Pruebas de QCD Perturbativa vía Electroproducción de Charm en HERA

Luis A. Labarga Echeverría

- Producción de charm en eP y QCD
- Medida de charm con ZEUS; canal $D^{*\pm} o D^0 \pi^\pm o K^\mp \pi^\pm \pi^\pm$
- Secciones eficaces, extracción de $F_2^{c\bar{c}}$, discusión QCD
- Canales $D^0 \to K^- \pi^+$, $D^+ \to K^- \pi^+ \pi^+$, $D^+_s \to \Phi \pi^+ \to [K^+ K^-] \pi^+$
- Resumen y Conclusiones
 - Tesis J.P. Fernández (feb. 1998); premio extr. doctorado
 - Tesis I. Redondo (jul. 2001); premio extr. doctorado
 - Tesis M. Zambrana (próxima defensa, \approx mayo 2007)
 - ZEUS, Phys.Lett.B407:402-418,1997
 - ZEUS, Eur.Phys.J.C12:35-52,2000
 - ZEUS, Phys. Rev. D69:012004,2004
 - ZEUS-prel-05-007-plus, contributed paper to ICHEP06

HERA y ZEUS

Cinemática de la Interacción Inelástica electrón-Protón

Diferentes reacciones:

- según carga bosón interc. CN: γ , Z⁰ ; CC: W^{\pm}
- según su virtualidad interacción $\gamma P: Q^2 \approx 0$ IPI: $Q^2 > 2$ (?) GeV²

CN-IPI óptima para estudio

Cinemática reacción determinada por dos variables p.ej.:

 $Q^2 = -q^2$ cuadrado de 4-momento transferido (x -1.0) x fracción de p portado por partón

 $y = \frac{p \cdot (k-k')}{p \cdot k}$ transferencia energía vértice leptónico $W = \sqrt{p^2 + q^2}$ masa sistema hadrónico

 $\theta_{e'}, E_{e'}$ ángulo y energía del ${e'}^-$

Pricipalmente Fusión Gluón Boson-fotón (FGB):

acceso directo al gluón dentro del Protón

Factorización:

σ = estructura Protón ⊗
 elementos matriz QCD
 ⊗ fragmen. y desintegraciones

- Explorar el *P*:
 - contribución de F_2^c a F_2
 - $g(x,Q^2)$
- Probar QCD:
 - universalidad de $g(x,Q^2)$
 - test secciones eficaces a NLO

 (\mathbf{k}')

 e^+

Ejemplo reacción completa con producción de charm

 σ = estructura P \otimes e.m. QCD \otimes fragmentación y desintegraciones

$$egin{aligned} \sigma^{m{car{c}}}(x,Q^2) \propto e_{m{c}}^2 lpha_s(\mu_r) \int_{x_g^{min}}^1 rac{dx_g}{x_g} m{g}(x_g,\mu_f) \hat{\sigma}(x_g,\mu_f,\mu_r) \ x_g^{min} = x rac{4m_{m{c}}^2 + Q^2}{Q^2}; & \mu_f,\mu_r ext{ tomadas: } \sqrt{Q^2 + 4m_c^2} \end{aligned}$$

Distingamos varios regímenes cinemáticos:

- $(\sim m_c^2) \leq Q^2 \leq (\sim 10 m_c^2)$ (\approx range cubierto per dates)
 - m_{c} ha de ser incluida en cálculos
 - sólo u, d, s en el P (FFNS)
 - producción de c dominada por FGB
- ${ullet} Q^2 \gg {m_{m c}}^2$
 - cuando $Q^2 \gg m_c^2$ cálculo perturbativo pierde convergencia debido a $log(Q^2/m_c^2)$ en términos superiores no calculados
 - producción de c insensible a efectos de masa
 - quarks tratados como partones sin masa:
 - **P** compuesto de u, d, s, c (ZM-VFNS)
 - producción de c dominada por QPM (LO) y FGB y QCDC (NLO)
- $\bullet Q^2 \sim 10 {m_c}^2$

- región de transición (VFNS)

Cálculo NLO: Harris,Smith;N.P.B452(1995)109 Laenen,Riemersma,Smith,Van Neerven; N.P.B392(1993)162,229

- Validez de Factorización
- Esquema FFNS
- Cálculo a orden fijo en ${m lpha}_{{m s}}$ con $m_{{m c}}
 eq 0$
 - El quark c no forma parte del protón
 - Evolución de las densidades de quarks (u,d,s) y gluones según DGLAP

• distrib. partónicas en Q_0 : $xf(x)=p_1x^{p_2}(1-x)^{p_3}(1+p_4x)$

 \vdots es el g extraido de $eP \rightarrow eX$ consistente con el g estado inicial de nuestra reacción exclusiva $\gamma g \rightarrow c\bar{c}$?

Fragmentación del quark c y desintegración del mesón D

σ = estructura P \otimes e.m. QCD \otimes fragmentación y desintegraciones

- $f(c \rightarrow D^{*+})=0.235$ (de e^+e^-) $[\pm 0.007(stat + syst) \pm 0.003(f.d.)]$ estamos midiéndolo también en eP con zeus
- modelización $P(D^*)$ vs. P(c) (...!)
- fracción de desintegración $D^{*+} \to D^0 \pi^+ \to K^- \pi^+ \pi^+$

= 0.677 ± 0.005 x 0.0380 $\pm 0.0009 = 0.0257 \pm 0.0006$

Modelización de fragmentación; introducción en predicción teórica

 Aproximación básica: función de Peterson ..., Schlatter, Schmitt, Zerwas; Phys.Rev.D27,105(1983) para fragmentación quarks pesados:

Amplitud $(Q \rightarrow H + q) \propto \Delta E^{-1}$

Modelos completos de fragmentación

- Correcciones a frag. Peterson
- Simulación completa estado final de cualquier reacción fundamental
- Implementados en programas Monte Carlo permiten realizar la simulación total de la respuesta del detector a las partículas del estado final
- ⇒ Herramienta imprescindible en experimentos de altas energías
 - estudios de eficiencias, aceptancias ...
 - interpretación física de los datos

HERWIG=Interfering gluon PS+CLUSTE

Producción de $D^{*\pm}$

Efectos de fragmentación peculiares: cuerda $c \leftrightarrow P$

El detector ZEUS

Disparo del Sistema de Adquisición de Datos (*"Trigger y DAQ"***)**

Espectacular suceso CN-IPI:

Caso CN-IPI:

[HERA] 10^7 cruce-haces/segundo $\downarrow 10^7$ Hz.

 [N1a] depósito aislado de energía en calo. electromagnético
 [N1b] señal TRK si en aceptancia
 ↓ ≈ 10³ Hz.

[N2a] tiempos correctos [N2b] $E - P_z|_{detector} > 29 \text{ GeV}$ $\Downarrow \approx 10^2 \text{ Hz.}$

[N3a] buscador de electrones: OK $\Downarrow \approx 5$ Hz.

[DISPOSITIVO de ALMACENAMIENTO]

Medida de la Cinemática de la reacción eP

Estado final determinado con dos variables independientes pero medimos más de dos:

- $E_{e'}$ con Cal, $\theta_{e'}$ con Cal+trk
- "sistema hadrónico" con cal: $P^h_{x,y,z} = \sum_h p^h_{x,y,z}$, ...

 \Rightarrow redundancia en medida de, p.ej., Q^2 , x:

$$\begin{split} &Q^2|_{e}=2E_{e}E_{e'}(1+\cos\theta_{e'}); \, x|_{e}=\dots\\ &Q^2|_{h}=\frac{1}{1-y|_{h}}[(\sum_{h}p_{x}^{h})^2+(\sum_{h}p_{y}^{h})^2]; \, y|_{h}=\frac{1}{2E_{e}}\sum_{h}(E^{h}-p_{z}^{h});\dots\\ &Q^2|_{DA}=\dots \end{split}$$

⇒ aumento precisión + reducción sistemática

Selección estados finales CN-IPI

- Selección topología CN-IPI:
- Algoritmo buscador de electrones identifica e', $E_{e'} > 10~{
 m GeV}$
- $y|_{e} < 0.95$ contra erróneos e's en zona delantera
- $y|_{h} > 0.02$ mínima actividad hadrónica
- Contra γP : 40< $(E P_z)_{cal} < 65$ GeV (invariante =2 E_e)
- Contra interac. del haz con gas residual: $|Z_{vtx}| < 50$ cm.

Estimación de Fondos

- de reacciones γP :
 - π de jet identificado como e'^-
 - estimado con M.C. HERWIG
 - típicamente < 1%
- de int. haz gas residual:
 - estimado con haces sin colisión
 - despreciable

Descripción Monte Carlo

Reconstrucción del mesón $D^{*+}
ightarrow D^0 \pi^+
ightarrow [K^- \pi^+] \pi^+$ + c.c.

• Trazas en el detector central (TRK) asignadas a K^- , π^+ y π^+_s ; masas invariantes de las combinaciones-de-trazas [partículas]: $m_{[K^-\pi^+]}, m_{[K^-\pi^+]\pi^+}, \Delta M = m_{[K^-\pi^+]\pi^+} - m_{[K^-\pi^+]}$ Reconstrucción del mesón $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+ + c.c.$ Detalles:

- trazas reconstruidas en TRK y consistentes con vértice primario
- al menos \approx 1/3 TRK involucrado
- con $p_T >$ 0.12 GeV
- se consideran pares de trazas de $p_T >$ 0.4 GeV y carga opuesta
- en el par se asigna alternativamente a cada traza el ser K o π
- en cada caso se calcula $m_{[K^-\pi^+]}$
- se combina par con posibles terceras trazas con la carga del K; tercera traza asignada a π , se calcula $m_{[K^-\pi^+]\pi^+}$
- si $1.80 < m_{[K^-\pi^+]} < 1.92~{
 m GeV}$ y $0.143 < m_{[K^-\pi^+]\pi^+} m_{[K^-\pi^+]} < 0.148~{
 m GeV}$

 \implies candidato a D^{*+}

- método carga errónea para estimación fondo: igual procedimiento excepto las trazas del par tienen misma carga

Reconstrucción del mesón $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+$ + c.c.

Dado que $m_{D^{*+}} - m_{D^0}$ =2010 - 1864=146 MeV

- → Reacción muy restringida cinemáticamente
- → Fondo combinatorial pequeño debido al muy limitado espacio de fase permitido :

Inciso: Otros Métodos de Identificación/Reconstrucción de Charm

• Reconstrucción de desintegraciones de mesones-cen hadrones cargados $c \rightarrow DX$

 $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+$ (ffd*: 0.6 % = 0.235 × 0.677 × 0.038) $D^{*+} \to D^0 \pi^+ \to [\bar{K}_0 \pi^+ \pi^-] \pi^+ \to [K_0^s \pi^+ \pi^-] \pi^+$ $\rightarrow [\pi^+\pi^-\pi^+\pi^-]\pi^+$ (ffd: 0.5% = 0.235 × 0.677 × 0.059 × 0.5) $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K^- \pi^- \pi^+ \pi^+]\pi^+$ (ffd: 1.2% = 0.235 × 0.677 × 0.075) $D^+ \to K^- \pi^+ \pi^+$ (ffd: 2.1% = 0.232 × 0.091) $D^0 \rightarrow K^- \pi^+$ (ffd: 2.1% = 0.549 × 0.038) $D_{e}^{+} \rightarrow \Phi \pi^{+} \rightarrow [K^{+}K^{-}]\pi^{+}$ (ffd: 0.18% = 0.101 × 0.036 × 0.492)

Pros: Medida de precisión. Mínima pérdida de información en $c \rightarrow D$ Contras: Espacio de fase limitado a TRK

(*) fracción de fragmentación y desintegración

Inciso: Otros Métodos de Identificación/Reconstrucción de Charm

• Medida del leptón proveniente de desintegración semileptónica

 $\Gamma(\mathbf{c} \rightarrow \mathbf{l}^+ anything) / \Gamma(\mathbf{c} \rightarrow anything) = 0.096$ Ejemplos para $l^+ = \mathbf{e}^+$:

 $c \rightarrow D^+ X \rightarrow \overline{K^0} e^+ \nu_e X$ (ffd: 1.5% = 0.23 × 0.066)

 $c \to D^0 X \to K^- e^+ \nu_e X$ (ffd: 2.0% = 0.55 × 0.036)

Totales más importantes para $l^+ = e^+$:

 $egin{aligned} c &
ightarrow D^+ X
ightarrow e^+
u_e Y & ext{(ffd: 4.0\% = 0.23 imes 0.172)} \ c &
ightarrow D^0 X
ightarrow e^+
u_e Y & ext{(ffd: 3.8\% = 0.55 imes 0.069)} \end{aligned}$

- Pros: Espacio de fase de acceso directo mayor
 - Mejora estadística substancial

Contras: - $c \rightarrow e^+$ menos directo, fondo grande

Resolución pobre

- Dependencia en modelización de otras fuentes de e^+ 's

Sección Eficaz de Producción de $D^{*\pm}$ En el rango cinemático:

 $1.5 < Q^2 < 1000 \ {
m GeV}^2, \quad 0.02 < y < 0.7$ $1.5 < P_T(D) < 20 \ {
m GeV}, \quad -1.6 < \eta(D) < 1.6$

$$\eta = -ln[tg(\frac{\theta}{2})]$$

 $Y \equiv RAPIDEZ = \frac{1}{2}\frac{E+P_z}{E-P_z}$
 ΔY invariante Lorentz
 $Y = \eta$ Si $m = 0$

Para el intervalo *i*-ésimo de la variable X con anchura ΔX_i

$$\sigma = \frac{N}{L}$$
 se convierte en $\frac{d\sigma}{dX} = \frac{N_D^{*\pm}}{\epsilon_X^i \cdot f_d} \cdot \frac{1}{L} \cdot \frac{1}{\Delta X_i}$

donde:

- $N_{D^{*\pm}}$ es el no. de $D^{*\pm}$ reconstruidos: de ajuste a distribución masa invariante y/o contaje
- ϵ_X^i : eficiencia de reconstrucción
- f_d es la fracción de desintegración $D^{*+} \rightarrow [K^- \pi^+]\pi^+$ + c.c.: 0.677 ± 0.005 x 0.0380 $\pm 0.0009 = 0.0257 \pm 0.0006$
- *L*: luminosidad integrada, $L = 81.9 \pm 1.6 \text{ pb}^{-1}$

Medida de la Luminosidad

 $L = \frac{N}{\sigma}$

 \Rightarrow medir frecuencia de sucesos (N) de una reacción sencilla de σ grande y conocida

Bremsstrahlung *eP*:

 $eP
ightarrow e' \gamma P$

- incertidumbre teórica $\approx 0.4\%$ Bethe, Heitler 1934
- γ identificado y medido en calorímetro a 107 m. del P.I.
- 4 medidas independientes:

 $egin{aligned} N(E_{\gamma} > 2 ext{ GEV}) \ \sigma &= 110 ext{ mb} \ N(E_{\gamma} > 5 ext{ GEV}) \ \sigma &= 66 ext{ mb} \ N(E_{\gamma} > 10 ext{ GEV}) \ \sigma &= 36 ext{ mb} \ N(10 < E_{\gamma} < 16 ext{ GEV}) \ \sigma &= 18 ext{ mb} \end{aligned}$

X (cm) Top View 50 BRQR QROR 25 e ⊁ -25 Photon Detector -50 е ΟL Tagger 44m 35m Tagger Tagger -Z (m) .30 40 50 80 90 60 70 100 110

\Rightarrow Incertidumbre total en determinación de *L*: 2%

Estimación del número de $D^{*\pm}$ reconstruidos: ajuste a señal + fondo

Otros Fondos

- D^* de $bar{b}$
 - estimado con NLO-FGB + correcciones MC fragmentación
 - en media 2%
 - crece con Q^2 : de 1.5 a 5 % para Q^2 de 1.5 a 1000 $_{\rm GEV^2}$
 - crece según disminuye x: de 0.7 a 3.1 % para x de 0.003 a 0.00035 ($Q^2 = 18$ GEV²)
 - sustraído en sección eficaz medida

Incertidumbres (error sistemático)

- En resultado experimental
 - Selección/eficiencia estados finales NC-IPI: $^{+2.3}_{-1}$ %
 - estudio comportamiento relativo datos y simulación M.C. con variación criterios selección
 - Reconstrucción/eficiencia $D^{*\pm}$: $^{+2.9}_{-1.6}$ %
 - comportamiento relativo con criterios selección
 - variaciones con histogramación y métodos de ajuste
 - variaciones con región de señal
 - modelo Monte Carlo usado: -2.7 %
 - determinación de Luminosidad: 2 %
 - fracción de desintegración: 2 %
- En predicción teórica

 - valor de m_{c} (cambiado ± 0.15 GeV): $^{+9.7}_{-9.1}$ % escalas de factorización y renormalización: $^{+4}_{-1}$ %
 - exp. transmitidas a parametrización ZEUS-NL \overline{O} : \pm 5%
 - fragmentación (valor de ϵ , efecto cuerda): $^{+6}_{-4}$ %
 - fracción de fragmentación $f(c \rightarrow D^*)$: 3 %

ANALISIS de RESULTADOS

Producción de $D^{*\pm}$: $\frac{d\sigma/dQ^2}{0} (nb/GeV^2) = \frac{1}{1}$ (qu) **Secciones Eficaces Medidas** do/dx ($1.5 < Q^2 < 1000 \, { m GeV}^2$ 0.02 < y < 0.7 $1.5 < P_T(D^*) < 20~{ m GeV}$ ZEUS 98-00 HVODIS m = 1.35 Ge 10 -1.6 $< \eta(D^*) <$ 1.6 EUS NLO^CQCD fit HVODIS m = 1.3 GeV CTEO5F3 HVODIS m_ = 1.35 G 10 σ / σ(theory) 1 5.1 o(theory) **Consistentes con lo esperado:** - dependencia $Q^2, p_T \sim \frac{1}{E^2}$ - $\sigma(x)$ aumenta con $x \rightarrow 0$ 10³ 10^{2} 10 $Q^2 (GeV^2)$ - conducta $\eta \sim$ plana dσ/dp_T(D*) (nb/GeV) 5 **Comparación con QCD:** - buen acuerdo con FGB-NLO con PDF ZEUS-NLO \Rightarrow universalidad $g(x, Q^2)$

- se observa línea color con ${\cal P}$

 $F_2^{c\overline{c}}$: contribución de $c\overline{c}$ a la función de estructura del protón (extrapolación a todo el espacio de fase)

definición usada:

$$rac{d^2 \sigma^{m{c}ar{m{c}}}(x,Q^2)}{dx dQ^2} = rac{2\pi lpha^2}{xQ^4} \{ [1+(1-y)^2] F_2^{m{c}ar{m{c}}}(x,Q^2) - y^2 F_L^{m{c}ar{m{c}}}(x,Q^2) \}$$

• obtención (extrapolación) a partir de $\sigma(D^{*\pm})$ medida:

 $F_2^{car{c}}$ de la extrapolación de la $\sigma(D^{*\pm})$ medida

(en función de x_{bj} para intervalos de Q^2)

aumenta dramáticamente cuando $x \rightarrow 0$

- consistente con F_2
- consistente con QCD
- ⇒ producción de c dominada por FGB

 $F_2^{car{c}}$ de la extrapolación de la $\sigma(D^{*\pm})$ medida

(en función de Q^2 para intervalos de x_{bj})

Grandes Violaciones de Escala de acuerdo con QCD $\Leftrightarrow g$ en P domina producción $c\bar{c}$

 $F_2^{car{c}}$ de la extrapolación de la $\sigma(D^{*\pm})$ medida

Su contribución a F_2

- si producción $c\bar{c}$ dominada por g en P:

 \Rightarrow a Q^2 grande y x pequeña F₂ prácticamente g

 \Rightarrow en acuerdo con QCD-p

Otros Canales

Reconstrucción otros mesones **D** (datos 98-00)

$$egin{aligned} D^+ &
ightarrow K^- \pi^+ \pi^+ \ D^0 &
ightarrow K^- \pi^+ \ D^+_s &
ightarrow \Phi \pi^+ &
ightarrow [K^+ K^-] \pi^+ \end{aligned}$$

- ⇒ medida fracciones fragmentación
- ⇒ nueva aportación experimental para estudio QCD
 - medidas independientes; aumento estadística
 - otras técnicas; profundización en sistemática

 $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$

Reconstrucción de $D_S^+ \rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$

Parámetros de fragmentación del quark c

 $R_{u/d} = [producción \ de \ D \ con \ carga]/[producción \ de \ D \ sin \ carga]$ $P_V^{\ d} = [prod. \ D \ cargado \ vector]/[prod. \ D \ cargado \ vector + \ seudo-escalar]$ $\gamma_s = [2 \ x \ prod. \ de \ D \ con \ quark \ s]/[prod. \ de \ D \ con \ quark \ u \ o \ d]$

Fracciones de fragmentación del quark c

 $f(c \rightarrow D_j) = \sigma(D_j) / \Sigma_i \sigma(D_j)$

Incertidumbres en predicción teórica dominadas m. fragmentación

(no proveniente de D*+)

η

1.5

х

Secciones eficaces diferenciales para la producción de

Incertidumbres en predicción teórica principalmente de fragmentación

Secciones eficaces diferenciales para la producción de

Dst

Incertidumbres en predicción teórica principal. de m_c y fragmentación

CONCLUSIONES

- El gluón dentro del protón se puede estudiar vía producción de "charm" en IPI ep en HERA
- Predicciones inequívocas de QCD-p
- "charm" medido en ZEUS vía mesones D^{*+} , D^0 , D^+ y D_s^+
- Datos consistentes con proceso FGB, FFNS
- Universalidad: el gluón estado inicial en la prod. de "charm" es consistente con el extraído de un análisis QCD-NLO de F2
- → Test no trivial de QCD-p positivo

Futuro próximo

• Medida de $D^{*\pm}$ con +MVD (datos 04-07)

- diferente tecnología: mayor precisión, distinta sistemática
- muy substancial mejora de estadística
- -importante aumento de espacio de fase de medida directa
- \Rightarrow reducción factores extrapolación para $F_2^{car{c}}$
- Recons. vértices **b** (con MVD) y extracción de F_2^{bb} (datos 04-07) \Rightarrow estudio totalmente independiente