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1. Introduction

In the discussion of random matrix theory and information theory, we basically explained the statistical
aspect of ensembles of random matrices, The minimal “information content” of our ensemble was the first
requirement we set, and we discussed it thoroughly. Now we discuss the second one, which was to find
ensembles adequate to the symmetries that our system may have. We will see that generic symmetries
restrict the kind of matrices we average over, leading to the definition of different ensembles.

2. Symmetries and Wigner’s theorem

Our hypothesis was that a system’s Hamiltonian may be modeled by a random matrix if the system
is,loosely speaking, “complex enough”. In principle, a random Hamiltonian is an Hermitian matrix with
random entries (distributed according to some probability). However, there are certain generic symmetries
that prevent some of the entries to have random values, so we have to be careful with what exactly we
choose to model with a random matrix. If the system is invariant under parity, for example, we can use
parity eigenstates as a basis for the Hamiltonian, which then splits it into two blocks in the diagonal:

H =

(

H+ 0
0 H−

)

(1)

It is clear that the parity symmetry is imposing a very restrictive condition in the Hamiltionian (a
lot of elements are zero), evident in this basis, but generally present in any basis. Therefore we don’t expect
to find generic properties of random matrices in this restricted (i.e. not-that-random) one. Nevertheless, we
can always take H+ or H− separately, and look for generic properties in any of them.

Of course, this argument applies to whatever symmetry the system may have. If we now have rotational
invariance, the Hamiltonian again splits in blocks caracterized by (J2, Jz), and we have to choose one
the blocks to look for generic properties. If there are no more symmetries, the blocks that remain can be
considered to be random matrices. The lesson is clear: We expect generic properties to be found in each
block after the partial diagonalization due to symmetry has been performed1.

Then it seems that all we have to do is determine the generic properties of random Hermitian matrices,
being aware that the don’t necessarily represent the whole Hamiltonian. Is this the whole story? It would be,
if all symmetries were represented by unitary operators. But recalling Wigner’s theorem, we know that some
perverse symmetries may be implemented by antiunitary operators. For our discussion, there will be only
one of these symmetries, which is of course time reversal2. (Note that if time reversal is (strongly) violated,
this is the whole story, and we are dealing with the symmetry class of random Hermitian matrices, called
GUE, see below)

But what happens if T is a symmetry? The first difference with antiunitary operators is that the
partial diagonalization doesn’t work. Recall how to prove that the Hamiltonian matrix elements relating
states with different eigenvalues of the parity operator P are orthogonal3. We just write:

〈+ |H| −〉 =
〈

+
∣

∣P †PHP †P
∣

∣−
〉

= −〈+ |H| −〉 (2)

And thus these elements are zero. Now we can try to do the same for time reversal. Remember the

1Note the following implication of this: In this discussion, a system either has a symmetry or it violates it strongly, as
strongly as to mix all eigenstates of the symmetry operator with random matrix elements! We will elaborate more on this later

2There is at least another known case, charge conjugation in relativistic field theories. (Note that CPT=1, T antiunitary
and P unitary forces C to be antiunitary) We won’t treat this case for simplicity.

3There is an analogous proof for continuous symmetries, but this one is makes things clearer.
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rather unusual properties of antiunitary operators (A good summary can be found in Messiah [3]). An
antiunitary operator can be written as T = UK0, where U is unitary, and K0 is the complex conjugation
operator. Under the time reversal map in Hilbert space, we have:

| b 〉 → UK0 | b 〉 (3)

〈a| → (〈a| K0)U
† (4)

O → TOT † = U(K0OK0U
†) = UO∗U† (5)

〈a|O |b〉 → (〈a|K0)U
†UO∗U†UK0 |b〉 = 〈a|O |b〉

∗
(6)

So that matrix elements transform into their complex conjugates. (This is the peculiarity of antiunitary
operators, note that they still conserve the modulus) Now try to apply the same argument as we did for
parity. Because of complex conjugation, the identity 2 no more relates a matrix element with itself but with
its complex conjugate. That implies that matrix elements between kets belonging to different representations
of time reversal are not necessarily orthogonal, this is, there is no block diagonalization. In the end we will
see that this not the important feature of time reversal, but it does say that there is something else going
on. What is the restriction to be imposed in the matrix then? This question requires to discuss time reversal
a little further.

3. Time reversal and rotational invariance

3.1. Time reversal representations

Let’s discuss first the representations of time reversal. In general, both time reversal and parity are
operations that leave the system invariant after applying them twice, because they are their own inverse.
In a representation in Hilbert space this means that T 2 or P 2 are equal to a matrix of phases. In the case
of parity this phases are irrelevant, for P 2 = eiφ → Peiφ/2Peiφ/2 = 1 and we may just redefine parity as
P ′ = Peiφ/2. However, once again due to antiunitarity, time reversal is different. First, the matrix of phases
is restricted to have entries of ±1, for if U is unitary U∗UT = 1:

UK0UK0 = eiφ → UU∗ = eiφ (7)

U = eiφUT = eiφ(eiφUT )T = e2iφU (8)

Which implies eiφ = ±1. Moreover, and this is the important part, when we have a minus, there is no
possible redefinition of T that makes the phase irrelevant. UK0UK0 = −1 = i2 → UiK0U(−i)K0 = 1 6= T ′T ′

simply due to the complex conjugation. The two cases, plus and minus, are physically different! Note that
UU∗ = −1 implies that U is at least two dimensional4.

These two cases can be identified, in three dimensions, with integer and half integer spin, respectively.
There is a simple way to understand this, which we now present. We could equally talk about total angular
momentum, but clearly the distincition will come from spin, because orbital angular momentum is always
integer. Note that we will use a particular representation of J and T to make things clear, but this identifi-
cation holds independently of the representation. The key point in this discussion is that spin as an angular
momentum must be reversed by time reversal.

We choose now the usual representation of the angular momentum operators. In the so called Condon
and Shortley convention, J+ and J− are real matrices, and since J± = Jx ± iJy, Jy is pure imaginary and Jx

4Note that, in spite of the time reversal discrete group having the structure of Z2, which is abelian, this is not in contradiction
with the fact that all unitary representations of abelian groups are one-dimensional, because this is a non unitary one.
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is real, and so is Jz. In this case, we can see that time reversal (complex conjugating) is reverting only the
y component. In order to get the full reversal of J as required, we need to add some unitary transformation
U that reverts Jx and Jz, which is of course a rotation of π around the Y axis. This seems to mean that
whenever we have spin, the matrix U in T = UK0 is exactly this rotation.

Now it’s easy to see the connection with T 2 = ±1. In the case of half integer spin, the rotation U is
bivalued and gives a −1 when applied twice, so it corresponds to T 2 = −1. In the case of integer spin the
rotation is faithful and T 2 = 1. So we see there is a connection between time reversal representations and
spin. (Note a subtle implication here. If we associate the two time reversal representations with integer and
half-integer total angular momentum, we realize that both representations are not allowed simultaneously
in a Hamiltonian, because it either has integer or half-integer angular momentum.)

3.2. How does T invariance restrict H?

Let’s now discuss the implications for the Hamiltonian when we have either of these cases. In the first
one, UU∗ = 1, is easy to prove that a change of basis B exists such that BBT = U , and thus when we change
basis the time reversal operator is just T = K0. (This means that even though we chose Jy imaginary, there
is a transformation that sets all Ji imaginary so no matrix U is required to rotate.) In this first case we
realize that 5 reduces to complex conjugation, and therefore we see that invariance under time reversal just
requires H to real. We note that in the second case there is not such transformation. We conclude then that
for integer spin time reversal invariant systems the Hamiltonian is real. Moreover, in the case of rotational
invariance, H commutes with all Ji. In the case UU∗ = 1, T = K0 and the Hamiltonian is real symmetric.
But note that in the UU∗ = −1, where U is a rotation generated by some J, H commutes with U due
to rotational invariance, and time reversal is still just K0 for the Hamiltonian. Thus this case reduces to
previous one. For time reversal and rotational invariant systems, the Hamiltonian is also real.

Now think of the case of a spin 1/2 system. We can think of the Hamiltonian as made of two parts,
one that couples to the spin and one that doesn’t:

H = A ⊗ I2x2 + B ⊗ σ1 + C ⊗ σ2 + D ⊗ σ3 (9)

Where A,B,C,D are NxN matrices, Hermitian if H is Hermitian as we want. This is a convenient form
of writing a 2Nx2N general Hermitian matrix. Now let’s see how time reversal acts. It takes the complex
conjugate and rotates in the spin space so that we have:

THT † = A∗ ⊗ I2x2 − B∗ ⊗ σ1 − C∗ ⊗ σ2 − D∗ ⊗ σ3 (10)

And we see that if time reversal is a symmetry, then A = A∗ is real symmetric but B = −B∗ is pure
imaginary antisymmetric, and so are C and D. Thinking in terms of the 2Nx2N matrix, we have surely
restricted it from being a totally random Hermitian matrix, but not to the point of being real. This is a case
somewhere in between. This kind of matrix is called self dual in the context of quaternions, which we briefly
describe now.

Quaternions are a generalization of complex numbers with three imaginary units that anticommute
with each other, î, ĵ, k̂, and square to -1: q = a + b̂i + cĵ + dk̂. We immediately realize that quaternions
may be thought as linear combinations of iσi and the identity. A dual quaternion is defined as reversing
the sign of the “vector” part (b,c,d). Going back to our Hamiltonian, and taking out i from B,C,D, we see
that H is matrix of quaternion real elements. We see clearly that the operation of time reversal may be seen
as taking the dual of the quaternion matrix and conjugating the matrices A,B,C,D, and therefore a time
reversal invariant H is called self dual real quaternion matrix. This is the third universality class. For half

integer spin, time reversal invariant systems with broken rotational symmetry, the Hamiltonian is a self dual

real quaternion matrix.(We have showed how the spin 1/2 case works, but the structure of a quaternion
matrix may be proven to work for any half integer)



4 CONCLUSIONS 4

The ensemble of quaternion real self dual matrices is invariant under transformations called symplectic.
In the lenguage of quaternions, these are quaternion matrices satisfying SD = S† = S−1, and are analogous
to unitary matrices for Hermitian ones and orthogonal matrices for real symmetric ones.

4. Conclusions

The purpose of this discussion was to show that at the end of the day there are only three possible
symmetry classes. After partial diagonalization due to generic symmetries has been performed, the blocks in
the Hamiltonian belong to one of these three. The classes usually go by the name of the transformations that
leave the ensemble invariant, so the ensemble of Hermitian matrices is rather called unitary, for example.
Moreover, the ensembles are usually taken to have Gaussian distribution. These three ensembles are:

If we don’t have time reversal invariance, the Hamiltonian is Hermitian. Since the ensemble of all
Hermitian matrices is invariant under a unitary transformation, we call this ensemble the Gaussian
Unitary Ensemble (GUE).

If we have time reversal symmetry and either a) integer total angular momentum (we may or may
not have rotational invariance) or b) half integer total angular momentum and rotational invariance,
the Hamiltonian is real symmetric. The invariance of the ensemble of real symmetric matrices under
orthogonal transformations gives it the name of Gaussian Orthogonal Ensemble (GOE).

If we have time reversal symmetry, no rotational invariance, and half integer total angular momentum,
the Hamiltonian is quaternion real. Again, this ensemble is invariant under symplectic transformations,
and so it is called the Gaussian Symplectic Ensemble (GSE).

These are the so called classical random matrix ensembles. Note that other ensembles are found when
we include other symmetries (not that usual in quantum mechanics) such as charge conjugation or chiral
symmetry. Seven more universality classes have been defined, four in the case of disordered superconductors,
and three more in the case of disorder in the Dirac equation, the so called chiral classes. There is a very
complete review in [4], and a more readable one in the appendix of [5].

It’s very interesting to note that, although we have discussed the three ensembles in a rather physical
fashion, there is a mathematical proof that the classification is exhaustive, if we are dealing with just
time reversal and rotational invariance. This proof is related to the fact that there are only three division
associative algebras over the reals: the reals themselves, the complex numbers, and the quaternions. Dyson’s
orignial paper [1] is the appropriate reference for this connection.

5. Summary

So what was the purpose of all this again? We were going to model a very complex Hamiltonian with a
random matrix, looking for generic properties that H should share with almost all of the ensemble of random
matrices, in the same sense as almost all the microstates for a given macrostate have the same physical
properties in the thermodynamic limit. We have discussed in the first section what random means exactly
in “ensemble of random matrices”, and decided that basically any probability distribution is acceptable in
the N → ∞ limit. We chose Gaussian to make calculations easier.

We now have discussed how different symmetries lead to model a complex Hamiltonian with different
ensembles. With the ensembles defined, we can now start to calculate what exactly are all these generic
properties we have talked about, and see if all this is of any use for explaining experiments. And indeed
it is! As we will see, the main prediction of random matrix theory is very easy to express: Fluctuation (or
correlation) properties of eigenvalues of a random matrix are generic and just given by its symmetry class.
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