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The properties of objects are not well defined.

They become defined when we measure them.

It can be manipulated: Magnetic fieldIt can be manipulated: Magnetic field

and measured: Fluorescenceand measured: Fluorescence

One could store a bit of information in the spin

| 0〉 |1〉

ELECTRONIC SPIN

BASIC CONCEPTS
SUPERPOSITIONS
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If we have two objects:

| 0〉 | 0〉

or we can have an „entangled state“:

| 0,0 |1,1〉+ 〉
2

| ;α β≠ 〉

Those states can be created by letting the atoms interact with each other.

BASIC CONCEPTS
ENTANGLEMENT



If we measure one and obtain 0, then the other one is also projected

| 0,0 |1,1〉+ 〉

„spooky action at a distance“

If we have two objects:

BASIC CONCEPTS
SUPERPOSITIONS



If we have MANY objects:

1 2 2
| 000...0 | 000...1 ... |111...1〉 + 〉 + + 〉Nc c c

We have a superpostions of 2    states.

We can manipulate the superpositions, make them interfere, measure, etc

N

BASIC CONCEPTS
SUPERPOSITIONS

We have new laws at hand, thus we can do new things



QUANTUM INFORMATION SCIENCE
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Quantum computation Quantum communication

Simulations 

Precission measurements

Sensing
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Circuit model

Decoherence and error correction

Experimental situation

Measurement-based QC

Dissipation-driven QC

Topological QC

Other approaches to Quantum Computing:



QUANTUM COMPUTING:

ALGORITHMS
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- We can use the box once.

- We have to find out if it is constant or one-to-one

f

Four kinds of boxes:

constantone-to -one

Black Box:

Example:

QUANTUM ALGORITHMS
EXAMPLE



Imposible: Every outcome is compatible with the two kinds of boxes
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By using quantum superpositions, it is possible

| 0 |1〉+ 〉

| 0 |1〉− 〉 | 0 |1〉− 〉

| 0 |1〉± 〉 (for const or 1-to1, resp.)

The existence of quantum superpositions gives us new possibilities 

and allows us to solve certain tasks in a more efficient way

(Deutsch, 89)

QUANTUM ALGORITHMS
EXAMPLE



QUANTUM COMPUTATION

new laws

new algorithms

more efficient



Mathematical problems can be classified according to their difficulty:

i.e. scaling of the computation time with the size of the input.
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Quantum computers are more efficient than classical computers:

t

QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY



18819881292060796383869723946165043

98071635633794173827007633564229888

59715234665485319060606504743045317

38801130339671619969232120573403187

9550656996221305168759307650257059

4727721461074353025362

2307197304822463291469

5302097116459852171130

520711256363590397527

3980750864240649373971

2550055038649119906436

2342526708406385189575

946388957261768583317

QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY

Example: multiplication and factoring:

(Shor, 94)



Classical computational complexity:

P

NP

multiplication

Factorization

P=NP?

3-SAT

QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY



P

NP

multiplication

FactorizationBQP

P=BQP? BQP=NP?

QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY

Quantum computational complexity:

3-SAT



P

NP

multiplication

FactorizationBQP

NPC

Discrete log. ?
(mod N) =Z A

Pell‘s eq.

2 2
1x dy− =

There are other problems for which the gain is polynomical

3-SAT

QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY

Quantum computational complexity:



QUANTUM ALGORITHMS

Hidden subgroups:
- Abelian (95)
- (98)
- Normal (00)
- Quasi-Abelian (01)
- (02)
- Quasi-Hamiltonian (04)
- q-hedrics (04)
- (04)
- Heisenberg type (05)
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Factoring (94)
Discrete Log (94)
Database search (96)
Pell‘s equation (02)
Transversal graph (03)
Special search (03)
Element distinction (03)
Other graph problems (04)
Tests matrix products (04)
Jones‘ polynomials (05)
Matrix powers (06)
NAND trees (07)
Differential equations (08)

Algorithms:



QUANTUM COMPUTING:

CIRCUIT MODEL



Classical computer:

1. Bits

0 0 0 01 1

2. Logical gates

0 1→

Quantum computer:

1. Qubits

| 0〉|1〉

2. Logical gates

| 00 | 00 |11〉 → 〉+ 〉

| 0〉|1〉|1〉 |1〉

o superposiciones

3Initialization and measurement

0 0 0 00 0

3. Initialization and measurement

0 0 0 00 0

QUANTUM COMPUTING
CIRCUIT MODEL

(Deutsch, 85)



Manipulation: Universal quantum gates

1. Phase: 2. Hadamard:

1-qubit gates:

2-qubit gates:

1. Control-NOT
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QUANTUM COMPUTING
CIRCUIT MODEL
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Requirements:

- Identify qubits.

- Initialization.

- Controlled manipulation:

Logic gates:

+ single-qubit

+ 2-qubit 

- Read-out.

+ Scalable

QUANTUM COMPUTING
CIRCUIT MODEL



QUANTUM COMPUTING:

DECOHERENCE AND ERROR CORRECTION



Probability:

Prob.      : nothing happens

Prob.           : error1 p−

p

0 1↔

1 error messes up the outcome.

Success probability:
N

p

Número of repetitions:
1

N
p

�

We have lost the exponential speed-up!

qubit:

Interaction with the environment destroys the computation.

QUANTUM COMPUTING
DECOHERENCE



|1 |111〉 → 〉
| 0 | 000〉 → 〉

- We detect if all the qubits are in the same state

- If not, we use majority vote to correct the one which is different.

Redundant codes:

It fails if there are two or more errors

Error probability:

Continuous measurement: Repeating the detection-correction procedure

very often the errors can be kept arbitrarily small.

QUANTUM COMPUTING
ERROR CORRECTION

)1()1(
2

pp −<<− for small p

(Shor, Steane, 95)



Fault-tolerant error correction:

- There are errors during the logical gates.

- There are errors while correcting errors...

Probability: for each elementary step.

Error threshold:

QUANTUM COMPUTING
ERROR CORRECTION

43
1010

−− −



QUANTUM COMPUTING:

EXPERIMENTAL SITUATION



QUANTUM SYSTEMS
EXPERIMENTAL PROGRESS

Atomic, molecular, and optical systems



QUANTUM SYSTEMS
EXPERIMENTAL PROGRESS

Solid-state systems



EXPERIMENTAL SITUATION
IONS

Crystals: 1-1.000-100.000 ions

Single and two-qubit gates: > 99% fidelities

Detection: 99.99

Entanglement of up to 8 ions.

(Innsbruck, Boulder, Munich,
Oxford, Barcelona, Maryland, …) 

Mechanism:

|0>

|1>

|0>

|1>

d

Achievements:

| 0〉 |1〉



EXPERIMENTAL SITUATION
IONS

Mechanism: Achievements:

Motion, simpathetic cooling, etc

Violation Bell‘s inequalities

Teleportation

Distant entanglement

Precission measurements

Simulation

Scalable versions:



EXPERIMENTAL SITUATION
NEUTRAL ATOMS IN TRAPS

From single atoms to condensates

BEC … optical lattices …

Single qubit gates: > 90% fidelities

Two atoms: Rydberg blockade/collisions

Detection: 99.99%

Moving atoms

Quantum simulations

(Paris, Vienna, Hannover, London, 
Winsconsy, Boulder, Munich, …) 

Mechanisms:

| 0〉 |1〉
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Achievements:



OTHER APPROACHES:

MEASUREMENT-BASED QUANTUM COMPUTING



Create an entangled-state (cluster):

(Raussendorf and Briegel, 01)

Perform local measurements:

OTHER APPROACHES
MEASUREMENT BASED QC



Teleportation-based gates:

(explanation: Verstraete and IC, 03)

OTHER APPROACHES
MEASUREMENT BASED QC
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can be carried out as follows:



Teleportation-based gates:

(explanation: Verstraete and IC, 03)
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Teleportation-based gates:

(explanation: Verstraete and IC, 03)

OTHER APPROACHES
MEASUREMENT BASED QC

0

ϕ

H

0

0

0

can be carried out as follows:

phase and Hadamard gates



Teleportation-based gates:

(explanation: Verstraete and IC, 03)

OTHER APPROACHES
MEASUREMENT BASED QC
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Teleportation-based gates:

(explanation: Verstraete and IC, 03)

OTHER APPROACHES
MEASUREMENT BASED QC
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can be carried out as follows:

Controlled-not gate



| Φ〉

In a 2D lattice

OTHER APPROACHES
MEASUREMENT BASED QC
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| Φ〉

In a 2D lattice

OTHER APPROACHES
MEASUREMENT BASED QC



OTHER APPROACHES:

DISSIPATION-DRIVEN QUANTUM COMPUTING



OTHER APPROACHES
DISSIPATIVE QC

Quantum computing:

2 1
| ... | 00...0Ψ 〉 = 〉M MU U U

ϕ H

ϕ

H

H

ϕ H| 0〉

| 0〉

| 0〉

| 0〉

| 0〉

| 0〉

i)   Initialization:

ii)  Controlled manipulation:

iii)  Detection.

| 00...0〉

Avoid decoherence/dissipation:| ρΨ〉 →

use

(Verstraete; Wolf and IC, 09)
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no coherent
interaction

local
traceless 

Unique steady state: ρss

ΨM can be obtained from      with prob.ρss
1/ M

N qubits:

The steady state is reached after a time 2
( )

−Ο M

2 2
(3 2 )κ π −= + M

The Liouvillian can be engineered by coupling

pairs of qubits to a local environment

M gates

OTHER APPROACHES
DISSIPATIVE QC

(Verstraete; Wolf and IC, 09)



2 1
| ... | 00...0Ψ 〉 = 〉M MU U U

Standard QC:

Main Idea:

With dissipation: Use Feynman construction:

„time-register“: M-level system

Define: 2 1
| ... | 00...0Ψ 〉 = 〉t tU U U

Assume we start out with: | 00...0 | 0〉⊗ 〉

We take †
| 1 | | 1|= ⊗ + 〉〈 + ⊗ 〉〈 +

t t t
L U t t U t t as Lindblad operators
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The evolution takes place in the subspace spanned by | |Ψ 〉⊗ 〉t t

For → ∞t one ends up in 0
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By measuring the second register we obtain the right state with prob. 1/(1+M)

OTHER APPROACHES
DISSIPATIVE QC

(Verstraete; Wolf and IC, 09)



OTHER APPROACHES:

TOPOLOGICAL QUANTUM COMPUTING



Main Idea:

OTHER APPROACHES
TOPOLOGICAL QC

(Kitaev 97)

Non-abelian anyons

Gates are performed by „braiding“

Gates are robust against imprecisions

The state is „topologically proctected“ against decoherence

Search for systems with (universal) non-abelian excitations!



Multi-disciplanary area:

A theory to be developed …

Applications:

Communication

Computation

Precission measurement

Sensors

Materials science

…

OUTLOOK

Common objectives.

Next step after nano-science.

Main distinctive feature: coherent quantum phenomena.

Preparation of the „second quantum revolution“

Goal: control of quantum systems


