰ K	< 29 mBq
⁶⁰ Co	2.82 ± 0.27 mBq

DNAT har01

RESULTS: DETECTION LIMIT, Lp (95% C.L.)

3PMTO2 - GAMMA SPECTRUM

3PMT02 Signal (Black) vs Bkg (Red)

