Neutrino physics in SuperK-Gd

Diego José González Vizoso

Supervisor: Luis Labarga Echeverría

TFM | July 1st, 2020 | Universidad Autónoma de Madrid

Introduction

Neutrinos are abundant and **elusive**, which makes them both difficult to detect and very interesting as probes of **new physics**.

Super Kamiokande is a water Cherenkov experiment which has already made breakthroughs in the field, notably the discovery of neutrino masses. It can do:

- Real time measurements of v interactions
- Good angle, energy and flavour (e/μ) reconstruction capabilities
- Some ability to distinguishing neutrinos from antineutrinos
- Proton decay searches and much more!

Dissolving a gadolinium salt in a water Cherenkov detector enables good (>90%) neutron tagging, which in turn allows for recognizing inverse β interactions of antineutrinos!

SuperK-Gd consists on dissolving 100 tons of ultrapure Gd sulphate into SK.

In this presentation we will show its physics potential and our contributions.

Neutrino masses and oscillations

Deficits in flux were observed for solar & atmospheric neutrinos. The anomalies could be explained with neutrino oscillations \rightarrow 2015 Physics Nobel Prize! (To Takaaki Kajita from SK and Arthur McDonald from SNO)

Neutrino mass & interaction eigenstates needn't coincide. Their rotation matrix is (PMNS):

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Majorana phases } \alpha_1 \alpha_2 \text{ don't contribute to neutrino oscillations!}}$$

OS

When computing the oscillation probability we obtain:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left\{U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right\} \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left\{U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right\} \sin\left(\frac{\Delta m_{ij}^{2}L}{2E}\right)$$
This term has a different sign for neutrinos and antineutrinos

<u>Things to note:</u>

- $\Delta m^2 L/E$ is an important quantity for oscillation experiments.
- Neutrinos and antineutrinos oscillate in different ways if CP isn't conserved.
- In matter (MSW effect) Forward scattering of ve is favoured (high density of electrons in matter)

CP violation

CPT must be conserved, but CP doesn't need to.

Its breaking in the neutrino sector could be 10^3 times larger than in quarks \rightarrow explanation for the observed matter-antimatter asymmetry.

 δ_{CP} has some modulation effects but most importantly it shows in the imaginary term of the neutrino oscillation formula.

Mass hierarchy

Oscillations depend on Δm^2 , but that leaves two possible mass orderings.

 ν_{τ} Experimentally, there is a hierarchy and normal seems to be favoured (92% for SK I-IV + T2K)

Hierarchy determination in SK: Enhancement of ve increases the effective masses of ve-dominated states \rightarrow compresses/expands splittings in NO/IO

In both cases, neutron tagging is very helpful for their determination!

Experiments and parameter values

-DIINDAT

There are many neutrino sources.

Their flavour composition, energy and oscillation lengths vary, so different experiments are more precise at determining different parameters.

SK is an underground detector mostly focused on solar, reactor, atmospheric and long baseline neutrinos (the ones from the T2K beam).

Solar & reactor θ_{13} , Δm_{12}^2 , θ_{12} Atmospheric & LBL θ_{23} , $|\Delta m_{31,32}^2|$, θ_{13} , δ_{CP} , hierarchy

Things to note about the neutrino parameters:

- The mixing angle θ_{13} is small
- $\Delta m_{12}^2 \ll \Delta m_{31,32}^2$
- $\delta_{CP} \neq 0$ at 3σ confidence level

The physics of Gd-doping

Neutron tagging

Without Gd – Neutrons thermalize and are captured by hydrogen in ~200 μ s, emitting a single 2.2 MeV photon which is difficult to detect (many backgrounds).

With Gd – Neutrons thermalize and are captured by Gd in ~30 μ s, emitting 3 to 5 photons of ~8 MeV in total. This signal is very clean \rightarrow ease for neutron tagging!

 $\Delta t \sim 30 \,\mu {
m s}$

• How are neutrons produced in SK?

At low neutrino energies (1-100 MeV), mostly inverse β interactions of electron antineutrinos, makes them easily identifiable in coindicence with Cherenkov radiation.

At higher energies there are more processes. It isn't as good, but Gd doping still improves the neutrino-antineutrino resolution of SK.

Radioactive processes usually involve free neutrons (background).

The Super Kamiokande experiment

SK is a 50 kton water tank located 1000 m underground.

It is surounded by PMTs (photomultiplier tubes), which are able to detect tiny amounts of light.

When a neutrino interacts via CC inside the tank, a charged lepton with a speed close to the speed of light in the vacuum is produced. It then radiates energy as either **Cherenkov** or **bremsstrahlung**.

The tank is divided in various zones:

- Outer Detector (OD) To veto cosmic muons, low photocoverage.
- Inner Detector (ID) With higher photocoverage (40%).
 - → Events happening at ~2 m from the ID wall are excluded to reduce radioactive background: SK fiducial volume is 22.5 kton.

• EGADS

Built to evaluate the feasibility of dissolving Gd in SK. Similar to SK, but 250 times smaller. It showed that:

- Gd salt doesn't degrade the SK components.
- New water system maintains both good transparency and Gd concentration (see figure).
- Adding/removing Gd is easy and economical.
- Studied the new backgrounds.

• SuperK-Gd

EGADS was a success, so SuperK-Gd was approved.

Final objective: 0.2% of Gd salt concentration (100 ton) ~90% of neutrons tagged.

First phase: 0.028% of Gd salt concentration (14 ton) ~60% of neutrons tagged. Ongoing, to be finished in 1 month.

Solar and reactor neutrinos

Thermonuclear processes in the Sun are classified under the **pp chain** and **CNO cycle**. Most of its energy comes from the former. Both emit neutrinos.

Neutrino flux from all of the pp processes have been measured individually except for the most energetic ones (hep). CNO flux was just measured by Borexino.

Nuclear reactors emit antineutrinos in a similar energy range.

SK & GD PHYSICS

SK was able to measure an angular dependence in the neutrinos at those energies. **Reactor neutrinos can't be distinguished in SK**, as they're homogeneous in solar angle.

Gd salt allows us to separate the reactor antineutrinos from the solar neutrinos, but introduces new backgrounds:

Solar neutrino flux in SK200 events/dayEstimated radioactive bkg after T1~50 events/dayThis background is problematic at low energies.

Atmospheric neutrinos are generated after the decay of charged pions in the atmosphere, caused by cosmic ray impacting with air nuclei.

$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$

$$\pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$$

$$R = \frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_e + \bar{\nu}_e} \sim 2$$

The expected ratio of muon to electron neutrinos is 2, but it was seen to be lower! $\mu \leftrightarrow \tau$ oscillations.

Accelerator neutrinos are generated by a similar mechanism, but by focusing the intermediate charged particles the neutrinos are collimated into a **beam**. Long baseline experiments (e.g. T2K) can be used to study the same parameters as atmospheric neutrinos, while aiming for the oscillation maximum.

These neutrinos are more energetic than solar & reactor, but they also benefit from Gd doping:

- Neutrino-antineutrino separation helps in δ_{CP} and mass ordering determination.
- Neutron multiplicity depends on the initial neutrino energy.
 - → Neutron tagging improves the energy reconstruction precision.
- Radioactive backgrounds aren't very problematic for these sources.

Supernova neutrinos

There are many types of supernovae, the ones which occur due to thermonuclear explosion (Ia) don't emit many neutrinos, so we are interested in the ones due to **core collapse**.

There are two types of supernova neutrinos:

• Si-burning phase v

- → A few hours to days prior to the core collapse.
- → Not very abundant, only seen if SN is close enough.
- → Can be used in SN early alert systems.
- → For a SN 0.2 kpc away: ~16 events/day

Thermal emission v

- → During the core collapse, emitted in all flavours.
- → Very abundant, in a short burst.
- → Useful to determine parameters in SN models!
- → For a SN in our galaxy: O(1000) events! in SK

Radioactive backgrounds are negligible here since both are extremely bright sources.

SN 1987A

It was a type II SN, 50 kpc from the Milky Way. **Kamiokande** measured 12 v, which arived 3 hours before the corresponding photons. No other SN has ever been detected with v since.

Diffuse supernova neutrino background

SXK & GD PHYSICS

Supernova bursts further from our galaxy can't be measured with current detectors, but their **integrated flux** we can.

Not measured yet, but we are very close to theoretical estimations \rightarrow important **objective** of SuperK-Gd.

→ For E_e < 10 MeV – Reactor v background dominates
 → For E_e > 10 MeV – Spallation background dominates (Cosmic µ impacting oxygen)

In SK the measurement is background dominated at all energies. In SuperK-Gd we can eliminate the spallation bkg!

Measuring DSNB flux lets us compare the SN model parameters with the ones from optical measurements.

Expected DSNB flux in SK Radioactive bkg with current bounds ~5 events/year <1 events/year

Proton decay

The Kamiokande detector was originally designed as a proton decay experiment!

Now they're mainly neutrino detectors, but they can still look for this rare decay, predicted by GUTs.

Super Kamiokande is the current leader in proton decay bounds and it has already excluded two unified theories.

In SuperK-Gd, we can further reduce the background for these processes by doing a **neutron veto**, as proton decay channels don't usually have neutrons.

Why is Gd radiopurity important?

Radioactive processes in PMTs and electronics are removed after restricting events to the fiducial volume, but Gd salt is dissolved among all the tank water. This creates irreducible backgrounds:

$\cdot \ High \ energy \ \beta \ decays$

Elements from transuranic decay chains may be ta decay emitting MeV γ and e⁻.

• (a,n) ${}^{18}\text{O} + \alpha \rightarrow {}^{22}\text{Ne} \rightarrow {}^{20}\text{Ne} + 2n$ An a may be captured by oxygen nuclei in the water, emitting two neutrons.

Spontaneous fission

Heavy isotopes may **split**, emitting a few n and sometimes an energetic photon (>10 MeV).

Fluorescence

Cerium can absorb γ and re emit with lower energy, difficulting energy reconstruction.

The salt is already incredibly pure after purchased, but additional measures are taken.

- → HPGe at the Canfranc Underground Laboratory were used to screen the activities of 15 Gd samples.
- → ICPMS was also employed to measure element concentrations.

• Signal and bound calculation from HPGe spectra

Samples are measured for 30-50 days. The gamma spectrum is compared to the detector background and then converted into radioactive activities, for which we need to know:

- → Detector efficiencies (from Monte Carlo simulation)
- → Intensity of that gamma line (tabulated in JANIS)

Let us analyze a condensed version of the full results table (which is available in a backup slide).

#	Detector	$^{238}\mathrm{U} riangle$	$^{238}\mathrm{U} \bigtriangledown$	$^{232}{ m Th} \triangle$	$^{232}{ m Th} \bigtriangledown$	²³⁵ U∆	$^{235}\mathrm{U} \bigtriangledown$	¹³⁸ La	¹⁷⁶ Lu
γ	line (keV) \rightarrow	1001.0	609.3	911.2	583.2	185.7	236.0	1435.8	306.8
γ li	ine element \rightarrow	²³⁴ *Pa	^{214}Bi	^{228}Ac	208 Tl	^{235}U	227 Th	138 La	^{176}Lu
Exp r	equirement \rightarrow	< 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-
190302	ge-Asterix	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21
190303	ge-Asterix	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12
190305	ge-Asterix	< 9.0	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13
190601	ge-Asterix	< 10.2	< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14
190602	ge-Tobazo	< 29	< 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20
190603	ge-Anayet	<25.95	< 0.45	< 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14
190607	ge-Oroel	< 7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 0.18	< 0.13
190608	ge-Asterix	< 8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 0.14	< 0.25
190702	ge-Oroel	< 11	< 0.45	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13
190703	ge-Asterix	< 8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13
190801	ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2
190803	ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.71	< 0.09	3.5 ± 0.1
190805	ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39	0.60 ± 0.36	< 0.40	< 0.89	< 0.09	9.38 ± 0.09
190901	ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 0.13	4.87 ± 0.11
190903	ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 0.14	4.89 ± 0.13

Condensed Canfranc HPGe results (mBq/kg 95% c.l.)

, 	Co	ondensed (This is the requirement for low DSNB backgrounds.			ow <u>l.)</u>		
# Detector	^{238}U	238 U \bigtriangledown	DSN	Dackgrou	nus.	Δſ	138 La	176 Lu
γ line (keV)	$\rightarrow 1001.0$	609.3	911.2	083.2	100.7	236.0	1435.8	306.8
γ line element	\rightarrow <u>^{234*}Pa</u>	^{214}Bi	^{228}Ac	208 Tl	^{235}U	227 Th	^{138}La	^{176}Lu
Exp requirement	\rightarrow < 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-
190302 ge-Asterix	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21
190303 ge-Asterix	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12
190305 ge-Asterix	< 9.0	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13
190601 ge-Asterix	< 10.2	< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14
190602 ge-Tobazo	< 29	< 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20
190603 ge-Anayet	< 25.95	< 0.45	< 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14
190607 ge-Oroel	< 7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 0.18	< 0.13
190608 ge-Asterix	< 8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 0.14	< 0.25
190702 ge-Oroel	< 11	< 0.45	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13
190703 ge-Asterix	< 8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13
190801 ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2
190803 ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.71	< 0.09	3.5 ± 0.1
190805 ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39	0.60 ± 0.36	< 0.40	< 0.89	< 0.09	9.38 ± 0.09
190901 ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 0.13	4.87 ± 0.11
190903 ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 0.14	4.89 ± 0.13

Let us analyze a condensed version of the full results table (which is available in a backup slide).

	Condensed (This is the	e requireme	w l.)			
# Detector ²³⁸ U	UA $^{238}U\nabla$	DSN	B backgrou	inds.	JΔ	138 La	¹⁷⁶ Lu
$\gamma \text{ line (keV)} \rightarrow 100$	1.0 609.3 L	911.2	000.Z	100.1	230.0	1435.8	306.8
γ line element \rightarrow ^{234*}	Pa ²¹⁴ Bi	²²⁸ Ac	²⁰⁸⁷ Tl	235	220Th	¹³⁸ La	¹⁷⁰ Lu
Exp requirement \rightarrow <	5 < 0.5	< 0.05	< 0.05	< 30	< 30	-	-
190302 ge-Asterix <	9.8 < 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21
190303 ge-Asterix < 8	8.4 < 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12
190305 ge-Asterix < 9	9.0 < 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13
190601 ge-Asterix < 1	0.2 < 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14
190602 ge-Tobazo <	29 < 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20
190603 ge-Anayet < 23	$5.95 \ \frown \ 0.45$	< 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14
190607 ge-Oroel < '	7.2 < 0.30	< 0.					.3
190608 ge-Asterix < 8	8.8 < 0.53	< 0. W	/e aren't qui	ite there	e (we wo	ould need i	many <mark>15</mark>
190702 ge-Oroel <	11 < 0.45	< 1. m	nonths of m	easurer	nents) b	ut from IC	PMS 0.13
190703 ge-Asterix < 8	8.4 < 0.35	< 0. n	neasuremer	nts we k	now that	at upper 23	38U <u>).13</u>
190801 ge-Anayet <	$28 0.39 \pm 0.32$	2 < 1	me	ets the	requirer	nents	0.2
190803 ge-Asterix $<$	7.0 < 0.31	$0.39 \pm$					0.1
190805 ge-Oroel < 8	$0.39 0.25 \pm 0.23$	$3 \ 0.53 \pm 0.39$	0.60 ± 0.36	< 0.40	< 0.89	< 0.09	9.38 ± 0.09
190901 ge-Asterix < 6	6.85 < 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 0.13	4.87 ± 0.11
190903 ge-Asterix < 8	3.88 < 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 0.14	4.89 ± 0.13

Let us analyze a condensed version of the full results table (which is available in a backup slide).

nalyze a cond	ensed \	ersion of	the full res	sults table	(Which	is availa	<u>ahle in a h</u>	ackun slide)			
	Co	<mark>Bq</mark> , Th	$\mathbf{q}_{\mathbf{q}}$ These are the requirements for								
Detector	$^{238}\mathrm{U}\bigtriangleup$	$^{238}\mathrm{U} \bigtriangledown$	$^{232}{ m Th} \triangle$	²³² Th▽	235	iow solar backgrounds.					
γ line (keV) \rightarrow	1001.0	609.3	911.2	583.2	185.7	230.0	1435.8	306.8			
line element \rightarrow	²³⁴ *Pa	^{214}Bi	²²⁸ Ac	208 Tl	^{235}U	$^{227}\mathrm{Th}$	^{138}La	^{176}Lu			
ightarrow requirement $ ightarrow$	< 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-			
2 ge-Asterix	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21			
3 ge-Asterix	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12			
5 ge-Asterix	< 9.0	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13			
1 ge-Asterix	< 10.2	< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14			
2 ge-Tobazo	< 29	< 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20			
3 ge-Anayet	< 25.95	< 0.45	< 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14			
7 ge-Oroel	< 7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 0.18	< 0.13			
08 ge-Asterix	< 8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 0.14	< 0.25			
2 ge-Oroel	< 11	< 0.45	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13			
3 ge-Asterix	< 8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13			
1 ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2			
3 ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.71	< 0.09	3.5 ± 0.1			
5 ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39	0.60 ± 0.36	< 0.40	< 0.89	< 0.09	9.38 ± 0.09			
1 ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 0.13	4.87 ± 0.11			
3 ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 0.14	4.89 ± 0.13			
	Detector γ line (keV) \rightarrow line element \rightarrow γ line (keV) \rightarrow line element \rightarrow γ requirement \rightarrow 2 ge-Asterix 3 ge-Asterix 5 ge-Asterix 2 ge-Tobazo 3 ge-Asterix 2 ge-Oroel 3 ge-Asterix 2 ge-Oroel 3 ge-Asterix 3 ge-Asterix 3 ge-Asterix 4 ge-Oroel 3 ge-Asterix 5 ge-Oroel 4 ge-Asterix 5 ge-Oroel 4 ge-Asterix 3 ge-Asterix 3 ge-Asterix 3 ge-Asterix 3 ge-Asterix 3 ge-Asterix 3 ge-Asterix	ContractionDetector $^{238}U\triangle$ γ line (keV) \rightarrow 1001.02 line element \rightarrow $^{234*}Pa$ 0 requirement \rightarrow < 5 2 ge-Asterix < 9.8 3 ge-Asterix < 8.4 5 ge-Asterix < 9.0 1 ge-Asterix < 9.0 2 ge-Tobazo < 29 3 ge-Anayet < 25.95 7 ge-Oroel < 7.2 8 ge-Asterix < 8.8 9 ge-Oroel < 11 3 ge-Asterix < 8.4 9 ge-Anayet < 28 9 ge-Asterix < 8.39 9 ge-Oroel < 8.39 1 ge-Asterix < 6.85 3 ge-Asterix < 8.88	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

a

et us analyze a condensed version of the full results table (which is available in a backun slide).											
			iese are t	he require	ments for						
7	#	Detector	²³⁸ U∆	238 U \bigtriangledown	$^{232}{ m Th} \triangle$	²³² Th▽	235	low sola	ar backgro	unds.	
	$\gamma \\ \gamma $ lir	line (keV) \rightarrow ne element \rightarrow	$^{1001.0}_{^{234*}}$ Pa	${}^{609.3}_{^{214}{ m Bi}}$	$^{911.2}_{^{228}\mathrm{Ac}}$	583.2 ²⁰⁸ Tl	185.7 ²³⁵ U	236.0 ²²⁷ Th	1435.8 ¹³⁸ La	$^{306.8}_{ m ^{176}Lu}$	
E	xp re	quirement \rightarrow	< 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-	
Thoso	thro	o columns	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21	
don	't hav	e columns ve many	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12	
sion	signals and even then, they're under		< 9 0	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13	
than			< 10.2	< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14	
			< 29	< 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20	
	expe	monto	< 25.95	< 0.45	< 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14	
160	quire	ements	< 7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 0.18	< 0.13	
190	608	ge-Asterix	< 8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 0.14	< 0.25	
190	0702	ge-Oroel	< 11	< 0.45	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13	
190	0703	ge-Asterix	< 8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13	
190	0801	ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2	
190	803	ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.71	< 0.09	3.5 ± 0.1	
190	805	ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39	0.60 ± 0.36	< 0.40	< 0.89	< 0.09	9.38 ± 0.09	
190	901	ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 0.13	4.87 ± 0.11	
190	903	ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 0.14	4.89 ± 0.13	

Let ı	is ana	lyze a cond	ensed $\$	ersion of	the full res	sults table	(which	is availa	ahle in a h	ackun slide),		
			Co	ondensed Car	nfranc HPG	e results (m	<mark>Bq</mark> Th	ese are t	he require	ments for		
	#	Detector	$^{238}\mathrm{U} riangle$	238 U \bigtriangledown	$^{232}{ m Th} riangle$	²³² Th▽	235	low solar backgrounds.				
	$\gamma \gamma$	line (keV) \rightarrow ne element \rightarrow	1001.0 ²³⁴ *Pa	609.3 ²¹⁴ Bi	911.2 ²²⁸ Ac	583.2 ²⁰⁸ Tl	185.7 ²³⁵ U	236.0 ²²⁷ Th	$^{1435.8}_{ m ^{138}La}$	306.8 ¹⁷⁶ Lu		
	Exp re	equirement \rightarrow	< 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-		
1	00209	To Actorize	<u>- 0 8</u>	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21		
The	ese are	n't helow th	_ا 4		< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12		
reaui	iremer	nt but we do	$n^{\prime}t^{\prime}$	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13		
	e a signal (and we don't			< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14		
	ee a signal (and we don'		f	< 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20		
CV	those	ne minost o samplas)	95	< 0.45	< 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14		
	LIESE	samples)	2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 0.18	< 0.13		
1	90000	ge-Asterix	< 0.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 0.14	< 0.25		
1	90702	ge-Oroel	< 11	< 0.45	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13		
1	90703	ge-Asterix	< 8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13		
1	90801	ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2		
1	90803	ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.71	< 0.09	3.5 ± 0.1		
19	90805	ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39	0.60 ± 0.36	< 0.40	< 0.89	< 0.09	9.38 ± 0.09		
19	90901	ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 0.13	4.87 ± 0.11		
1	90903	ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 0.14	4.89 ± 0.13		

RADIOPURITY

_et	: us ana	lyze a conde	ensed \	ersion of	the full resu	Its table	(which	lis availa	hle in a h	<u>ackun slide</u>),			
			Co	ondensed Ca	nfranc HPGe	results (m	<mark>Bq</mark> Th	ese are t	he require	ments for			
	#	Detector	$^{238}\mathrm{U} riangle$	$^{238}\mathrm{U}igtriangle$	$^{232}{ m Th} \triangle ~~^{232}{ m Th} abla ~~^{232}{ m Scheme}$			231 IOW SOIAF backgrounds.					
	$\gamma \ \gamma \ lin$	line (keV) \rightarrow ne element \rightarrow	$^{1001.0}_{^{234*}}$ Pa	609.3 ²¹⁴ Bi	$^{911.2}_{^{228}\mathrm{Ac}}$	583.2 ²⁰⁸ Tl	185.7 ²³⁵ U	236.0 ²²⁷ Th	$^{1435.8}_{ m ^{138}La}$	306.8 ¹⁷⁶ Lu			
	Exp re	equirement \rightarrow	< 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-			
	190302	ge-Asterix	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21			
	190303	ge-Asterix	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.16 ± 0.12			
	190305	ge-Asterix	< 9.0	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	0.5 ± 0.1	0.14 ± 0.13			
	190601	ge-Asterix	< 10.2	< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 0.16	1.25 ± 0.14			
	100000		< 00	- 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 0.21	1.64 ± 0.20			
	One o	order of mag	nitude a	above –	→ 1.03	< 0.76	< 0.58	< 2.02	< 0.18	1.71 ± 0.14			
	00	the require	ement.		< 0.79	< 0.42	< 0.30	< 0.96	< 0.18	< 0.13			
					< 0.43	< 0.35	< 0.40	< 0.88	< 0.14	< 0.25			
	$\rightarrow \Pr$	oblematic for	r lowF s	olar v	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13			
					< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13			
	190801	ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2			
	190803	ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21 0	$.55\pm0.22$	< 0.36	< 0.71	< 0.09	3.5 ± 0.1			
	190805	ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39 0	$.60\pm0.36$	< 0.40	< 0.89	< 0.09	9.38 ± 0.09			
	190901	ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23 0	$.34\pm0.24$	< 0.42	< 1.09	< 0.13	4.87 ± 0.11			
	190903	ge-Asterix	< 8.88	< 0.37	$0.59\pm0.28~0$	$.35 \pm 0.28$	< 0.54	< 1.72	< 0.14	4.89 ± 0.13			

_et	us ana	lyze a cond	ensed \	version of	the full resu	Its table	e (w <mark>hich</mark>	is avail:	ahle in a h	lackun slide)		
	Condensed Canfranc HPGe results (mBq These are the require											
	#	Detector	$^{238}\mathrm{U} riangle$	$^{238}\mathrm{U} \bigtriangledown$	$^{232}{ m Th} riangle$	²³² Th▽	23!	23t IOW SOLAL DACKGLOUITUS.				
	γ	line (keV) \rightarrow	1001.0	609.3	911.2 228 A	583.2 208 ml	185.7 23511	236.0 227ml	1435.8 1381	306.8 1761		
	$\gamma_{\rm III}$	ne element \rightarrow	²⁰⁴ *Pa < 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-100La	- Lu		
	LAPIC	quitement 7		0.00	0.00	< 0.00	< 00	00				
	190302	ge-Asterix	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	0.26 ± 0.1	< 0.21		
	190303	ge-Asterix	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	0.45 ± 0.09	0.10 ± 0.12		
	190305	ge-Asterix	< 9.0	< 0.34	< 0.30	< 0.3	There i	s an emp	oyrical	0.14 ± 0.13 1 25 \pm 0 14		
	100001	ge-Asterix	< 10.2	< 0.52	< 0.55	< 0.2	correlation with high 1.20 ± 0.1					
	Ono	ordor of mag	nitudo		-1.03	< 0.7	1/6Lu s	1.71 ± 0.14				
	One	the require	ment	above	< 0.79	< 0.4).					
		the require	.mem.		< 0.43	< 0.3	expe	ппент п	sen.	< 0.25		
	$\rightarrow Pr$	oblematic fo	r lowF s	solar v	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 0.20	0.23 ± 0.13		
	* • • •				< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 0.20	0.51 ± 0.13		
	190801	ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 0.18	2.7 ± 0.2		
	190803	ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21 0.	$.55 \pm 0.22$	2 < 0.36	< 0.71	< 0.09	3.5 ± 0.1		
	190805	ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39 0.	$.60 \pm 0.36$	6 < 0.40	< 0.89	< 0.09	9.38 ± 0.09		
	190901	ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23 0.	$.34 \pm 0.24$	< 0.42	< 1.09	< 0.13	4.87 ± 0.11		
	190903	ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28 0.	$.35 \pm 0.28$	3 < 0.54	< 1.72	< 0.14	4.89 ± 0.13		

Implications of our results for the future of SuperK-Gd

The signals found correspond to **relatively high**²²⁸Ra concentrations. Together with the measurements from Boulby and Kamioka, about half of the T1 samples are ²²⁸Ra-contaminated.

When dissolving, resins in the water system can remove ~90% of the ²²⁸Ra. The ²²⁸Ra-induced backgrounds halve every two years.

For the first phase (T1) we had two options:

- Option 1
 - → Dissolving all clean samples (7 ton)
 - → 6-12 solar bkg events/day in SKFV
 - → ~30% neutron capture efficiency

Option 2 has been taken

A R&D program was set to know how to further purify future samples, in case that the problem persists.

- Option 2
 - → Dissolving all samples (14 ton)
 - → 55-62 solar bkg events/day in SKFV
 - → ~60% neutron capture efficiency

Conclusions

- Neutrino discoveries are vital for theoretical physics and Super Kamiokande has proven to be an **invaluable** experiment in this field.
- Its new phase, SuperK-Gd, has **promising prospects** like the first measurement of the DSNB and better determination of δ_{CP} and mass hierarchy.
- EGADS was successful at loading Gd salt in a water Cherenkov detector.
- Our work on the radiopurity of SuperK-Gd salt has changed the course of the experiment, as half of the T1 samples were seen to have relatively high ²²⁸Ra levels.
- A R&D program was started to know how to further purify Gd sulphate from ²²⁸Ra.

Thanks for your attention

(Questions or comments?)

Experiments and parameter values

Experiment type	Notable examples	Dominant	Important
Solar experiments	SNO, SK, borexino	$ heta_{12}$	$\Delta m_{21}^2, \theta_{13}$
Reactor LBL	KamLAND	Δm^2_{21}	$ heta_{12}, heta_{13}$
Reactor MBL	Daya-Bay, Reno, D-Chooz	$\theta_{13}, \left \Delta m^2_{31,32} \right $	
Atmospheric exp.	SK, IC-DC	$\theta_{23}, \left \Delta m^2_{31,32} \right $	$ heta_{13}, \delta_{ m CP}$
Accel. LBL ν_{μ} , $\bar{\nu}_{\mu}$ disapp.	K2K, MINOS, T2K, NOvA	$ \Delta m^2_{31,32} , \theta_{23}$	
Accel. LBL ν_e , $\bar{\nu}_e$ app.	$MINOS, T2K, NO\nu A$	$\delta_{\mathrm{CP}}, heta_{13}$	θ_{23}

	Norma	l Ordering	Inverted Ordering				
	$\pm 1\sigma$ range	$\pm 3\sigma$ range	$\pm 1\sigma$ range	$\pm 3\sigma$ range			
$\sin^2 heta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$			
$\sin^2 heta_{23}$	$0.563^{+0.018}_{-0.024}$	$0.433 \rightarrow 0.609$	$0.565\substack{+0.017\\-0.022}$	$0.436 \rightarrow 0.610$			
$\sin^2 heta_{13}$	$0.02237^{+0.00066}_{-0.00065}$	$0.02044 \rightarrow 0.02435$	$0.02259^{+0.00065}_{-0.00065}$	$0.02064 \rightarrow 0.02457$			
$\delta_{ m CP}/ m rad$	$-1.89^{+0.70}_{-0.58}$	$-3.41 \rightarrow -0.03$	$-1.38^{+0.48}_{-0.54}$	$-2.54 \rightarrow -0.32$			
$\Delta m^2_{21}/10^{-5} { m eV}^2$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$			
$\Delta m^2_{3l}/10^{-3} \mathrm{eV}^2$	$2.528^{+0.029}_{-0.031}$	$2.436 \rightarrow 2.618$	$-2.510\substack{+0.030\\-0.031}$	$-2.601 \rightarrow -2.419$			

B

Canfranc T1 results

	Lab	Detector		Ge, main chains $(mBq/kg 95\% c.l.)$				Ge, other $(mBq/kg 95\% c.l.)$					
#	Lab.	/ technique	$^{238}U\triangle$	238 U \bigtriangledown	$^{232}\mathrm{Th}\triangle$	232 Th \bigtriangledown	$^{235}U\triangle$	$^{235}\mathrm{U} above$	^{40}K	¹³⁸ La	¹⁷⁶ Lu	^{134}Cs	^{137}Cs
	Chosen	γ line (keV) \rightarrow	1001.0	609.3	911.2	583.2	185.7	236.0	1460.8	1435.8	306.8	795.9	661.6
	γ	line element \rightarrow	²³⁴ *Pa	^{214}Bi	^{228}Ac	208 Tl	^{235}U	227 Th	^{40}K	^{138}La	^{176}Lu	^{134}Cs	^{137}Cs
Exp	perimental	${\rm requirement}\rightarrow$	< 5	< 0.5	< 0.05	< 0.05	< 30	< 30	-	-	-	-	-
190302	Canfranc	ge-Asterix	< 9.8	< 0.32	< 0.35	< 0.29	< 0.42	< 0.92	< 1.6	0.26 ± 0.1	< 0.21	< 0.09	< 0.09
	HADES	Ge10+Ge11	< 105	< 8.6	< 3.3	< 3.6	< 5.6	< 10.4	< 8.8	< 1.66	< 2.47	-	< 0.93
190303	Canfranc	ge-Asterix	< 8.4	< 0.3	< 0.44	< 0.29	< 0.39	< 0.81	< 1.5	0.45 ± 0.09	0.16 ± 0.12	< 0.08	< 0.09
190304	Canfranc	(t.b.m.)	-	-	-	-	-	-	-	-	-	-	-
	HADES	Ge10+Ge11	< 88	< 7.7	< 2.6	< 3.3	< 5.0	< 9.5	< 10	1.34 ± 0.96	< 1.28	-	< 1.26
190305	Canfranc	ge-Asterix	< 9.0	< 0.34	< 0.36	< 0.30	< 0.41	< 0.90	< 1.6	0.5 ± 0.1	0.14 ± 0.13	< 0.09	< 0.12
190601	Canfranc	ge-Asterix	< 10.2	< 0.52	< 0.35	< 0.41	< 0.50	< 1.36	< 1.90	< 0.16	1.25 ± 0.14	< 0.10	< 0.11
	Kamioka	RaEmporeDisk	-	< 0.32	< 0.39	< 0.34	-	-	-	-	-	-	-
190602	Canfranc	ge-Tobazo	< 29	< 0.49	< 1.64	< 0.82	< 0.76	< 1.85	< 2.10	< 0.21	1.64 ± 0.20	< 0.17	< 0.14
	Kamioka	RaEmporeDisk	-	< 0.28	< 1.01	< 0.28	-	-	-	-	-	-	-
190603	Canfranc	ge-Anayet	< 25.95	< 0.45	< 1.03	< 0.76	< 0.58	< 2.02	< 1.58	< 0.18	1.71 ± 0.14	< 0.15	< 0.12
190607	Canfranc	ge-Oroel	< 7.2	< 0.30	< 0.79	< 0.42	< 0.30	< 0.96	< 1.59	< 0.18	< 0.13	< 0.12	< 0.09
190608	Canfranc	ge-Asterix	< 8.8	< 0.53	< 0.43	< 0.35	< 0.40	< 0.88	< 1.50	< 0.14	< 0.25	< 0.08	< 0.09
	Kamioka	-	< 20.4	-	< 1.22	< 0.71	< 3.4	< 1.6	-	-	< 0.45	-	-
	Kamioka	RaEmporeDisk	-	< 0.49	< 0.43	< 0.55	-	-	-	-	-	-	-
190702	Canfranc	ge-Oroel	< 11	< 0.45	< 1.11	< 0.50	< 0.37	2.4 ± 0.9	< 1.50	< 0.20	0.23 ± 0.13	< 0.12	< 0.11
	Kamioka	-	< 9.4	< 0.57	< 0.97	< 0.26	< 2.6	< 1.4	-	-	< 0.44	-	-
190703	Canfranc	ge-Asterix	< 8.4	< 0.35	< 0.51	< 0.50	< 0.45	1.8 ± 1.0	< 1.70	< 0.20	0.51 ± 0.13	< 0.10	< 0.10
190801	Canfranc	ge-Anayet	< 28	0.39 ± 0.32	< 1.5	< 0.77	< 0.80	< 1.17	< 1.44	< 0.18	2.7 ± 0.2	< 0.23	< 0.18
190803	Canfranc	ge-Asterix	< 7.0	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	< 0.71	< 1.4	< 0.09	3.5 ± 0.1	< 0.08	< 0.07
190805	Canfranc	ge-Oroel	< 8.39	0.25 ± 0.23	0.53 ± 0.39	0.60 ± 0.36	< 0.40	< 0.89	< 1.12	< 0.09	9.38 ± 0.09	< 0.10	< 0.08
	Kamioka	ĬPMU-P	< 103	< 1.6	< 3.2	< 4.9	< 16	< 7.0	< 18	-	8.83 ± 0.82	-	< 1.2
190901	Canfranc	ge-Asterix	< 6.85	< 0.27	0.48 ± 0.23	0.34 ± 0.24	< 0.42	< 1.09	< 1.31	< 0.13	4.87 ± 0.11	< 0.09	< 0.12
	Kamioka	-	< 110	< 2.3	< 2.9	< 2.1	< 14.9	< 12.2	< 27	-	5.6 ± 0.7	-	< 1.1
190903	Canfranc	ge-Asterix	< 8.88	< 0.37	0.59 ± 0.28	0.35 ± 0.28	< 0.54	< 1.72	< 1.50	< 0.14	4.89 ± 0.13	< 0.10	< 0.09
	Kamioka	-	< 69	< 6.3	< 4.0	< 2.4	< 17.6	< 5.3	< 32	-	5.4 ± 0.8	-	< 1.0