Construction and Test Results of the ATLAS EM EndCap Calorimeter^a

Luis Labarga Universidad Autónoma de Madrid for the ATLAS LARG EM calorimeter group

Outline

- The physics case. Implications on apparatus.
- Brief description; the EndCap.
- Manufacturation of the parts; Quality Control
- Calorimeter module stacking and QC.
- Module testing; main results.
- Status and Summary.

 $a^{8} t^{h}$ Topical Seminar on Innovative Particle and Radiation Detectors. Siena, October 2002

The Physics Case; its Implications

The main focus for ATLAS at the LHC is the study of the origin of mass at the electroweak energy scale. For SM Higgs boson (**H**) searches, the detector has to be sensitive to:

- 1. **H** $\rightarrow \gamma \gamma$; **m**_H < 150 GeV.
- 2. $\mathbf{H} \rightarrow ZZ^* \rightarrow 4l$; 130 GeV < \mathbf{m}_H < 2 \mathbf{m}_Z
- 3. $\mathbf{H} \rightarrow ZZ \rightarrow 4l \text{ or } 2l + 2\nu \text{ ; } \mathbf{m}_H > 2 \text{ m}_Z$
- 4. $\mathbf{H} \rightarrow WW, ZZ \rightarrow l + \nu + 2jets \text{ or } 2l + 2jets$; for \mathbf{m}_H up to 1 TeV.
- \rightarrow In particular the significance of (1) is proportional to the rapidity range coverage.
- \rightarrow Also (1) needs an energy resolution well below 1% at high energy.
- \Rightarrow A superb measurement of γ 's and e^{\pm} 's is required along as much solid angle as possible.
- ⇒ EM sampling calorimetry with ionizable liquid (LArg) and novel accordion geometry with extreme geometrcal and electrical uniformity requirements.

The EndCap of the LArg EM Calorimter

⇒ Main difference with Barrel comes from geometry (Barrel: prev. talk by Y. Hostachy)

Main Particularities

Each EndCap wheel is splitted into two "sub-wheels" due to mechanical limits

- pseudorapidity ranges: OW: $1.375 < \eta < 2.5$ IW: $2.5 < \eta < 3.2$
- 8 modules per EndCap

96 / 32 gaps (absorber - *spacer* - **electrode** - *spacer* - absorber) at the outer / inner "wheel" per module.

- Main components
 - vary along R:
 - Fold angle
 - Gap distance
 - HV settings
 - Capacitances

for instance: Gap Size vs. HV settings

the Absorbers

Thickness of:/at	O. W.	I. W.
Lead plates	1.7 mm	2.2 mm
Stainless steel	0.2 mm	
Glass-fibre	0.15 mm	
prepreg		
adhesive		
Absorber	2.4 mm	2.9 mm

The contribution of the non uniformities at the mechanical parts to the constant term should be kept at $\approx 0.2\%$.

- → lead thickness better than 1% (from M.C. studies) ⇒ RMS thicknesses smaller than $17\mu m/22\mu m$ for OW/IW
- → LArg gap better than $3\% \Rightarrow$ absorber geometry reproducibility at the level $\approx 200 \mu m/50 \mu m$ for large/inner radius part

Lead plates were obtained by lamination on a \approx standard foundry, with the thickness measured and corrected on - line by an X-ray absortion measurement system.

 \Rightarrow better than $9\mu m$ thickness uniformity **achieved**

The Absorber Fabrication^a

Flat sandwich bending:

Mechanical tolerances at the $150 \ \mu m$ level (over distances of $2 \ m$)

^aTooling manufacturated by Talleres Aratz S.A.; absorber fabrication itself by Fibertecnic S.A.. Both companies are located at Vitoria (Spain).

Absorber moulding and curing (Autoclave technique):

10(4) OW(IW) absorber moulds

mechanical reproducibility at the $40\mu m$ level

Temperature/Preasure cycle (120 °C/2.7 bars) for the prepreg to polimerize and the absorber to get its final shape.

Quality Controls on the produced absorber:

- Optical inspection (100%)
- Thicknesses and widths at predifined positions (100%)
- Full 3D mapping (10%)

For example, the thicknesses at the edges:

the Read-Out Electrodes

flat electrode

Cicorel S.A. La Chaux de Fond Switzerland

They are bent to its final shape by a Single-Knife Standard press guided by high precision machined notches.

RIPM (Aix-en-Provence, France)

The electrodes follow an extensive Quality Control for both, geometrical and electrical characteristics.

Final OW electrode fully equipped:

the Honeycomb Spacers

thickness varying radially from 0.9 mm to \approx 3 mm

Module Stacking

Two fully equipped stacking sites:

C.P.P.M. (Marseille)

U.A.M. (Madrid)

Stacking Procedure:

- last inspection and cleaning of absorber and electrode
- HV test of spacers (Voltage $\approx 1.6 \times$ nominal at LArg)

- stack gap (spacers electrode spacers absorber)
- bulgging check/measurement i.e. relative height of each fold (severe problem at the first modules):

Stacking Quality Control I: Low Frequency Test

What:

Check the continuity/integrity of the electrical circuit at the electrode: read-out and HV distributions

How:

- 1) a low freq. sinusoïdal signal is injected on the HV lines
- 2) the current induced on the signal layer is measured in groups of few cells and analysed
- 3) their capacitance is calculated and compared to nominal

Input/Output signal:

Dispersion:

Capacitance:

Stacking Quality Control II: HV test program

HV settings: those nominal at LArg (notice that the ratio between the dielectric coefficients of LArg and Air is ≈ 1.6)

- After stacking one gap (≈ 10 min.): test the stacked gap and the previous one
- Night test (≈ 12 hours): leave at HV the gaps stacked during the day + 2
- Week-End test (≈ 60 hours): leave at HV the gaps stacked during the week + 5

Stacking Quality Control III: miscellanea

• Structure Deformations (4 times during the stacking of a module)

Deformations smaller than $\approx 200 \mu m$; first modules showed as much as 2 mm

• Gap Distances from Gap capacitances (50% of the gaps): Module 5 capagap measurements in the outer wheel

a sinusoïdal signal is injected on one cell; the gap capacitance value is deduced from the measured impedance.

Cold Electronics and Cables Dominique Sauvage 1960-2002

- Summing boards
- Mother boards

 (to house the injection calibration resistors and the signal cable connecors)
- HV distribution boards

- Cold cables:
- signal
- calibration
- HV
- monitoring

Warm electronics and read out: J. Parsons (wed. afternoon)

Module Testing Cold Test Program at CERN (all modules)

we use the NA31 cryostat

- Charge Injection Resistance at Mother Board measurement: to check the MB and the signal cable continuity.
- Stand-alone calibration system to a) fully check the calibration and read-out circuitry b) cell gains
- High Voltage (at warm, at cold, at warm): HV problems that were not present at the stacking site develop (or dissapear) during the above cycle.
 Major concern. ⇒ The problematic electrode sectors are connected to individual spare HV lines.

Beam Test Program (20% of the modules): (*Details at prev. talk by M. Fanti*)

CERN H6 beam line (North Hall E.A.)

the EndCap Presampler

Test Beam: Polar Angle Resolution (Module 0)

Combining the η measurements at front and middle calorimeter sections with their corresponding longitudinal shower barycentes (estimated), θ is derived.

 \Rightarrow Determine the primary vertex position in ATLAS for $\mathbf{H} \rightarrow \gamma \gamma$ at high luminosity (*needed*: $\approx 50 \text{ mrad}$ $GeV^{1/2} \text{ at } \eta = 1.9$)

Production Module M05: η scans

Uniformity results (preliminary):

	no corrections	time, HV, ϕ and η	+ slope
σ/E	2.48%	0.96%	0.88%

Status

- Status of Components:
 - Structure' parts (rings etc.): ready
 - Absorbers: producing those for module no. 13
 - Electrodes: ready
 - Spacers: producing those for module no. 9
 - Cold Electronics: ready
- Status of Modules:
 - 6 modules at CERN fully tested and qualified
 - 1 module at CERN ready to be cold-tested
 - 2 modules being stacked at CPPM and UAM
 - ⇒ Hope to have the 8 modules of the first EndCap before Chritsmas !

Summary

- We are almost half of the way
- The produced modules show an energy resolution less than 1% at high energy
- We dont envisage new major problems on the modules
- But now comes the EndCap assambly ...