

Radioactive Contaminations in *precision WČ Physics*; the SuperK-Gd case

Luis Labarga, U. Autonoma Madrid

TMEX-2018-WCP *European Workshop on Water Cherenkov Precision Detectors for Neutrino and Nucleon Decay Physics* 2018/09/20, Warsaw

Outline

- 1. main sources of RI contaminations; main types of radiation produced
- 2. main physics measurements affected by radiation from RI in WC
- 3. relevant RI contaminants in [pure water] and doped WČ detectors; techniques for measuring RI contamination of materials for/in WČ
- 4. the case of Super-Kamiokande Gd (SuperK-Gd)
 - the regular Gd salt in the market
 - main physics affected and corresponding RI purity goals
 - measuring the very low contaminations in high purity Gd salts
 - the R & D for a high purity Gd salt

Main sources of radioactive contaminations

- long lived (> earth age) primordial isotopes
 - ✓ high Z are grouped into the 3 (4) decay chains: ²³⁸U, ²³⁵U, ²³²Th
 - ✓ middle or low Z come alone, normally less important in $W\check{C}$ phys.
- cosmogenic production of long-lived radioactive isotopes in materials due to the exposure to cosmic rays on Earth
 - Cosmic-ray-muon spallation-induced in water RI with β decays:
 ¹²B, ¹²N, ¹⁶N, ¹¹Be, ⁹Li, ⁸He, ⁹C, ⁸Li, ⁸B, and ¹⁵C
- Anthropogenic radionuclides from nuclear weapons, nuclear power plants and uranium mining. The most recent strong contributions are from Chernobyl (1986) and Fukushima (2011) accidents. Most important RI are ⁹⁰Sr and ¹³⁷Cs.
- Radon, mainly ²²⁶Rn in ²³⁸U decay chain, being a gas it is a special but very important source of RI

Main sources of radioactive contaminations

- long lived (> earth age) primordial isotopes
 - ✓ high Z are grouped into the 3 (4) decay chains: ²³⁸U, ²³⁵U, ²³²Th
 - \checkmark middle or low Z come alone, normally less important in $W\check{C}$ phys.
- cosmogenic production of long-lived radioactive isotopes in materials due to the exposure to cosmic rays on Earth
 - Cosmic-ray-muon spallation-induced in water RI with β decays:
 ¹²B, ¹²N, ¹⁶N, ¹¹Be, ⁹Li, ⁸He, ⁹C, ⁸Li, ⁸B, and ¹⁵C
- Anthropogenic radionuclides from nuclear weapons, nuclear power plants and uranium mining. The most recent strong contributions are from Chernobyl (1986) and Fukushima (2011) accidents. Some important RI are ⁹⁰Sr and ¹³⁷Cs.

 Radon, mainly ²²⁶Rn in ²³⁸U decay chain, being a gas it is a special but very important source of RI

Main radiation produced by radioactive isotopes from contaminations

• spontaneous fission \rightarrow

✓ neutrons, gammas (can be of significant energy)

- α decays $\rightarrow \alpha$ (⁴He₂) particles
 - \checkmark neutrons from (α , n) reactions maybe more dangerous
- β decays $\rightarrow \beta$ particles (electrons)
- nucleus stabilization after decay processes \rightarrow gammas
- special care when gammas, neutrons, β are produced in coincidence

Main radiation produced by RI: the case of ²³⁸U chain and ²²²Rn

Main radiation produced by RI: the case of ²³²Th chain (and ²²⁴Ra)

neutrons

- there are many, naturally produced
- relevant are neutrons produced from *α* decays in the naturally present radioactive chains
- for instance that of ²³⁸U

P. Fernández Menéndez, Ph.D. Thesis UAM 2017

• **α**s interact with the water :

 $^{18}O+^4\alpha(\sim 6MeV) \rightarrow ^{22}Ne*[\sim 15MeV] \rightarrow$

Main radiation produced by RI: neutrons

example from ²³²Th, ²³⁵U, ²³⁸U chains in SuperK-Gd for "market standard" Gd₂(SO₄)₃

$$N_{rad}^{neutrons} = 316.3 \frac{single \ neutrons}{day \cdot SKFV}$$

Main physics measurements affected by radiation from RI in WC → low energy neutrino physics

- general: worse reconstruction because of increased "dark noise"
- neutron "blind" detector (SK-I, II, III ...)
 - solar elastic
 - SRN
- neutron sensitive detector (SNO, SK-IV, SK-Gd ...)
 - solar elastic
 - solar NC (can be very severe, see next slide)
 - SRN
 - reactor
 - pre-supernova

neutrons at Neutral Current scattering measurement by SNO

$$\nu_x + d \to p + n + \nu_x$$

neutron capture:

$$^{2}H + n \rightarrow ^{3}H + \gamma$$
 [6.2 MeV]

n are irreducible background

- minimize to the maximum a)
- purest D₂O
- acrylic vessel to isolate D₂O from external contamination
- b) quantify to the highest precision:
- permanent monitoring by
- 2 ex-Situ radioactivity cont. meas. systems
- 1 in-situ technique

sensitive to all three $\,\nu_{\!e}^{}$, $\,\nu_{\!L}^{}$, $\,\nu_{\!T}^{}$ with E[ν_{χ}] > 2.2 MeV (binding E.) Cerenkov ring; just event counting SNO; Phys. Rev. Lett. 89, 011301 (2002) a) 232 Th In situ Concentration (g Th/g D_2O) \equiv MnOx \diamond HTiC Goal: $< 3.7 \times 10^{-15}$ 238TI b) In situ Concentration (g U/g D_2^{0} 0) $_{10}^{-01}$ Rn Assay Goal: $< 4.5 \times 10^{-14}$ 10-15 0 100 200 300

400

Days Since November 2, 1999

500

Weighted

Average

relevant RI contaminants in regular WČ detectors (pure water)

- materials close to ID:
 - PMT glass
 - in SK FRP cover
 - other

- \rightarrow increase "dark noise" y. Nakano, previous talk
- \rightarrow reduce FV
- other sources of radon diffusion:
 - from water after purification cycle
 - gaskets in water inlets ! н. sekiya @LRT 2015

 \rightarrow radon into FV

relevant RI contaminant [-ions] in doped WČ detectors

- those as in pure water
- contaminations in the solute
 - \rightarrow these might be much more dangerous since they RIs spread out along the whole fiducial volume

techniques for measuring the RI contamination of materials for/in WČ

- High purity Ge detectors
 - ✓ measuring of gammas from radioactive decays: allows to investigate basically all the contaminants
 - ✓ for extremely high RI purity physics it might be not enough
- ICPMS
 - ✓ can detect extremely low amounts of RIs
 - ✓ sensitive only to very long lived RIs ($\geq 10^8$ years)
- radon detection
 - ✓ possibility of sampling in-situ, even online measuring
 - \checkmark very high sensitivities can be achieved
 - \checkmark very difficult technique

example of HP-Ge measurement: measured gamma spectra of a highly RI contaminated sample of Gd salt

Gd2O3_201602 Dirty // 16.33 days (without first file) // Signal (BLACK) vs Bkg (RED)

Gd2O3_201602 Dirty // 16.33 days (without first file) // Signal (BLACK) vs Bkg (RED)

the case of SuperK-Gd

Background for Supernova Relic Neutrino:

²³⁸U Spontaneous Fission:

- coincidence 1 neutron 1 y (Ey>10 MeV)
- irreducible background !
- fortunately not a serious issue

Solar **v** in accidental coincidence with neutrons or βs from radioactivity spatial (2m sphere) and time coincidence (60µs after prompt) between

- prompt "signal": solar final E>10 MeV (~1460 events/year/FV)
- delayed "signal": β from RI decays / capture of radioactivity neutrons

the case of SuperK-Gd

Background for lowest Energy solar v

 β s from ²³²Th, ²³⁸U chains

very severe background source

Gd captures of neutrons produced by the radioactive contamination

sizable but less severe

Gd₂(**SO**₄)₃ "regular market" survey: radioactivity contaminations

		Measured radioactivity in mBq/kg for the $Gd_2(SO_4)_3$ batches purchased to date June								
Chain	Sub- chain	Standford	Standford	Beijing	Changshu	Beijing	Standford	HK Tai	HK Tai	Standford
		Materials	Materials	Jinghonganxin	Huanyu	Jinghonganxin	Materials	Kun	Kun	Materials
		09/04	10/08	12/08	13/02	13/03	13/08	13/07a	13/07b	14/12
238 U	238 U	51 ± 21	< 33	292 ± 6	74 ± 28	242 ± 6	71 ± 20	47 ± 26	73 ± 27	< 76
	226 Ra	8 ± 1	2.8 ± 0.6	74 ± 2	13 ± 1	13 ± 2	8 ± 1	5 ± 1	6 ± 1	< 1.4
232 Th	228 Ra	11 ± 2	270 ± 16	1099 ± 12	205 ± 6	21 ± 3	6 ± 1	14 ± 2	3 ± 1	2 ± 1
	228 Th	28 ± 3	86 ± 5	504 ± 6	127 ± 3	374 ± 6	159 ± 3	13 ± 1	411 ± 5	29 ± 2
235 U	235 U	< 32	< 32	< 112	< 25	< 25	< 32	< 12	< 30	< 1.8
	227 Ac	214 ± 10	1700 ± 20	2956 ± 30	1423 ± 21	175 ± 42	295 ± 10	< 6	< 18	190 ± 6
Others	$^{40}\mathbf{K}$	29 ± 5	12 ± 3	101 ± 10	60 ± 7	18 ± 8	3 ± 2	3 ± 2	8 ± 4	< 5
	138 La	8 ± 1	<	683 ± 15	3 ± 1	42 ± 3	5 ± 1	< 1	< 2	23 ± 1
	176 Lu	80 ± 8	21 ± 2	566 ± 6	12 ± 1	8 ± 2	30 ± 1	1.6 ± 0.3	< 2	2.5 ± 0.6

work done mostly at the Canfranc Underground Laboratory

- salts from different providers have in general similar contaminations
- some improvement along time seen
- in any case, Superk-Gd can not afford those amounts of RIs $_{\triangleleft}$

A "propaganda" slide

[LSC, Laboratorio Subterráneo de Canfranc]

impact on physics of RI contaminations in "regular market" Gd₂(SO₄)₃

Typical activities of salts in the market: (from over 10 samples from 5 providers) For DSNB									
June 2015 Expected signal ~5 events/year/FV									
Radioactive chain	Part of the chain	mBq/kg	²³⁸ U Spontaneous Fission:						
23817	²³⁸ U	50	an approx. x10 reduction desirable						
	^{226}Ra	5	For solar neutrino						
232Th	^{228}Ra	10	Current BG ~200 events/day/FV						
	^{228}Th	100	 U (n) ~320events/day/ FV 						
23577	^{235}U	32	an approx. x10 reduction desirable						
	227Ac / 227Th	300	• Th/Ra (β , γ)~3 x 10 ⁵ events/day/ FV						
x10 ⁻ reduction needed !									

Physics based requirements for RI contamination at Gd₂(SO₄)₃

Typical activities of salts in the market:									
<u>(from over 10 sar</u>	nples from 5 prov		Physics based requirements						
Radioactive chain	Part of the chain	$\mathrm{mBq/kg}$		SRN (mBq/kg)	Solar $\nu~(\rm mBq/kg)$				
23811	^{238}U	50		< 5	-				
	^{226}Ra	5		_	< 0.5				
232 T h	^{228}Ra	10		-	< 0.05				
	^{228}Th	100		_	< 0.05				
23577	^{235}U	32		-	< 3				
	$^{227}Ac \ / \ ^{227}Th$	300			< 3				

- Superk-Gd can not afford those amounts of RI, approaches to reduce them
 - ✓ by ourselves from received batches [a lot of work being done in Kamioka, not discussed here]
 - Cooperative development of pure salts with chemical Companies Shin-Etsu Chemical Co. Ltd., Kanto Chemical Co. Inc., Wako Pure Chemical Ind. Ltd., Nippon Yttrium Co. Ltd.

M. Ikeda, H. Sekiya et al.

M. Ikeda @ NEUTRINO 2018

R&D of "ultra" pure Gd powder

²³⁸U: γ and neutrons from S.F. ²²⁶Ra: β from ²¹⁴Bi (Q=3.27MeV) ²³²Th: γ from ²⁰⁸Tl (=2.6MeV) ²³⁵U: neutrons from decay chain

 $||_{\alpha}$:= $||_{\alpha} ||_{\alpha} /|_{\alpha} /|_{\alpha} ||_{\alpha} ||$

 \leftarrow SRN BG < 0.5 events/year

-< solar v BG level.</pre>

Unit: $[\Pi B Q / Kg (G U 2 S U 4) 3 \delta \Pi_2 U]$ * Goal for U.2% Gd-sulfate loading										
Chain	lsotope	Typical	Goal*	Com	pany A	Company B		Company C		
				Ge	ICPMS	Ge	ICPMS	Ge	ICPMS	
²³⁸ U	²³⁸ U	50	< 5	-	~ 0.04	< 11	< 0.04	< 10	< 0.04	
	²²⁶ Ra	5	< 0.5	-	_	<0.2		< 0.2	_	
²³² Th	²³² Th	100	< 0.05	-	~ 0.09		0.02	—	0.06	
	²²⁸ Ra	10	< 0.05	-	_	< 0.3		< 0.2	_	
	²²⁸ Th	100	< 0.05	-	_	< 0.3		< 0.3	_	
²³⁵ U	²³⁵ U	30	< 3	-		< 0.4		< 0.3		
	²²⁷ Ac/Th	300	< 3	-	_	< 1.7		< 1.2		
Ge detector: Sensitive to almost 0.1 mBq/kg (Canfranc, Boulby and Kamioka)										

ICPMS: For isotopes w/ long life (Kamioka)

Company B achieved goals for U, 226Ra and 232Th

Summary / Conclusions / Outlook

- Radioactive contaminations can jeopardize the physics outcome of WČ detectors; mostly for low energy reactions
- particular care has to be put if a solute is dissolved in the water: RI might be spread along the whole fiducial volume
- In SuperK-Gd the measurement most severely affected by radioactivity contamination is low energy solar neutrinos
- SuperK-Gd has carried out a very hard but successful campaign / R&D program in order to external companies achieving the needed high purity Gd₂(SO₄)₃ in a regular production mode
- SuperK-Gd will dissolve 100 ton of Gd₂(SO₄)₃; its quality, particularly its radio-purity has to be scrutinized for every production batch (~0.5 tons) → large international effort involving Boulby, Canfranc, Kamioka (+ others ?) laboratories

additional

First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV; Super-Kamiokande, PRD 93, 012004 (2016)

TABLE I. Possible radioactive isotopes induced by cosmic-ray muon spallation at SK [13,22,23]. The fourth column lists the end point kinetic energy (E_{kin} .). The fifth column lists the primary generation process of the radioactive isotopes.

Radioactive isotope	au (s)	Decay mode	$E_{\rm kin}$. (MeV)	Primary process
¹¹ Be	19.9	β^{-}	11.51	$^{16}{ m O}(n, \alpha + 2p)^{11}{ m Be}$
		$\beta^-\gamma$	$9.41 + 2.1(\gamma)$	
^{16}N	10.3	β^{-}	10.44	${}^{16}{ m O}(n,p){}^{16}{ m N}$
		$\beta^-\gamma$	$4.27 + 6.13(\gamma)$	
¹⁵ C	3.53	β^{-}	9.77	${}^{16}{ m O}(n,2p){}^{15}{ m C}$
		$\beta^-\gamma$	$4.51 + 5.30(\gamma)$	
⁸ Li	1.21	β^{-}	~13.0	${}^{16}\mathrm{O}(\pi^{-}, \alpha + {}^{2}\mathrm{H} + p + n)^{8}\mathrm{Li}$
⁸ B	1.11	eta^+	~13.9	$^{16}\mathrm{O}(\pi^+, \alpha + 2p + 2n)^8\mathrm{B}$
¹⁶ C	1.08	$\beta^- + n$	~4	$^{18}\mathrm{O}(\pi^-, n+p)^{16}\mathrm{C}$
⁹ Li	0.26	β^{-}	13.6	$^{16}O(\pi^{-}, \alpha + 2p + n)^9Li$
		$\beta^- + n$	~10	
⁹ C	0.18	$\beta^+ + p$	3–15	${}^{16}{ m O}(n, \alpha + 4n)^9{ m C}$
⁸ He 0.17		$eta^-\gamma$	$9.67 + 0.98(\gamma)$	${}^{16}\mathrm{O}(\pi^{-},{}^{3}\mathrm{H}+4p+n){}^{8}\mathrm{He}$
		$\beta^- + n$		``````````````````````````````````````
¹² Be	0.034	β^-	11.71	${}^{18}\mathrm{O}(\pi^-, \alpha + p + n){}^{12}\mathrm{Be}$
^{12}B	0.029	β^{-}	13.37	${}^{16}\mathrm{O}(n, \alpha + p){}^{12}\mathrm{B}$
^{13}B	0.025	β^-	13.44	$^{16}\mathrm{O}(\pi^-, 2p+n)^{13}\mathrm{B}$
^{14}B	0.02	$\beta^-\gamma$	$14.55 + 6.09(\gamma)$	$^{16}{\rm O}(n,3p)^{14}{\rm B}$
12 N	0.016	eta^+	16.38	$^{16}\mathrm{O}(\pi^+, 2p + 2n)^{12}\mathrm{N}$
¹³ O	0.013	$eta^+ + p$	8-14	$^{16}\mathrm{O}(\mu^{-},\mu^{-}+p+2n+\pi^{-})^{13}\mathrm{O}$
¹¹ Li	0.012	β^{-}	20.62	$^{16}O(\pi^+, 5p + \pi^0 + \pi^+)^{11}Li$
		$\beta^- + n$	~16	

Radioactive Contamination in Neutrino Experimental Physics: the Cases of NEXT and Super-Kamiokande Experiments; J. Pérez Pérez, Ph.D Thesis UAM 2017

The 32 Primordial radionuclides are: ⁴⁰*K*, ⁴⁸*Ca*, ⁵⁰*V*, ⁷⁶*Ge*, ⁸²*Se*, ⁸⁷*Rb*, ⁹⁶*Zr*, ¹⁰⁰*Mo*, ¹¹³*Cd*, ¹¹⁵*In*, ¹¹⁶*Cd*, ¹²⁸*Te*, ¹³⁰*Te*, ¹³⁰*Ba*, ¹³⁶*Xe*, ¹³⁸*La*, ¹⁴⁴*Nd*, ¹⁴⁷*Sm*, ¹⁴⁸*Sm*, ¹⁵⁰*Nd*, ¹⁵¹*Eu*, ¹⁵²*Gd*, ¹⁷⁴*Hf*, ¹⁷⁶*Lu*, ¹⁸⁰*W*, ¹⁸⁶*Os*, ¹⁸⁷*Re*, ¹⁹⁰*Pt*, ²⁰⁹*Bi*, ²³²*Th*, ²³⁵*U* and ²³⁸*U*.

The most used cosmogenic radionuclides are ${}^{3}H$, ${}^{10}Be$, ${}^{14}C$, ${}^{21}Ne$, ${}^{26}Al$, and ${}^{36}Cl$; usually for dating geologic materials or rocks.

In Xenon, has been observed these isotopes: ⁷Be, ⁸⁵Sr, ⁸⁸Zr, ^{91*}Nb, ⁹⁹Rh, ¹⁰¹Rh, ^{110*}Ag, ¹¹³Sn, ¹²⁵Sb, ^{121*}Te, ^{123*}Te, ¹²⁶I, ¹³¹I, ¹²⁷Xe, ^{129*}Xe, ^{131*}Xe, ¹³³Xe, and ¹³²Cs. In copper, has been observed: ⁴⁶Sc, ⁴⁸V, ⁵⁴Mn, ⁵⁹Fe, ⁵⁶Co, ⁵⁷Co, ⁵⁸Co and ⁶⁰Co.