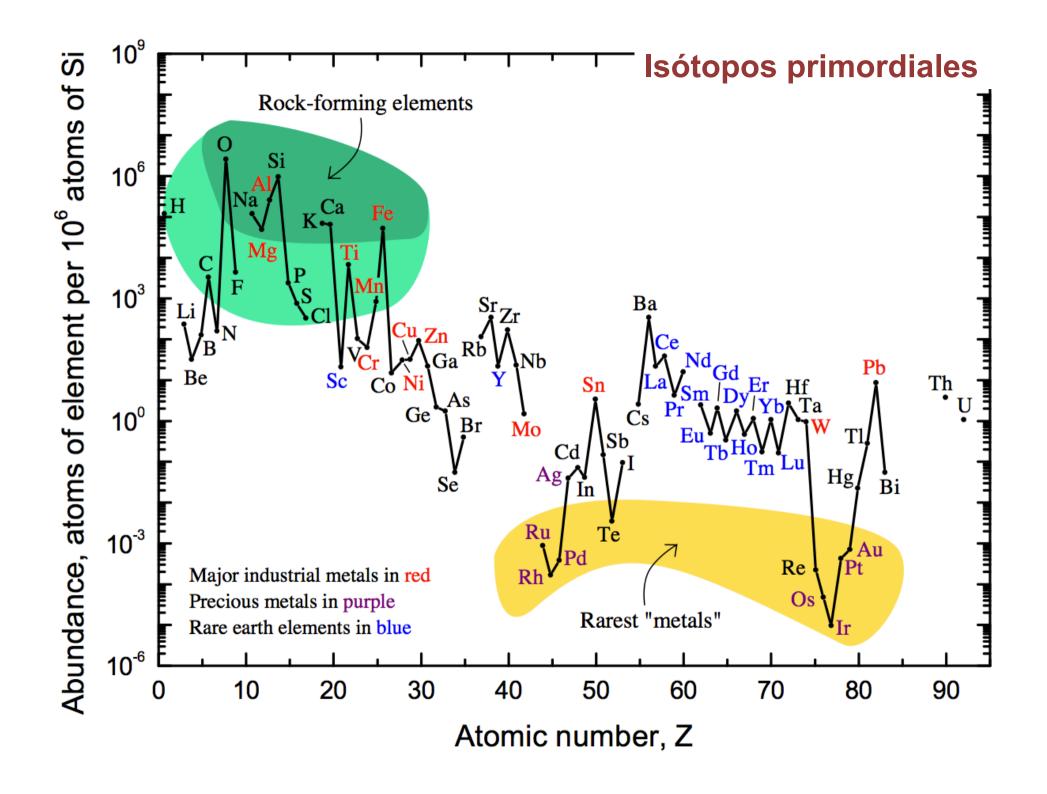


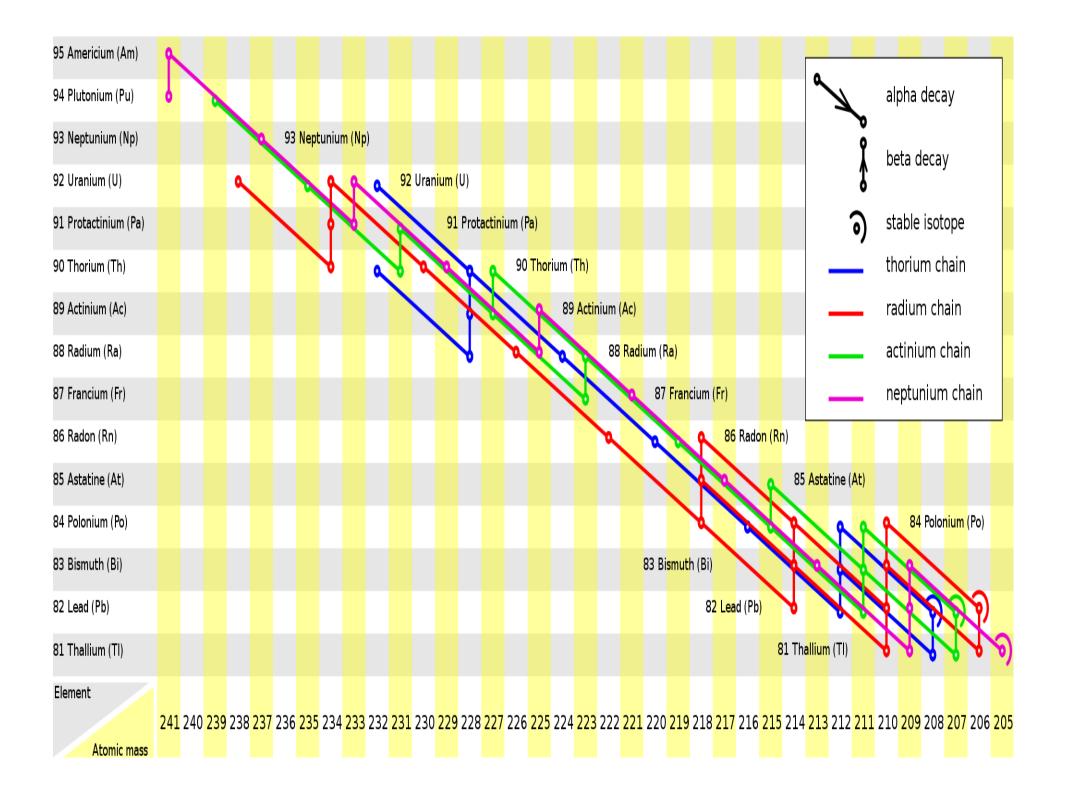
L. Labarga, Dept. Física Teórica UAM, 20130130


Isótopos primordiales

Se suelen denominar isótopos primordiales a aquellos isótopos que se encuentran en la Tierra que han existido en su forma actual desde antes de la formación de la Tierra.

Son residuos de explosiones de Supernovas que ocurrieron antes de la formación del Sistema Solar, con suficiente vida media como para sobrevivir en la *nebulosa solar* primordial y la *acreción planetaria* hasta el presente.

Se conocen 289 isótopos primordiales. De ellos 254 son estables (todos los isótopos estables conocidos). Los 35 inestables tienen vidas medias suficientemente largas para sobrevivir desde la formación de la Tierra.


Los 35 radio isótopos corresponden a 28 elementos distintos; 3 de ellos en dos isótopos [113Cd, 116Cd], [144Nd, 150Nd], [235U, 238U] y dos en 3 isótopos primordiales [123Te, 128Te, 130Te] y [146Sm, 147Sm, 148Sm]

isótopos presentes en la Tierra no primordiales

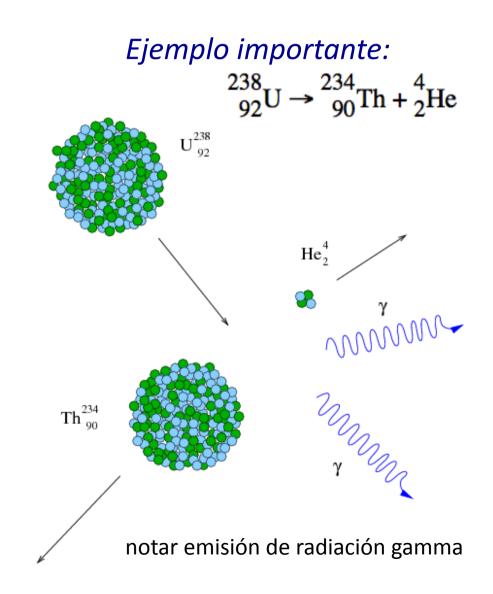
Algunos isótopos inestables presentes de forma natural en la Tierra no son primordiales sino que están siendo producidos de forma constante:

- → por radiación cósmica, p. ej. los isótopos cosmogénicos ¹⁴C ó ³H
- \rightarrow por transmutación geo-nuclear, p. ej. el ²³⁹Pu a partir de la captura de un neutrón por el ²³⁸U y subsecuentes desintegraciones β
- → por creación en las cadenas radioactivas de los isótopos primordiales ²³⁸U, ²³⁵U y ²³²Th: Radon, Polonio, Radio etc.

Aquí nos ocupa que los productos de desintegración de estos núcleos radioactivos puedan enmascarar / confundir / suplantar / "ensuciar" los estados finales que estamos investigando

Veamos primero con cierto detalle:

Modos de desintegración

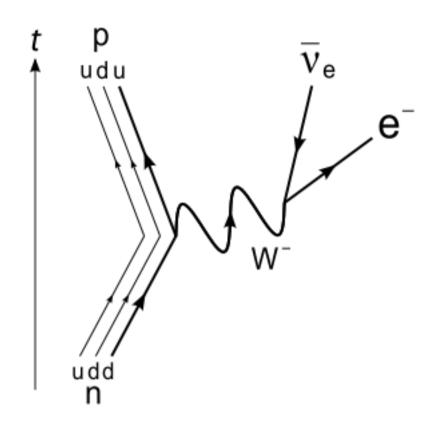

Tipos de radiación más relevantes

Desintegración α

Gobernada por una relación de fuerzas entre las interacciones nuclear fuerte y electromagnética "en busca" de estabilidad nuclear

El núcleo atómico emite una partícula α (núcleo de Helio) transformándose en un nuevo núcleo con masa atómica 4 unidades menor y número atómico 2 unidades menor

La desintegración en una partícula α es debido a su pequeña masa y su enorme energía de ligadura

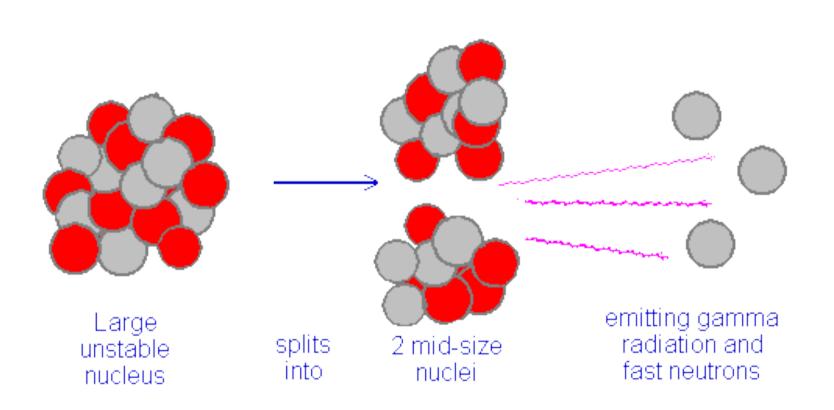


Desintegración B

pura reacción básica de interacción débil

$$d \rightarrow u + e^- + \bar{\nu_e}$$

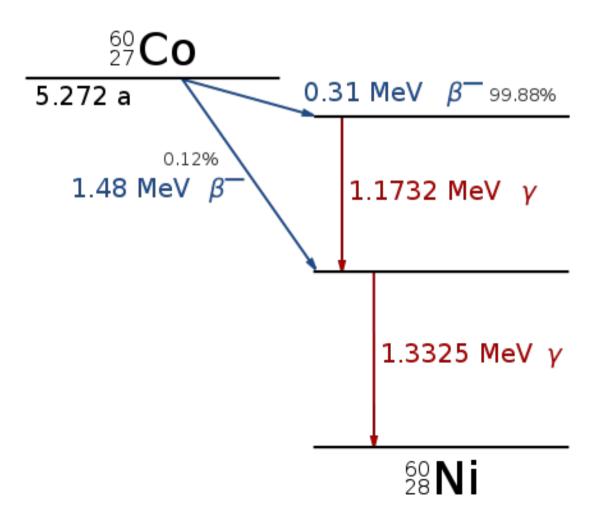
$$n \to p + e^- + \bar{\nu_e}$$

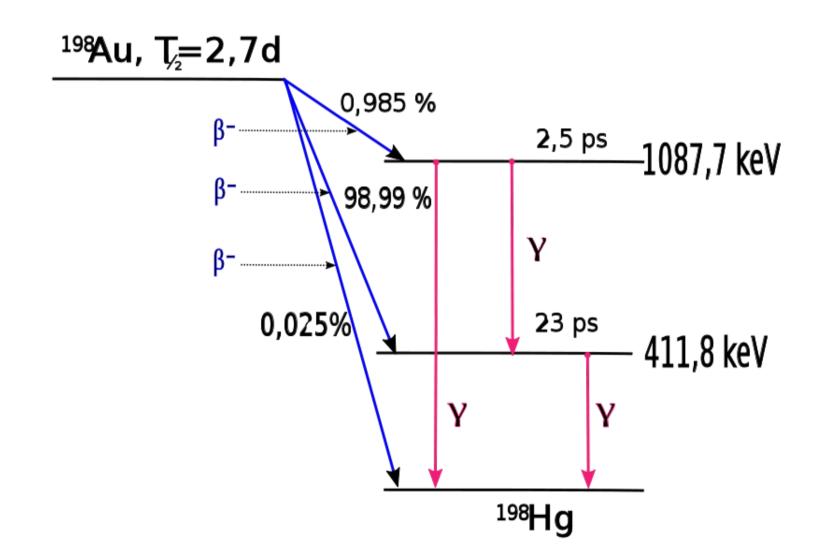


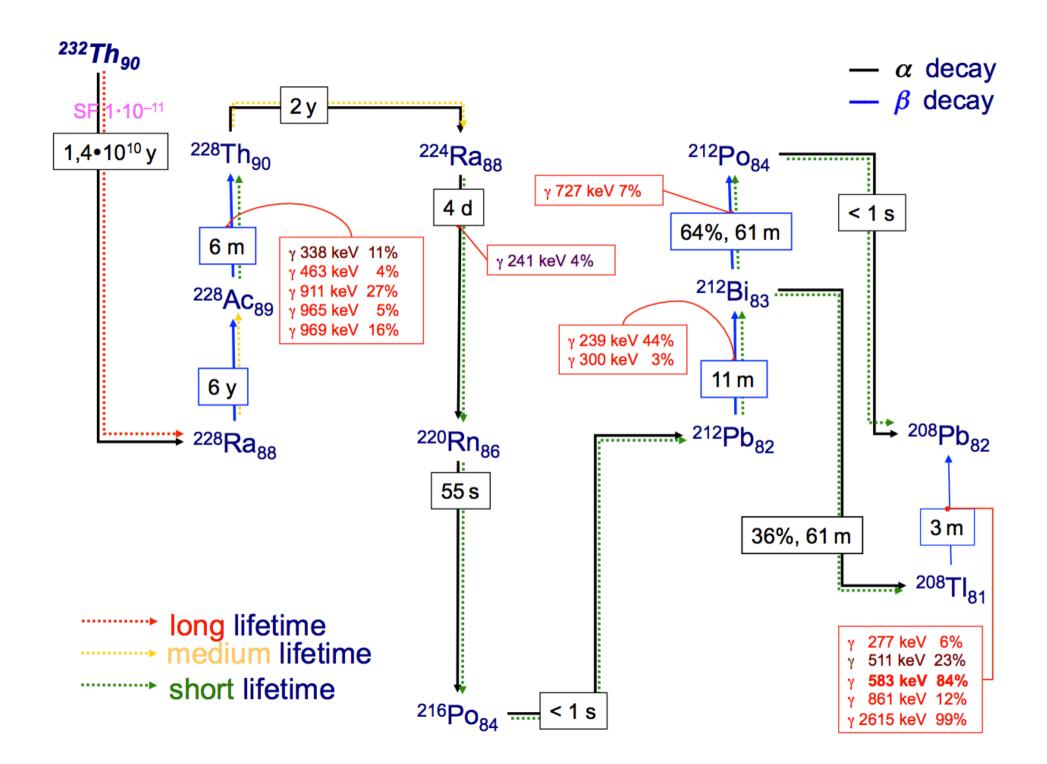
$$_{Z}^{A}N \rightarrow _{Z+1}^{A}N' + e^{-} + \bar{\nu}_{e}$$

Proceso fundamental para la estabilidad de la materia: permite al núcleo el alcanzar su razón óptima de protones y neutrones

Fisión espontánea


Principalmente ²³⁸U (también aunque despreciable ²³⁵U, ²³²Th ...)




Tipos de radiación más relevantes

- → partículas α (núcleos de Helio)
- \rightarrow partículas β (electrones)
- radiación γ (fotones)

$$^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni}^* + e^- + \overline{\text{v}}_{\text{e}} + \mathbf{y} + 1.17 \text{ MeV}$$
 $^{60}_{28}\text{Ni}^* \rightarrow ^{60}_{28}\text{Ni} + \mathbf{y} + 1.33 \text{ MeV}$

¿... y que ? ¿ por que preocupa todo esto ?

porque los productos de desintegración de estos núcleos radioactivos pueden enmascarar / confundir / suplantar / "ensuciar" los estados finales que estamos investigando

en concreto y como ejemplo: ¿ por que me (LL) preocupa todo esto?

primero una introducción que ponga el problema en contexto

Super-Kamiokande (SK) paradigma de detector agua-Cherenkov

SK

Observatorio de Kamioka (Prefectura Gifu, Japón)

SK mide la radiación Cherenkov generada por las partículas con carga y alta energía

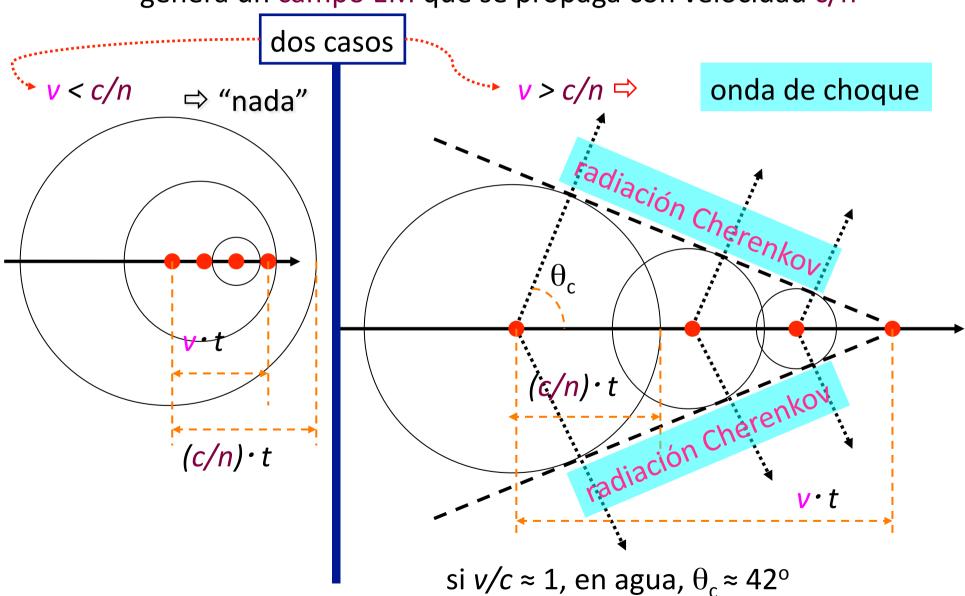
Mt. Ikenoyama 1000 m

1000 m de tierra para apantallar muones de rayos cósmicos

50.000 m³ de agua tanque: $40m \varnothing x 40m H$ # fotomultiplicadores

11148 de 50 cm ∅

SK


durante el

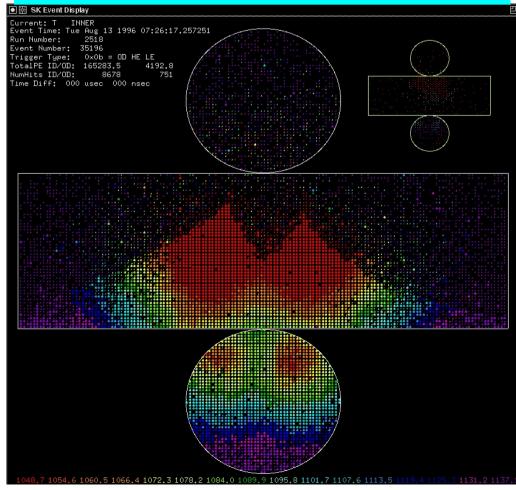
llenado

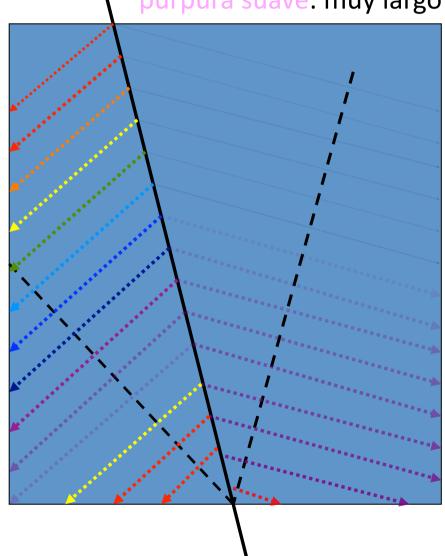
1885 de 20 cm Ø

Básico de la radiación Cherenkov

una partícula cargada moviéndose en un medio con velocidad v genera un campo EM que se propaga con velocidad c/n

p.e.: la medida del tiempo que tarda la luz Cherenkov en llegar a los PMT's


rojo: corto

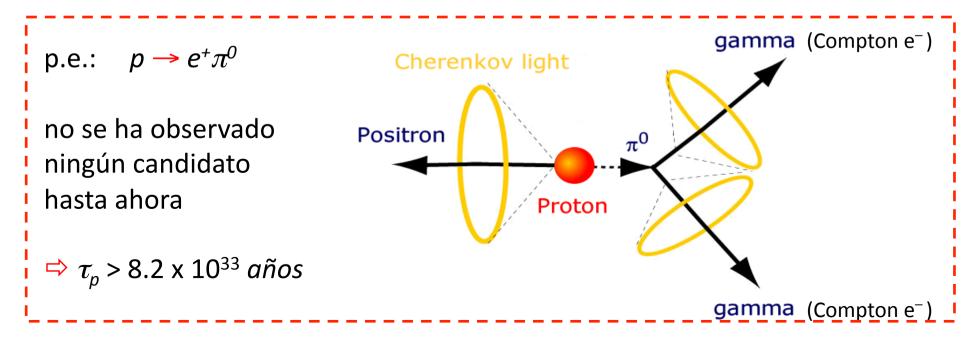

púrpura: largo

púrpura suave: muy largo

nos permite reconstruir la trayectoria de las partículas ...

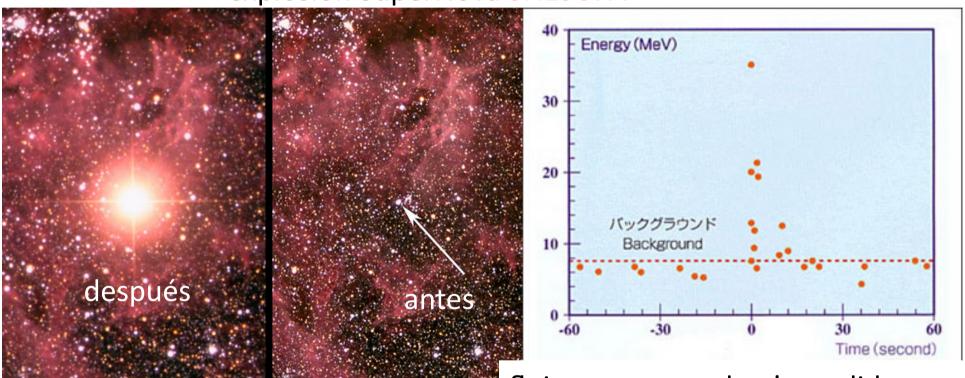
suceso con 2 muones simultáneos; medida del tiempo

Super-Kamiokande is currently the most powerful scientific apparatus for p-decay and v physics

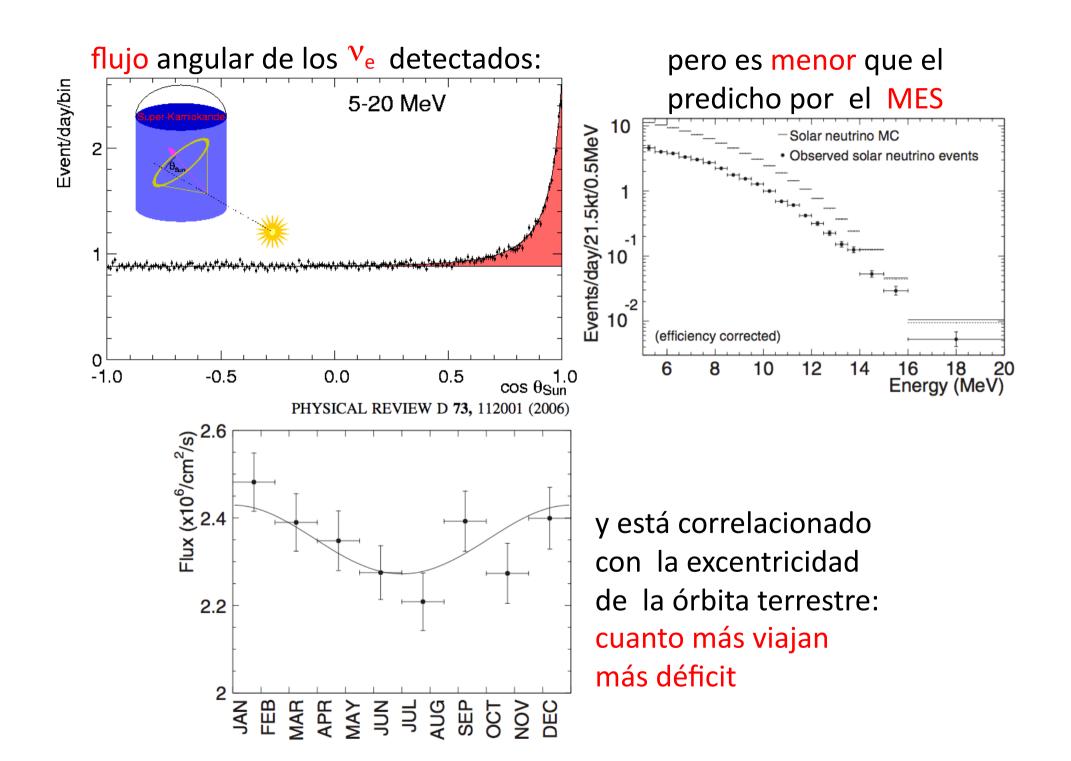

- ⇒ discovery of *Atmospheric-v* oscillations
- ⇒ help solving *Solar-v* problem
- ⇒ world's best limit on p lifetime
- \Rightarrow first long base ν experiment (K2K), currently T2K is running
- precise measurement of leptonic mixing matrix parameters
- ⇒ discovery of SN1987a v burst (Kamiokande)
- ⇒ world's best limit on relic Supernova *v*,s

Origen de éstos detectores: búsqueda de la desintegración del protón

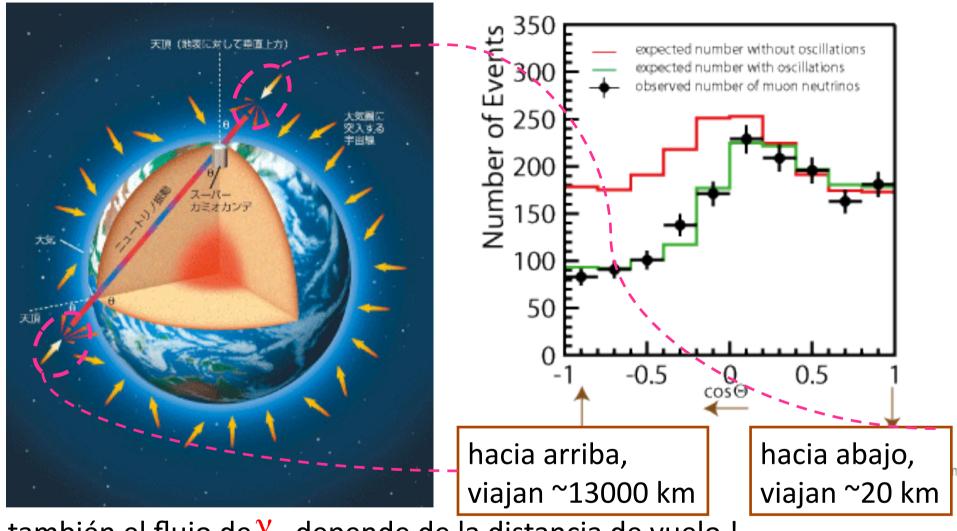
- en el Modelo Estándar, el protón es absolutamente estable
- sin embargo, dados
 - la estructura físico-matemática del MS,
 - las aproximaciones teóricas realistas para su evolución,
 - el conocimiento actual sobre la creación y desarrollo del Universo ...
- ⇒ existe el "convencimiento" (intuición) de la no estabilidad del protón


La desintegración del protón es el concepto científico (y filosófico y religioso) más importante de la Humanidad

y SK es el mejor detector para su búsqueda


pero la propia Naturaleza nos hizo descubrir que este tipo de detectores son extraordinarios *telescopios de neutrinos*

explosión SuperNova SN1987A



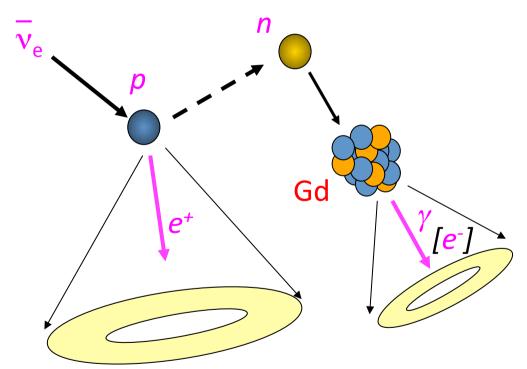
flujo y espectro de v's medido por Kamiokande (precursor de SK)

telescopios con los que, además de éste (Nobel 2002), se han hecho otros descubrimientos fundamentales

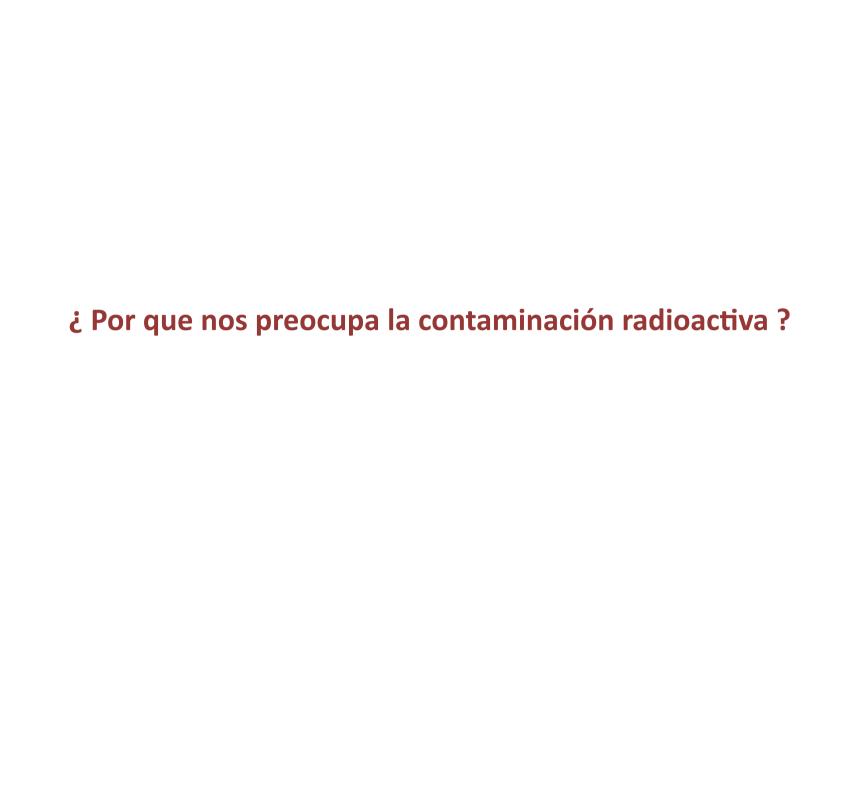
flujo de V_{μ} en función del ángulo de incidencia:

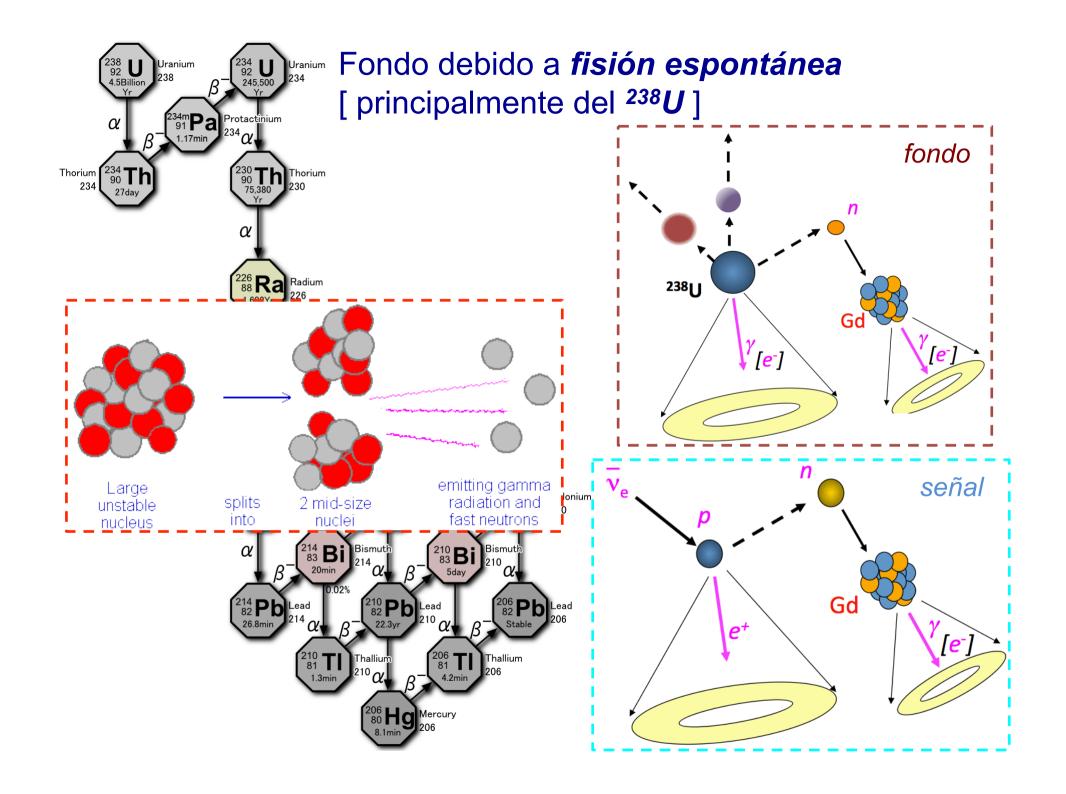
también el flujo de V_{μ} depende de la distancia de vuelo!

Solares, atmosféricos, V_e, V_µ producidos de forma totalmente distinta con flujos que cambian de forma similar con la distancia viajada ⇒ oscilaciones de sabor ⇒ ¡masa!

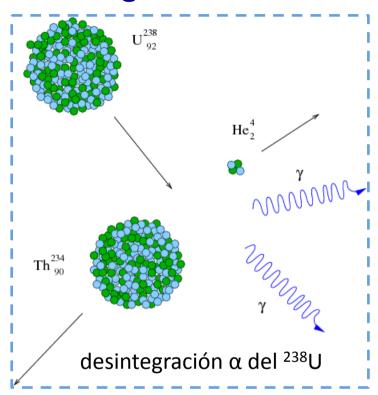

Water Cherenkov detectors and the Gadolinium (Gd)

- SK success largely due to detection technique: Water Cherenkov
- Caveat: no neutron tagging
 - \Rightarrow no inverse β decay reaction (ccqE) measurement
 - ¬ no anti-v tagging at all
 - → marginal sensitivity to "relic" Supernova-v
 - \rightarrow no sensitivity to reactor- ν
 - → no "others" ...
- Solution: dissolve 0.2% (by mass) Gd compound in SK water key:
 - \rightarrow Gd has a very large cross-section for *n* capture,
 - \rightarrow in the process it emits a few γ ,s with total energy 8 MeV


SK has setup a very strong R&D program to implement it


neutron tagging in Gd-enriched Water-Cherenkov detectors

basic reaction is inverse β process



- $\rightarrow e^+$ is detected, *n* wanders around for $\sim 12\mu s$ until thermalises
- \rightarrow ~ 20 μs [50cm] until Gd-capture \rightarrow 8MeV γs
- \rightarrow an e^- is Compton-scattered off the γ and detected
- \Rightarrow the \overline{v}_e is identified by the coincidence between the e^+ and the *delayed* e^- , with high efficiency (> 80%)

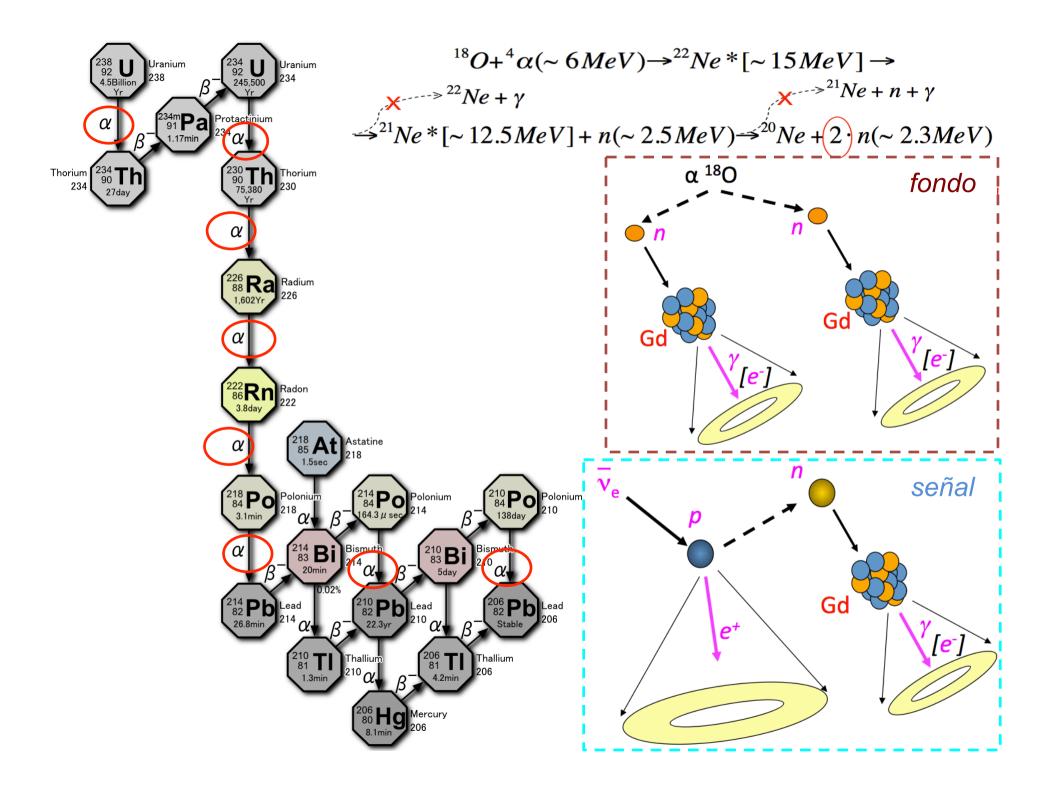
Fondo debido a desintegraciones α

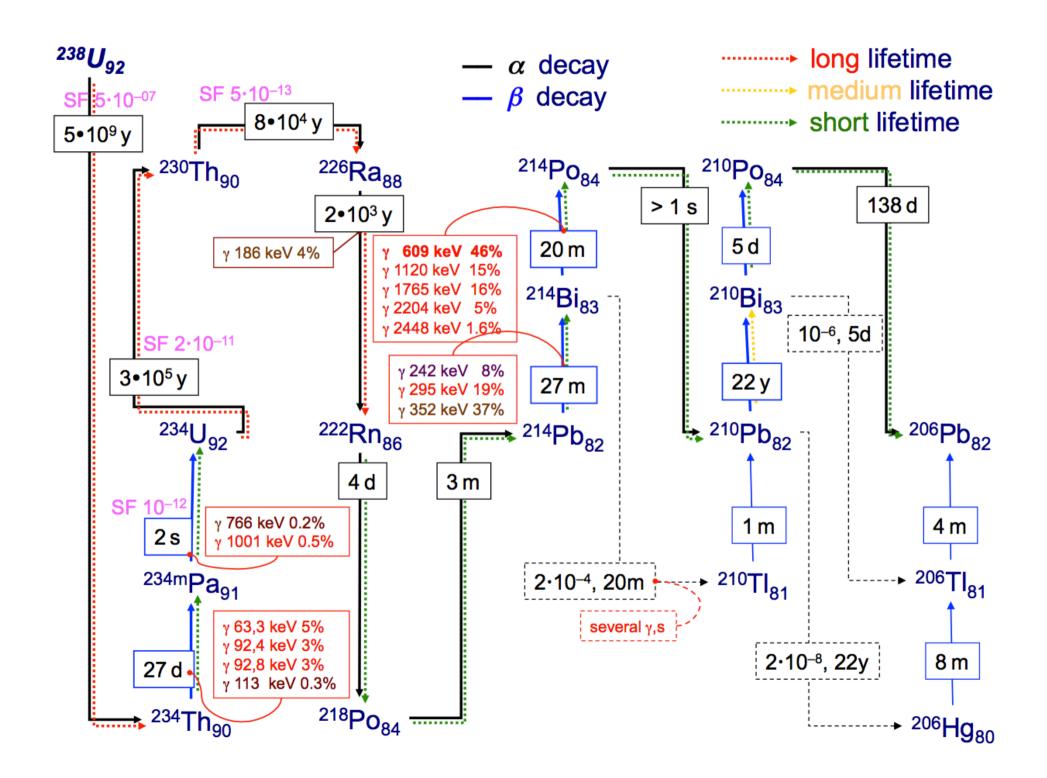
se producen muchas partículas α en las cadenas radioactivas

²¹⁴ Bi

²¹⁰₈₃**Bi**

206 **Hg** Mercury 206


Interacción de las α con el agua de SK:


$${}^{18}O + {}^{4}\alpha(\sim 6MeV) \rightarrow {}^{22}Ne * [\sim 15MeV] \rightarrow$$

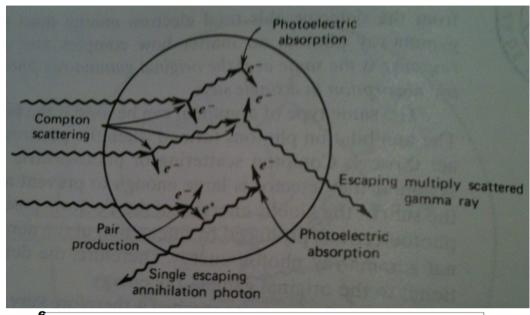
$$\times {}^{21}Ne * [\sim 12.5MeV] + n(\sim 2.5MeV) \rightarrow {}^{20}Ne + 2 \cdot n(\sim 2.3MeV)$$

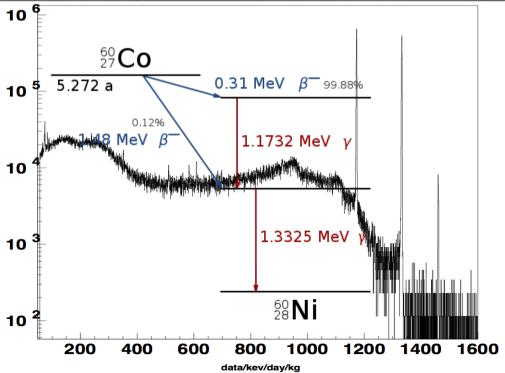
Principalmente pares de neutrones

P. Fernández

¿Cómo medimos la contaminación radioactiva de los materiales que forman nuestro equipo?

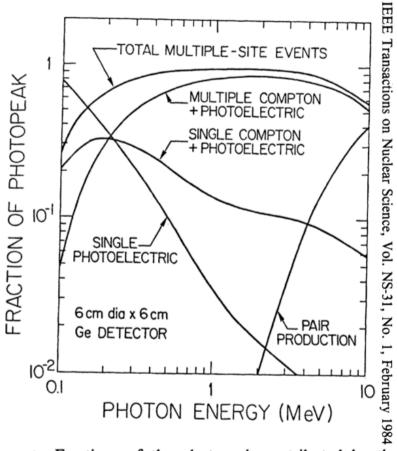
Analizando y cuantificando el flujo de rayos gamma que emiten

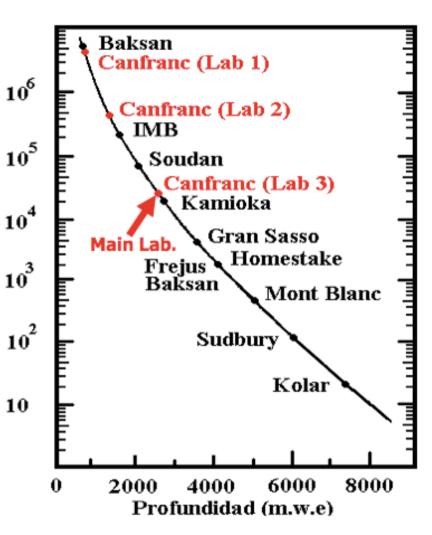

¿Cómo?


La forma más precisa actualmente es mediante detectores de Ge de alta pureza (HPGe)

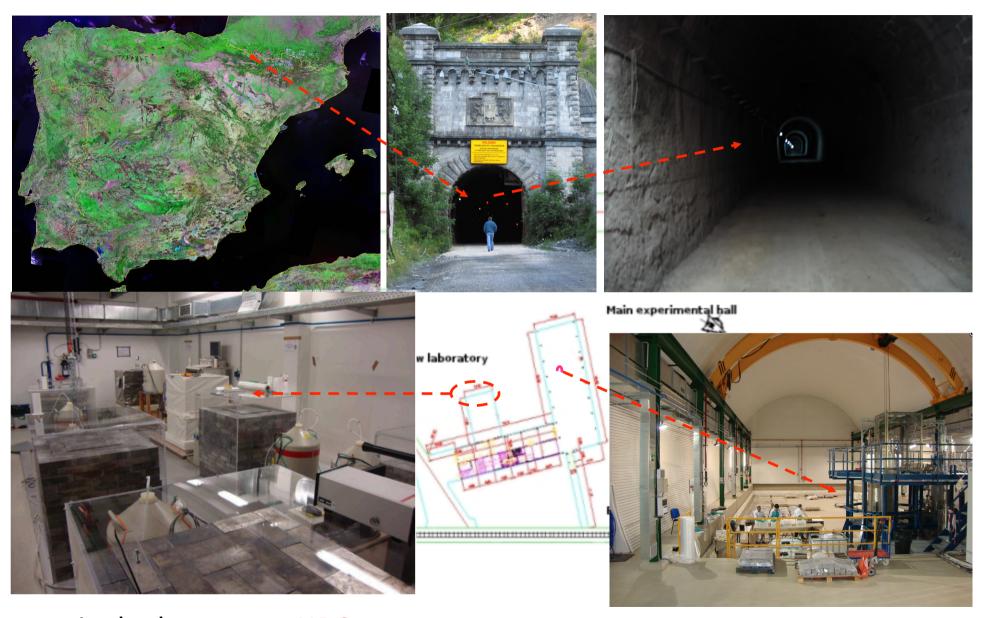
- muy baja energía para crear un par electrón-hueco (≈3 eV)
 - → señal de ionización grande → resolución en energía
- extremadamente baja concentración de impurezas ($\approx 1/10^{12}$)
 - → región activa grande → mayor probabilidad de deposición de
 - toda la energía 🗲 efficiencia
- disponibles en el mercado
- los HPGe que utilizamos están fabricados por CANBERRA. La resolución en energía es de ≈2 keV FWHM para la línea 1332 keV del ⁶⁰Co

Procesos en la detección de fotones por HPGe




Figure 1. Fractions of the photopeak contributed by the different energy loss mechanisms for photons normally incident upon the face of a 6 cm-diameter, 6 cm length coaxial detector.

Al ser los HPGe extraordinariamente sensibles su utilización sólo puede ser en un ambiente de mínima radiación "ambiental"


- Subterráneo: minimizar la radiación cósmica directa sobre el detector e indirecta de sus interacciones con los materiales cercanos

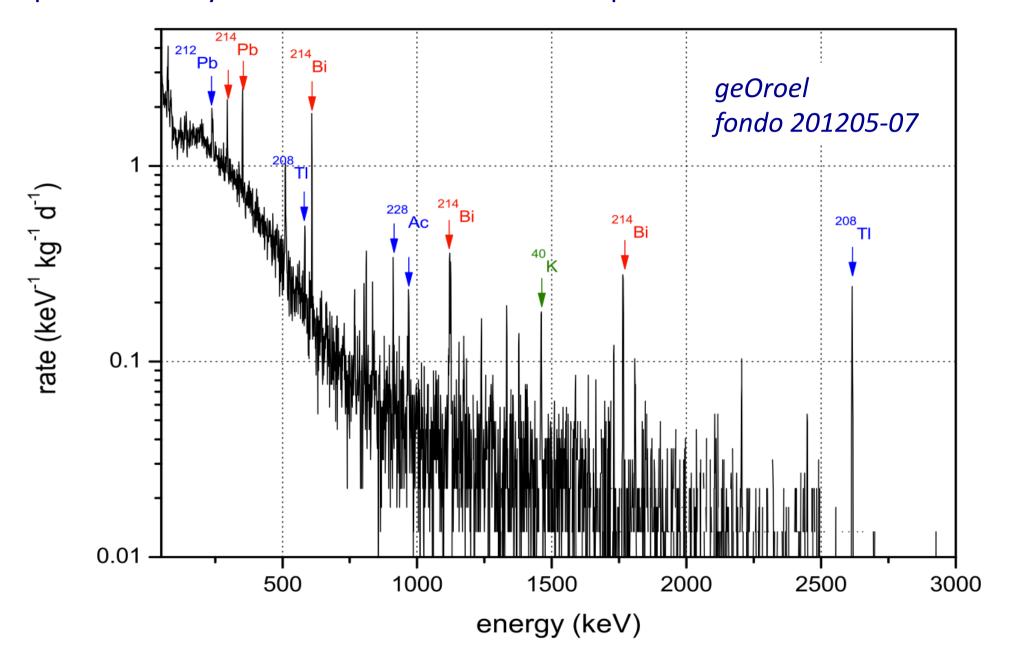
ensidad de muones (m^{-2} año $^{-1}$) - Con blindaje apropiado: plomo para parar la radiación exterior y cobre de gran pureza para parar la radiación de la contaminación 🗏 10 radioactiva del plomo

- Todo dentro de una caja estanca de metacrilato para minimizar la intrusión de Radón (Rn₈₆, gas)

[LSC, Laboratorio Subterráneo de Canfranc]

granja de detectores *HPGe*

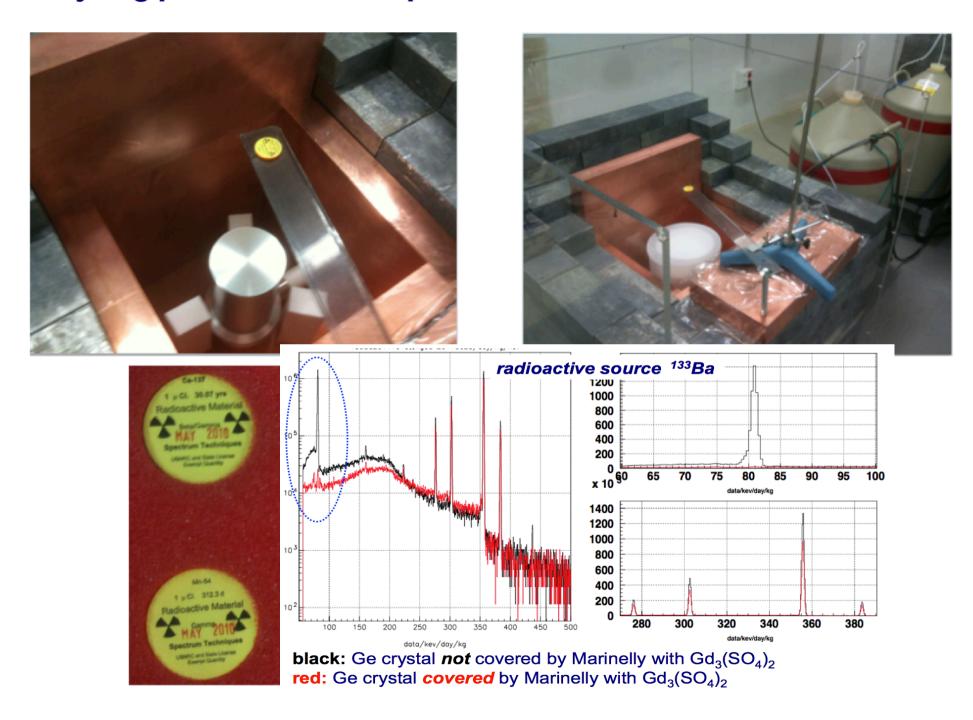
Hall principal: ArDM, Next ...

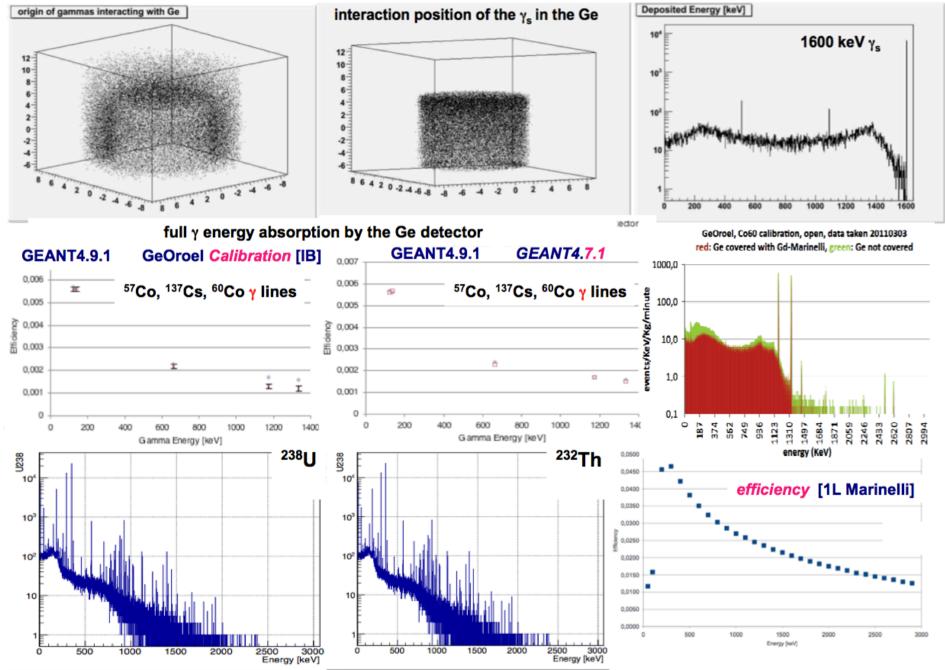

→ cleaning of the Cu for the shield of geLatuca:

→ assembly of geOroel in its new shield:

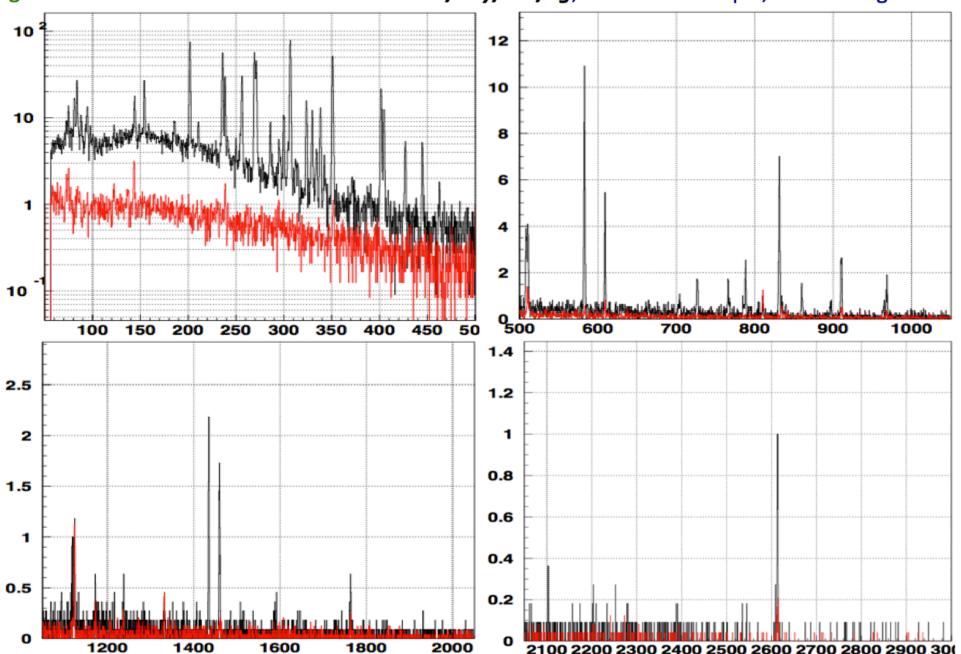
Aún así siempre queda un remanente de fondo que hay que cuantificar previamente y restar a la señal del material que se está midiendo:

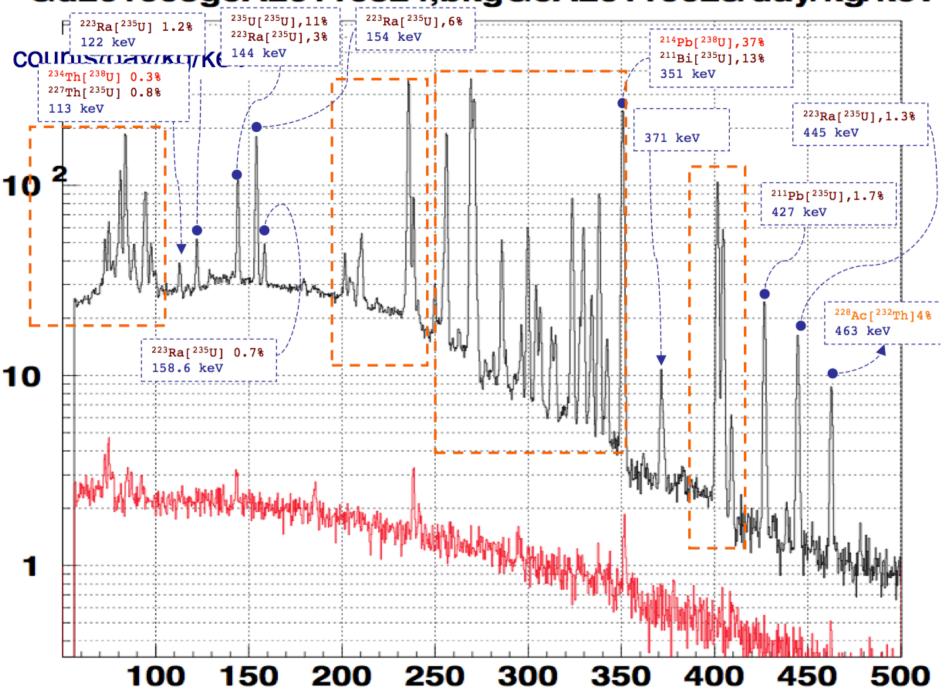
measuring with geAnayet

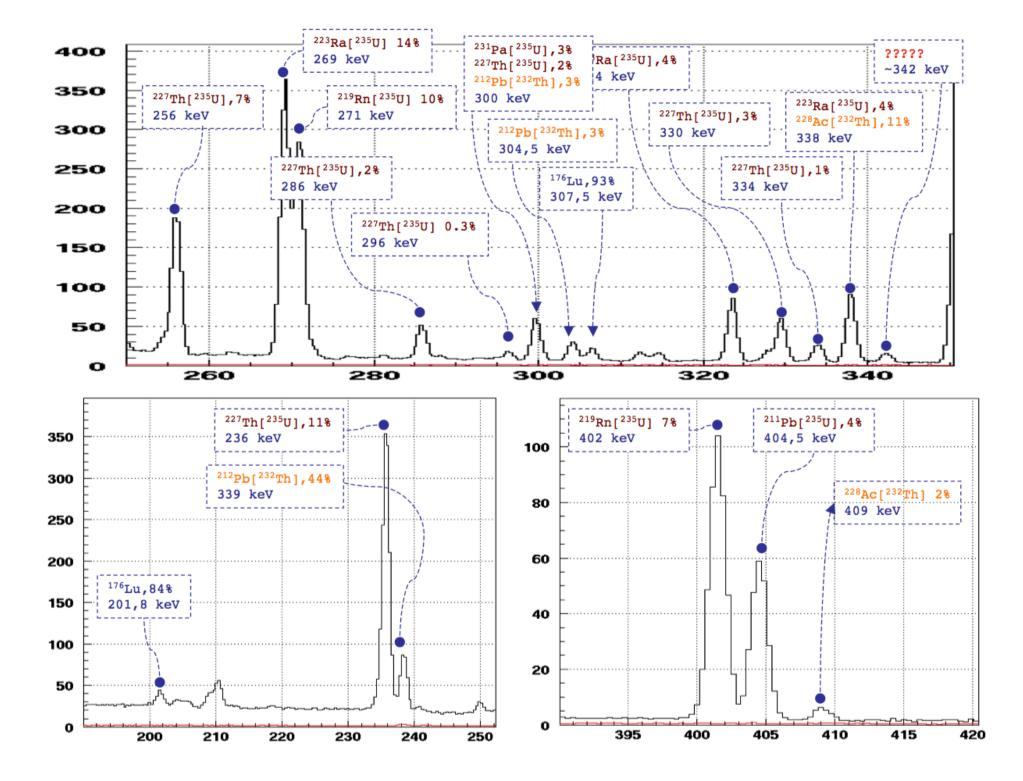

- sample of $Gd_2(SO_4)_3$ arrived to Canfranc on May 27^{th}
- measurement time background:
 65 days, April 24th to June 28th
- measurement time $Gd_2(SO_4)_3$: 47 days, July 13th to August 24th



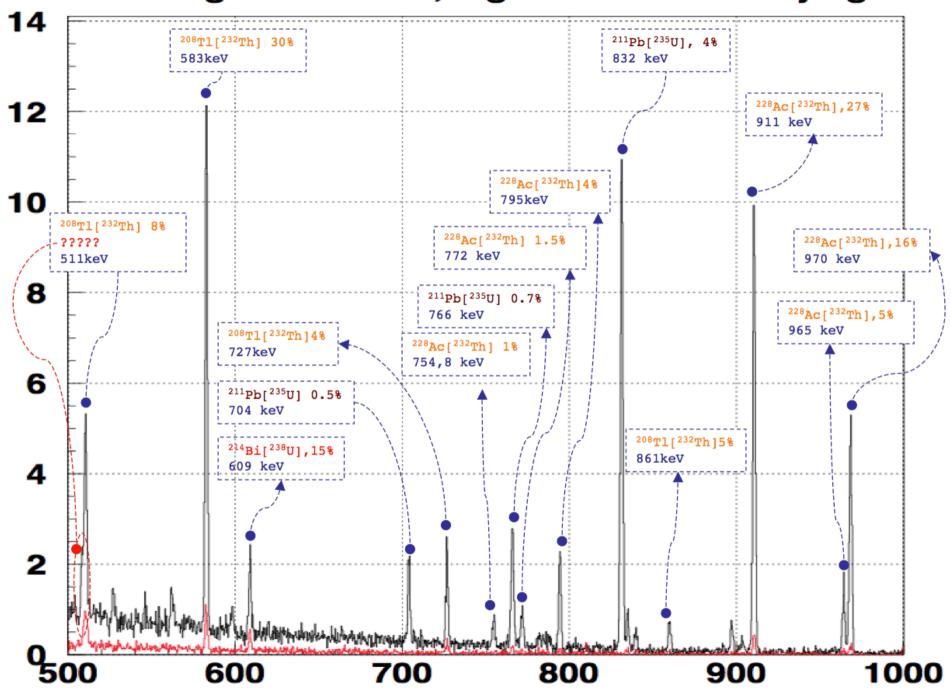
analyzing performance: response to ¹³³Ba


we are fine-tuning our GEANT4 simulation [Lluis Marti, Iulian Bandac]


Gd 200904


geOroel

sample measured at 20110411-25; background measured 20110308-0406 distributions are *counts/day/kev/kg*; black is Gd sample, red is background



Gd201008geA20110824,bkgGeA20110628/day/kg/kev

Gd201008geA20110824,bkgGeA20110628/day/kg/kev

Grand Summary of radioactive contaminations in the $Gd_2(SO_4)_3$ batches sent to Canfranc

Notes: LL 20121227

- 1. Units are mBq/Kg
- 2. The uncertainty of the errors are at the 15% level
- 3. Gd 201008 was measured in a detector not properly setup (significant loss of efficiency as the energy increases, now OK) → the values marked by (*) have a larger uncertainty than that quoted
- 4. When no signal is seen upper limits are given following [L. Baudis et al. JINST 6 (2011) P08010]
- 5. The probability for the table below being bug-free is not 100%, but I believe it is large.

Chain	Longest lived parent in sub-chain	Gd 200904 (to Canfranc)	Gd 201008 (1 st @ EGADS)	Gd 201208 (Chinese sample)
²³⁸ U	²³⁸ U	51 ± 21	< 33 @ 95% c.l.	221± 165
	²²⁶ Ra	8 ± 1	2,8 ± 0,6	92± 4
²³² Th	²²⁸ Ra	11 ± 2	270 ± 16 (*)	1097± 18
	²²⁸ Th	29 ± 3	86 ± 5	519 ± 12
²³⁵ U	²³⁵ U	< 32 @ 95% c.l.	< 32 @ 95% c.l.	< 112 @ 95% c.l.
	²²⁷ Ac / ²²⁷ Th	214 ± 10	1700 ± 20	3080 ± 44
Others	⁴⁰ K	29 ± 5	12 ± 3 (*)	112 ± 14
	¹³⁸ La	8 ± 1	<	683 ± 15
	¹⁷⁶ Lu	80 ± 8	21 ± 2	566 ± 6

Material adicional

Isótopos primordiales radioactivos

255 136	no ¢	nuclide +		half-life (seconds) +	decay mode \$	decay energy (MeV) \$	approx ratio half-life to age of universe \$
256 76Ge 9.034656 5.62 × 10 ²⁸ 2 β ⁻ 2.039 130 billion 257 82Se 9.017596 3.408 × 10 ²⁷ 2 β ⁻ 2.995 8 billion 258 116C3 8.383146 9.783 × 10 ²⁶ 2 β ⁻ 2.809 2 billion 259 48Ca 8.992452 7.258 × 10 ²⁶ 2 β ⁻ 4.274, .0058 2 billion 260 9°Zr 8.961359 6.3 × 10 ²⁶ 2 β ⁻ 3.4 1 billion 261 2.098 8.9618689 5.996 × 10 ²⁶ a 3.137 1 billion 262 1.30Te 8.766578 2.777 × 10 ²⁶ 2 β ⁻ .868 600 million 263 1.50Nd 8.562594 2.493 × 10 ²⁶ 2 β ⁻ 3.367 600 million 264 1.00Mo 8.933167 2.481 × 10 ²⁶ 2 β ⁻ 3.035 600 million 265 1.51Eu 8.565759 1.578 × 10 ²⁸ a 1.9644 300 million 266 1.60Wg 8.347127 <t< td=""><td>254</td><td></td><td></td><td>6.9×10³¹</td><td>2 β-</td><td>2.530</td><td>160 trillion</td></t<>	254			6.9×10 ³¹	2 β-	2.530	160 trillion
257 82Se 9.017596 3.408 × 10 ²⁷ 2 β ⁻ 2.995 8 billion 258 116Cd 8.836146 9.783 × 10 ²⁶ 2 β ⁻ 2.809 2 billion 259 48Ca 8.992452 7.258 × 10 ²⁶ 2 β ⁻ 4.274, 0058 2 billion 260 96Zr 8.961359 6.3 × 10 ²⁶ 2 β ⁻ 3.4 1 billion 261 208ji 8.158689 5.996 × 10 ²⁶ a 3.137 1 billion 262 1307e 8.766578 2.777 × 10 ²⁶ 2 β ⁻ 3.367 600 million 263 150Nd 8.562594 2.493 × 10 ²⁶ 2 β ⁻ 3.367 600 million 263 150M 8.565759 1.578 × 10 ²⁶ a 1.9444 300 million 265 151Eu 8.565759 1.578 × 10 ²⁶ a 2.509 100 million 267 50V 9.055759 4.418 × 10 ²⁴ β ⁺ β ⁻ 2.205, 1.038 10 million 268 185W 8.607423 2.2	255	¹³⁶ Xe	8.706805	6.66×10 ²⁸	2 β-	2.462	150 billion
116 20	256	⁷⁶ Ge	9.034656	5.62×10 ²⁸	2 β-	2.039	130 billion
289 48Ca 8.992452 7.258 × 10 ²⁶ 2 β ⁻ 4.274, .0058 2 billion 260 9°Zr 8.961359 6.3 × 10 ²⁶ 2 β ⁻ 3.4 1 billion 261 20°Bi 8.158689 5.996 × 10 ²⁶ α 3.137 1 billion 262 1³07b 8.766578 2.777 × 10 ²⁶ 2 β ⁻ .868 600 million 263 1⁵0Nd 8.562594 2.493 × 10 ²⁶ 2 β ⁻ 3.367 600 million 264 1°0Nd 8.933167 2.461 × 10 ²⁶ 2 β ⁻ 3.035 600 million 265 1⁵1Eu 8.56579 1.578 × 10 ²⁶ α 1.9644 300 million 266 18°W 8.347127 5.680 × 10 ²⁵ α 2.509 100 million 267 50V 9.055759 4.418 × 10 ²⁶ β ⁺ β ⁻ 2.205, 1.038 10 million 268 1³2Cd 8.859372 2.430 × 10 ²³ β ⁻ .321 600,000 270 144Nd 8.652947 7.227	257	⁸² Se	9.017596	3.408 × 10 ²⁷	2 β-	2.995	8 billion
260 96Zr Joe Bane 1859 6.3 × 10 ²⁶ 2 β	258	¹¹⁶ Cd	8.836146	9.783×10 ²⁶	2 β-	2.809	2 billion
261 209Bi 8.158689 5.996×10 ²⁵ α 3.137 1 billion 262 130Te 8.766578 2.777×10 ²⁶ 2 β - 8.688 600 million 263 150Nd 8.562594 2.493×10 ²⁶ 2 β - 3.367 600 million 264 100Mo 8.933167 2.461×10 ²⁶ 2 β - 3.035 600 million 265 151Eu 8.565759 1.578×10 ²⁵ α 1.9644 300 million 266 180W 8.347127 5.680×10 ²⁵ α 2.509 100 million 267 50V 9.055759 4.418×10 ²⁴ β β - 2.205, 1.038 10 million 268 113Cd 8.589372 2.430×10 ²³ β - 3.21 600,000 269 148Sm 8.607423 2.209×10 ²³ α 1.986 500,000 270 144Nd 8.652947 7.227×10 ²² α 1.905 200,000 271 186Os 8.302508 6.312×10 ²² α 2.823 100,000 272 174Hf 8.992287 6.312×10 ²² α 2.823 100,000 272 174Hf 8.849510 1.392×10 ²² Κ 2.413 40,000 273 123Te 8.465544 1.894×10 ²² K 2.413 40,000 274 115In 8.849910 1.392×10 ²² β - 499 30,000 275 130Ba 8.542574 2.2×10 ²¹ KK 2.620 5000 276 130Ba 8.542574 2.2×10 ²¹ KK 2.620 5000 277 130Ba 8.542574 2.2×10 ²¹ KK 2.620 5000 278 147Sm 8.610593 3.345×10 ¹⁹ α 3.252 60 279 138La 8.698320 3.219×10 ¹⁸ β283 4 4 281 187Fa 8.691593 3.345×10 ¹⁹ α 2.203 8000 279 138La 8.698320 3.219×10 ¹⁸ β283 4 4 281 187Fa 8.291732 1.300×10 ¹⁸ β283 4 4 282 176Lu 8.74551 1.187×10 ¹⁸ β283 4 4 283 239U 7.872551 1.140×10 ¹⁷ α SF 4.083 1 1 286 239U 7.872551 1.410×10 ¹⁷ α SF 4.083 1 1 287 148Sm 8.62636 3.250×10 ¹⁵ α SF 4.679 .05	259	⁴⁸ Ca	8.992452	7.258 × 10 ²⁶	2 β-	4.274, .0058	2 billion
262 130 Te 8.766578 2.777 × 10 ²⁶ 2 β ⁻ .868 600 million 263 150 Nd 8.562594 2.493 × 10 ²⁶ 2 β ⁻ 3.367 600 million 264 100 Mo 8.933167 2.461 × 10 ²⁶ 2 β ⁻ 3.035 600 million 265 151 Eu 8.565759 1.578 × 10 ²⁶ α 1.9644 300 million 266 180 W 8.947127 5.680 × 10 ²⁵ α 2.509 100 million 267 50 V 9.055759 4.418 × 10 ²⁴ β ⁺ β ⁻ 2.205, 1.038 10 million 268 1130 d 8.56972 2.430 × 10 ²³ α 1.986 500,000 270 144 Nd 8.652947 7.227 × 10 ²² α 1.995 200,000 271 1860s 8.302508 6.312 × 10 ²² α 2.4823 100,000 272 174 Hg 8.932297 6.312 × 10 ²² α 2.497 100,000 273 12 ³ Te 8.465544 1.894 × 10 ²² K 2.413 40,000 274 115 In <td< td=""><td>260</td><td>⁹⁶Zr</td><td>8.961359</td><td>6.3×10²⁶</td><td>2 β-</td><td>3.4</td><td>1 billion</td></td<>	260	⁹⁶ Zr	8.961359	6.3×10 ²⁶	2 β-	3.4	1 billion
263 150 Nd 8.562594 2.493 × 10 ²⁶ 2 β 3.367 600 million 264 100 Mo 8.933167 2.461 × 10 ²⁶ 2 β 3.035 600 million 265 151 Eu 8.565759 1.578 × 10 ²⁶ a 1.9644 300 million 266 180 W 8.347127 5.680 × 10 ²⁵ a 2.509 100 million 267 50 V 9.055759 4.418 × 10 ²⁴ β β β 2.205, 1.038 10 million 268 113 Cu 8.859372 2.430 × 10 ²³ β 3.221 600,000 269 148 Sm 8.607423 2.209 × 10 ²³ a 1.986 500,000 270 144 Nd 8.652947 7.227 × 10 ²² a 1.905 200,000 271 186 Co 8.302508 6.312 × 10 ²² a 2.823 100,000 272 174 Hf 8.392287 6.312 × 10 ²² a 2.497 100,000 273 123 Te 8.465544 1.894 × 10 ²² K 2.413 40,000 274 115 In 8.849910 1.392 × 10 ²² β 499 30,000 275 152 Ga 8.56288 3.408 × 10 ²¹ a 2.203 8000 276 130 Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 190 Pt 8.267764 2.051 × 10 ¹⁹ a 3.252 60 278 147 Sm 8.61593 3.345 × 10 ¹⁸ a 2.310 8 279 138 La 8.698320 3.219 × 10 ¹⁸ β α 2.310 8 280 87 Rb 9.043718 1.568 × 10 ¹⁸ β α 2.310 8 281 187 Ra 8.291732 1.300 × 10 ¹⁸ β α 2.310 8 282 176 Lu 8.374665 1.187 × 10 ¹⁸ β α 2.310 8 283 2 ³² Th 7.918533 4.434 × 10 ¹⁷ α SF 4.083 1 284 238 U 7.872551 1.410 × 10 ¹⁷ α SF 4.083 1 287 146 Sm 8.626136 3.250 × 10 ¹⁸ α F K β 1.311, 1.505, 1.505 0.09 287 146 Sm 8.626136 3.250 × 10 ¹⁵ α SF 4.083 1 287 146 Sm 8.626136 3.550 × 10 ¹⁵ α SF 4.083 1 288 128 176 Lu 8.997198 2.222 × 10 ¹⁶ α SF 4.679 .05	261	²⁰⁹ Bi	8.158689	5.996 × 10 ²⁶	α	3.137	1 billion
264 100Mo 8.933167	262	¹³⁰ Te	8.766578	2.777×10 ²⁶	2 β-	.868	600 million
265 151Eu 8.565759 1.578 × 10 ²⁶ α 1.9644 300 million 266 180W 8.347127 5.680 × 10 ²⁵ α 2.509 100 million 267 50V 9.055759 4.418 × 10 ²⁴ β*β* 2.205, 1.038 10 million 268 113Cd 8.659372 2.430 × 10 ²³ β* 321 600,000 269 148Sm 8.607423 2.209 × 10 ²³ α 1.986 500,000 270 144Nd 8.652947 7.227 × 10 ²² α 1.905 200,000 271 186Os 8.302508 6.312 × 10 ²² α 2.823 100,000 272 174Hg 8.392287 6.312 × 10 ²² α 2.497 100,000 273 123Tg 8.465544 1.894 × 10 ²² K 2.413 40,000 274 115In 8.849910 1.392 × 10 ²² β* .499 30,000 275 152Gd 8.562868 3.408 × 10 ²¹ α 2.203 8000 276 130Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 190Pt 8.267764 2.051 × 10 ¹⁹ α 3.252 60 278 147Sm 8.610593 3.345 × 10 ¹⁸ α 2.310 8 279 138La 8.69320 3.219 × 10 ¹⁸ β* 283 4 281 187Re 8.291732 1.300 × 10 ¹⁸ β* 283 4 281 187Re 8.291732 1.300 × 10 ¹⁸ β* 283 4 282 176Lu 8.374665 1.187 × 10 ¹⁸ β*	263	¹⁵⁰ Nd	8.562594	2.493×10 ²⁶	2 β-	3.367	600 million
266 180 W 8.347127 5.680 × 10 ²⁵ a 2.509 100 million 267 50 V 9.055759 4.418 × 10 ²⁴ β* β* 2.205, 1.038 10 million 268 113 Cd 8.859372 2.430 × 10 ²³ β* .321 600,000 269 148 Sm 8.607423 2.209 × 10 ²³ a 1.986 500,000 270 144 Nd 8.652947 7.227 × 10 ²² a 1.905 2200,000 271 186 Os 8.302508 6.312 × 10 ²² a 2.823 100,000 272 174 Hr 8.392287 6.312 × 10 ²² a 2.497 100,000 273 123 Te 8.485544 1.894 × 10 ²² K 2.413 40,000 274 115 In 8.489910 1.392 × 10 ²² β* .499 30,000 275 15 ² Gd 8.562868 3.408 × 10 ²¹ K 2.620 5000 276 130 Ba 8.742574 2.2 × 10 ²¹ KK <td< td=""><td>264</td><td>¹⁰⁰Mo</td><td>8.933167</td><td>2.461 × 10²⁶</td><td>2 β-</td><td>3.035</td><td>600 million</td></td<>	264	¹⁰⁰ Mo	8.933167	2.461 × 10 ²⁶	2 β-	3.035	600 million
267 50V 9.055759 4.418 × 10 ²⁴ β+ β- 2.205, 1.038 10 million 268 113Cd 8.859372 2.430 × 10 ²³ β- .321 600,000 269 148Sm 8.607423 2.209 × 10 ²³ α 1.986 500,000 270 144Nd 8.652947 7.227 × 10 ²² α 1.905 200,000 271 186Os 8.302508 6.312 × 10 ²² α 2.823 100,000 272 174H 8.392287 6.312 × 10 ²² α 2.497 100,000 273 123Te 8.465544 1.894 × 10 ²² K 2.413 40,000 274 115In 8.849910 1.392 × 10 ²² β- .499 30,000 275 152Gd 8.562868 3.408 × 10 ²¹ α 2.203 8000 276 199Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 190Ba 8.696320 3.219 × 10 ¹⁸ α 2.310	265	¹⁵¹ Eu	8.565759	1.578 × 10 ²⁶	α	1.9644	300 million
268 113Cd 8.859372 2.430 × 10 ²³ β ⁻ .321 600,000 269 148Sm 8.607423 2.209 × 10 ²³ a 1.986 500,000 270 144Nd 8.652947 7.227 × 10 ²² a 1.905 200,000 271 186Os 8.302508 6.312 × 10 ²² a 2.823 100,000 272 174Hf 8.392287 6.312 × 10 ²² a 2.497 100,000 273 123Te 8.465544 1.894 × 10 ²² K 2.413 40,000 274 115ln 8.849910 1.392 × 10 ²² β ⁻ .499 30,000 275 152Gd 8.562868 3.408 × 10 ²¹ a 2.203 8000 276 130Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 190Pt 8.267764 2.051 × 10 ¹⁹ a 3.252 60 278 147Sm 8.610593 3.345 × 10 ¹⁸ a 2.310 8 279 138La 8.698320 3.219 × 10 ¹⁸ K β ⁻	266	180W	8.347127	5.680 × 10 ²⁵	α	2.509	100 million
269 148Sm 8.607423 2.209 × 10 ²³ α 1.986 500,000 270 144Nd 8.652947 7.227 × 10 ²² α 1.905 200,000 271 186Os 8.302508 6.312 × 10 ²² α 2.823 100,000 272 174Hf 8.392287 6.312 × 10 ²² α 2.497 100,000 273 123Te 8.465544 1.894 × 10 ²² K 2.413 40,000 274 115In 8.849910 1.392 × 10 ²² β ⁻ .499 30,000 275 152Qd 8.562868 3.408 × 10 ²¹ α 2.203 8000 276 130Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 190pt 8.267764 2.051 × 10 ¹⁹ α 3.252 60 278 147Sm 8.610593 3.345 × 10 ¹⁸ α 2.310 8 279 138La 8.698320 3.219 × 10 ¹⁸ K β ⁻ 1.737, 1.044 7 280 87Rb 9.043718 1.568 × 10 ¹⁸ β ⁻ .283 4 281 187Re 8.291732 1.300 × 10 ¹⁸ β ⁻ 1.193 3 282 176	267	50 _V	9.055759	4.418×10 ²⁴	β+ β-	2.205, 1.038	10 million
270	268	¹¹³ Cd	8.859372	2.430 × 10 ²³	β-	.321	600,000
271 ^{186}Os 8.302508 6.312 ×10 ²² α 2.823 100,000 272 ^{174}Hf 8.392287 6.312 ×10 ²² α 2.497 100,000 273 ^{123}Te 8.465544 1.894 ×10 ²² K 2.413 40,000 274 ^{115}ln 8.849910 1.392 ×10 ²² β ⁻ .499 30,000 275 ^{152}Gd 8.562868 3.408 ×10 ²¹ α 2.203 8000 276 ^{130}Ba 8.742574 2.2 ×10 ²¹ KK 2.620 5000 277 ^{190}Pt 8.267764 2.051 ×10 ¹⁹ α 3.252 60 2.78 ^{147}Sm 8.610593 3.345 ×10 ¹⁸ α 2.310 8 2.79 ^{138}La 8.698320 3.219 ×10 ¹⁸ Kβ ⁻ 1.737, 1.044 7 2.80 ^{87}Rb 9.043718 1.568 ×10 ¹⁸ β ⁻ α 2.83 4 4 2.81 ^{187}Re 8.291732 1.300 ×10 ¹⁸ β ⁻ α .0026, 1.653 3 2.82 ^{176}Lu 8.374665 1.187 ×10 ¹⁸ β ⁻ 1.193 3 2.83 ^{232}Th 7.918533 4.434 ×10 ¹⁷ α SF 4.083 1 2.84 ^{238}U 7.872551 1.410 ×10 ¹⁷ α SF 4.270 3.285 ^{235}U 7.897198 2.222 ×10 ¹⁶ α SF 4.679 0.05 2.87 ^{146}Sm 8.626136 3.250 ×10 ¹⁵ α SF 4.679 0.05 2.87 ^{146}Sm 8.626136 3.250 ×10 ¹⁵ α SF 4.679 0.05	269	¹⁴⁸ Sm	8.607423	2.209 × 10 ²³	α	1.986	500,000
272 174H 8.392287 6.312 × 10 ²² α 2.497 100,000 273 1 ²³ Te 8.465544 1.894 × 10 ²² K 2.413 40,000 274 1 ¹¹⁵ In 8.849910 1.392 × 10 ²² β ⁻ .499 30,000 275 1 ⁵² Gd 8.562868 3.408 × 10 ²¹ α 2.203 8000 276 1 ³⁰ Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 1 ⁹⁰ Pt 8.267764 2.051 × 10 ¹⁹ α 3.252 60 278 1 ⁴⁷ Sm 8.610593 3.345 × 10 ¹⁸ α 2.310 8 279 1 ³⁸ La 8.698320 3.219 × 10 ¹⁸ K β ⁻ 1.737, 1.044 7 280 8 ⁷ Rb 9.043718 1.568 × 10 ¹⁸ β ⁻ .283 4 281 1 ⁸⁷ Re 8.291732 1.300 × 10 ¹⁸ β ⁻ α .0026, 1.653 3 282 1 ⁷⁶ Lu 8.374665 1.187 × 10 ¹⁸ β ⁻ 1.193 3 283 2 ³² Th 7.918533 4.434 × 10 ¹⁷ α SF 4.083 1 284 2 ³⁸ U 7.872551 1.410 × 10 ¹⁷ α SF 4.270 .3 285 4 ⁰ K 8.909707 3.938 × 10 ¹⁶ α SF 4.679 .05 287 1 ¹⁴⁶ Sm 8.626136 3.250 × 10 ¹⁵ α SF 4.679 .008	270	¹⁴⁴ Nd	8.652947	7.227 × 10 ²²	α	1.905	200,000
273 1^{23} Te 8.465544 1.894×10^{22} K 2.413 $40,000$ 274 1^{115} In 8.849910 1.392×10^{22} β ⁻ .499 $30,000$ 275 1^{52} Gd 8.562868 3.408×10^{21} α 2.203 8000 276 1^{30} Ba 8.742574 2.2×10^{21} KK 2.620 5000 277 1^{90} Pt 8.267764 2.051×10^{19} α 3.252 60 278 1^{47} Sm 8.610593 3.345×10^{18} α 2.310 8 279 1^{38} La 8.698320 3.219×10^{18} K β ⁻ $1.737, 1.044$ 7 280 8^{7} Rb 9.043718 1.568×10^{18} β ⁻ 2.83 4 281 1^{87} Re 8.291732 1.300×10^{18} β ⁻ α .0026, 1.653 3 282 1^{76} Lu 8.374665 1.187×10^{18} β ⁻ 1.193 3 283 2^{32} Th 7.918533 4.434×10^{17} α SF 4.083 1 284 2^{38} U 7.872551 1.410×10^{17} α SF 4.270 3 285 4^{0} K 8.909707 3.938×10^{16} β ⁻ K β ⁺ $1.311, 1.505, 1.505$ 0.09 286 2^{35} U 7.897198 2.222×10^{16} α SF 4.679 0.05	271	¹⁸⁶ Os	8.302508	6.312×10 ²²	α	2.823	100,000
274 115 In 8.849910 1.392 × 10 ²² β ⁻ .499 30,000 275 152 Gd 8.562868 3.408 × 10 ²¹ α 2.203 8000 276 130 Ba 8.742574 2.2 × 10 ²¹ KK 2.620 5000 277 190 Pt 8.267764 2.051 × 10 ¹⁹ α 3.252 60 278 147 Sm 8.610593 3.345 × 10 ¹⁸ α 2.310 8 279 138 La 8.698320 3.219 × 10 ¹⁸ K β ⁻ 1.737, 1.044 7 280 87 Rb 9.043718 1.568 × 10 ¹⁸ β ⁻ 283 4 281 187 Re 8.291732 1.300 × 10 ¹⁸ β ⁻ α .0026, 1.653 3 282 176 Lu 8.374665 1.187 × 10 ¹⁸ β ⁻ 1.193 3 283 23 ² Th 7.918533 4.434 × 10 ¹⁷ α SF 4.083 1 284 23 ⁸ U 7.872551 1.410 × 10 ¹⁷ α SF 4.270 .3 285 40 K 8.909707 3.938 × 10 ¹⁶ β ⁻ K β ⁺ 1.311, 1.505, 1.505 .09 286 23 ⁵ U 7.897198 2.222 × 10 ¹⁶ α SF 4.679 .05 287 146 Sm 8.626136 3.250 × 10 ¹⁵ α 2.529 .008	272	¹⁷⁴ Hf	8.392287	6.312×10 ²²	α	2.497	100,000
275	273			1.894 × 10 ²²	K	2.413	40,000
276 130Ba 8.742574 2.2 ×10 ²¹ KK 2.620 5000 277 190Pt 8.267764 2.051 ×10 ¹⁹ α 3.252 60 278 147Sm 8.610593 3.345 ×10 ¹⁸ α 2.310 8 279 138La 8.698320 3.219 ×10 ¹⁸ Kβ ⁻ 1.737, 1.044 7 280 87Rb 9.043718 1.568 ×10 ¹⁸ β ⁻ .283 4 281 187Re 8.291732 1.300 ×10 ¹⁸ β ⁻ α .0026, 1.653 3 282 176Lu 8.374665 1.187 ×10 ¹⁸ β ⁻ 1.193 3 283 232Th 7.918533 4.434 ×10 ¹⁷ α SF 4.083 1 284 238U 7.872551 1.410 ×10 ¹⁷ α SF 4.270 .3 285 40K 8.909707 3.938 ×10 ¹⁶ β ⁻ Kβ ⁺ 1.311, 1.505, 1.505 .09 286 235U 7.897198 2.222 ×10 ¹⁶ α SF 4.679 .05 287 146Sm 8.626136 3.250 ×10 ¹⁵ α 2.529 .008	274	¹¹⁵ ln	8.849910	1.392×10 ²²	β-	.499	30,000
277 190 Pt 8.267764 2.051 × 10 ¹⁹ α 3.252 60 278 1 ⁴⁷ Sm 8.610593 3.345 × 10 ¹⁸ α 2.310 8 279 1 ³⁸ La 8.698320 3.219 × 10 ¹⁸ K β ⁻ 1.737, 1.044 7 280 8 ⁷ Rb 9.043718 1.568 × 10 ¹⁸ β ⁻ .283 4 281 1 ⁸⁷ Re 8.291732 1.300 × 10 ¹⁸ β ⁻ α .0026, 1.653 3 282 1 ⁷⁶ Lu 8.374665 1.187 × 10 ¹⁸ β ⁻ 1.193 3 283 2 ³² Th 7.918533 4.434 × 10 ¹⁷ α SF 4.083 1 284 2 ³⁸ U 7.872551 1.410 × 10 ¹⁷ α SF 4.270 .3 285 4 ⁰ K 8.909707 3.938 × 10 ¹⁶ β ⁻ K β ⁺ 1.311, 1.505, 1.505 .09 286 2 ³⁵ U 7.897198 2.222 × 10 ¹⁶ α SF 4.679 .05 287 1 ⁴⁶ Sm 8.626136 3.250 × 10 ¹⁵ α 2.529 .008	275	¹⁵² Gd	8.562868	3.408 × 10 ²¹	α	2.203	8000
278 147 Sm $^{8.610593}$ $^{3.345 \times 10^{18}}$ 4 238 La $^{8.698320}$ $^{3.219 \times 10^{18}}$ K β $^{-}$ $^{1.737}$, $^{1.044}$ 7 280 87 Rb $^{9.043718}$ $^{1.568 \times 10^{18}}$ B $^{-}$ 283 4 281 187 Re $^{8.291732}$ $^{1.300 \times 10^{18}}$ B $^{-}$ a 283 a 292 a 296 Lu $^{8.374665}$ a $^{1.187 \times 10^{18}}$ B $^{-}$ a $^{1.193}$ a 3 a 283 232 Th $^{7.918533}$ a $^{4.434 \times 10^{17}}$ a SF $^{4.083}$ a 1 a 284 238 U $^{7.872551}$ a $^{1.410 \times 10^{17}}$ a SF $^{4.270}$ a 3 a 285 40 K $^{8.909707}$ a $^{3.938 \times 10^{16}}$ b 6 K β $^{+}$ a $^{1.311}$, $^{1.505}$, $^{1.505}$ a $^{1.505}$ a 286 235 U $^{7.897198}$ a $^{2.222 \times 10^{16}}$ a SF $^{4.679}$ a $^{1.505}$ a 287 146 Sm $^{8.626136}$ a $^{3.250 \times 10^{15}}$ a $^{2.529}$ a $^{2.529}$ a	276	¹³⁰ Ba	8.742574	2.2×10 ²¹	KK	2.620	5000
279 138 La 8.698320 3.219 × 10 18 K β $^-$ 1.737, 1.044 7 280 87 Rb 9.043718 1.568 × 10 18 β $^-$.283 4 281 187 Re 8.291732 1.300 × 10 18 β $^-$ α .0026, 1.653 3 282 176 Lu 8.374665 1.187 × 10 18 β $^-$ 1.193 3 283 232 Th 7.918533 4.434 × 10 17 α SF 4.083 1 284 238 U 7.872551 1.410 × 10 17 α SF 4.270 .3 285 40 K 8.909707 3.938 × 10 16 β $^-$ K β $^+$ 1.311, 1.505, 1.505 .09 286 235 U 7.897198 2.222 × 10 16 α SF 4.679 .05 287 146 Sm 8.626136 3.250 × 10 15 α 2.529 .008	277	¹⁹⁰ Pt	8.267764	2.051 × 10 ¹⁹	α	3.252	60
280 87 Rb 9.043718 1.568×10 ¹⁸ β ⁻ .283 4 281 187 Re 8.291732 1.300×10 ¹⁸ β ⁻ α .0026, 1.653 3 282 176 Lu 8.374665 1.187×10 ¹⁸ β ⁻ 1.193 3 283 232 Th 7.918533 4.434×10 ¹⁷ α SF 4.083 1 284 238 U 7.872551 1.410×10 ¹⁷ α SF 4.270 .3 285 40 K 8.909707 3.938×10 ¹⁶ β ⁻ K β ⁺ 1.311, 1.505, 1.505 .09 286 235 U 7.897198 2.222×10 ¹⁶ α SF 4.679 .05 287 146 Sm 8.626136 3.250×10 ¹⁵ α 2.529 .008	278	¹⁴⁷ Sm	8.610593	3.345 × 10 ¹⁸	α	2.310	8
281 187 Re $^{8.291732}$ $^{1.300 \times 10^{18}}$ 8 6 $^{1.193}$ 3 3 282 176 Lu $^{8.374665}$ $^{1.187 \times 10^{18}}$ 8 $^{1.193}$ 3 3 283 232 Th $^{7.918533}$ $^{4.434 \times 10^{17}}$ 17 18	279	138 _{La}	8.698320	3.219×10 ¹⁸	κβ-	1.737, 1.044	7
282	280			1.568 × 10 ¹⁸	β-	.283	4
283 232 Th 7.918533 $^{4.434 \times 10^{17}}$ α SF $^{4.083}$ 1 284 238 U 7.872551 $^{1.410 \times 10^{17}}$ α SF $^{4.270}$.3 285 40 K 8.909707 $^{3.938 \times 10^{16}}$ β ⁻ K β ⁺ 1.311, 1.505, 1.505 .09 235 U 7.897198 $^{2.222 \times 10^{16}}$ α SF $^{4.679}$.05 287 146 Sm 8.626136 $^{3.250 \times 10^{15}}$ α $^{2.529}$.008	281	¹⁸⁷ Re	8.291732	1.300 × 10 ¹⁸	β- α	.0026, 1.653	3
284 238 U 7.872551 1.410 × 10 ¹⁷ α SF 4.270 .3 285 40 K 8.909707 3.938 × 10 ¹⁶ β ⁻ K β ⁺ 1.311, 1.505, 1.505 .09 286 235 U 7.897198 2.222 × 10 ¹⁶ α SF 4.679 .05 287 146 Sm 8.626136 3.250 × 10 ¹⁵ α 2.529 .008	282			1.187×10 ¹⁸	β-	1.193	3
285 40 K 8.909707 3.938 × 10 ¹⁶ β ⁻ K β ⁺ 1.311, 1.505, 1.505 .09 286 235 U 7.897198 2.222 × 10 ¹⁶ α SF 4.679 .05 287 146 Sm 8.626136 3.250 × 10 ¹⁵ α 2.529 .008	283			4.434 × 10 ¹⁷	a SF	4.083	1
286 235U 7.897198 2.222×10 ¹⁶ α SF 4.679 .05 287 146Sm 8.626136 3.250×10 ¹⁵ α 2.529 .008	284			1.410×10 ¹⁷	a SF	4.270	.3
287 ¹⁴⁶ Sm 8.626136 3.250 ×10 ¹⁵ α 2.529 .008	285	⁴⁰ K	8.909707	3.938 × 10 ¹⁶	β ⁻ K β ⁺	1.311, 1.505, 1.505	.09
	286	²³⁵ U	7.897198	2.222×10 ¹⁶	a SF	4.679	.05
288 ²⁴⁴ Pu 7.826221 2.525×10 ¹⁵ α SF 4.666 .006	287			3.250 × 10 ¹⁵	α	2.529	.008
	288	²⁴⁴ Pu	7.826221	2.525 × 10 ¹⁵	αSF	4.666	.006