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= = BASIC CONCEPTS

| 4" SUPERPOSITIONS

¢ The properties of objects are not well defined.

¢ They become defined when we measure them.

ELECTRONIC SPIN

Fh B

10) 1)
< It can be manipulated: Magnetic field

¢ and measured: Fluorescence

One could store a bit of information in the spin
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superposition
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¢ If we have two objects:
LONEON
10 10)

or we can have an ,entangled state®:

D

10,0)0+11,1) #a;p5),

Those states can be created by letting the atoms interact with each other.
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¢ If we have two objects: |0,0)+11,1)

2 2

If we measure one and obtain 0, then the other one is also projected

,SPOoOKy action at a distance*
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¢ If we have MANY objects:
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¢,1000...0) + ¢, 1000... 1) +...+c, 1111...1)

¢ We have a superpostions of 2N states.

¢ We can manipulate the superpositions, make them interfere, measure, etc

We have new laws at hand, thus we can do new things



~, QUANTUM INFORMATION SCIENCE

Quantum computation Quantum communication
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¢ Simulations
¢« Precission measurements
« Sensing
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¢ Algorithms

¢ Circuit model

¢ Decoherence and error correction

¢ Experimental situation

¢ Other approaches to Quantum Computing:
¢ Measurement-based QC
¢ Dissipation-driven QC
¢ Topological QC



QUANTUM COMPUTING:
ALGORITHMS



F"—' QUANTUM ALGORITHMS

EXAMPLE
o Black Box:
X X
input: f : output
y — — Y@ f(x)
x,ye {0,1) f:{0,1} —>{0,1}
B Four kinds of boxes:
one-to -one constant
f.()%() f.Oel f-0_>0 f_Oel
P11 2110 “11=0 2111
o Example: . |
fer
0 — — 0®1=1

- We can use the box once.
- We have to find out if it is constant or one-to-one



EXAMPLE

)-‘_' QUANTUM ALGORITHMS

(Deutsch, 89)

Imposible: Every outcome is compatible with the two kinds of boxes

1 1 1 1
fb,z fc,l
0 — — 0 0 — — 0

By using quantum superpositions, it is possible

10)+11) |0)+11) (for const or 1-to1, resp.)

10)—11) —— — 10)=11)

The existence of quantum superpositions gives us new possibilities
and allows us to solve certain tasks in a more efficient way
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new laws

new algorithms

more efficient
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QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY

Quantum computers are more efficient than classical computers:

Mathematical problems can be classified according to their difficulty:
i.e. scaling of the computation time with the size of the input.

2
cn

cn

11 (number of digits)
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| 4." COMPUTATIONAL COMPLEXITY

' S

(Shor, 94)

Example: multiplication and factoring:

3980750864240649373971
2550055038649119906436
2342526708406385189575
946388957261768583317

X

4727721461074353025362
2307197304822463291469
5302097116459852171130
520711256363590397527

18819881292060796383869723946165043
98071635633794173827007633564229888
59715234665485319060606504 743045317
38801130339671619969232120573403187
9550656996221305168759307650257059




== QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY

Classical computational complexity:

multiplication

P=NP?



== QUANTUM ALGORITHMS
COMPUTATIONAL COMPLEXITY

Quantum computational complexity:

V;

multiplication

P=BQP? BOQP=NP?



== QUANTUM ALGORITHMS
! (il * COMPUTATIONAL COMPLEXITY

Quantum computational complexity:

dte log. Z'(mod N) = A

Actorization

multiplication

There are other problems for which the gain is polynomical

EXPTIME

PSPACE = NPSPACE = IP
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Algorithms:

QUANTUM ALGORITHMS

@ Factoring (94) \°
@ Discrete Log (94)

o Database search (96)

@ Pell’s equation (02)

@ Transversal graph (03)

@ Special search (03)

o Element distinction (03)

@ Other graph problems (04)
0 Tests matrix products (04)
@ Jones’ polynomials (05)

® Matrix powers (06)

8 NAND trees (07)

@ Differential equations (08)

o Hidden subgroups:
- Abelian (95)
- 04x11, (98)
- Normal (00)
- Quasi-Abelian (01)
- 07 O (02)
- Quasi-Hamiltonian (04)
- g-hedrics (04)
- 0% x0 , (04)
- Heisenberg type (05)



QUANTUM COMPUTING:
CIRCUIT MODEL
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QUANTUM COMPUTING
CIRCUIT MODEL

(Deutsch, 85)

Classical computer:

1. Bits

[ € [ € € €

010010

2. Logical gates

0—1

3lnitialization and measurement

[ € [ € € €

000000

Quantum computer:

1. Qubits

€ € [ € € €

| O I T 1) O) 1)
0 superposiciones

2. Logical gates
100) —100)+111)

3. Initialization and measurement

[ [ € [ [ [

000000



~ QUANTUM COMPUTING
—L CIRCUIT MODEL

Manipulation: Universal quantum gates

o 1-qubit gates:

1. Phase: @ 2. Hadamard:
0o 10) 0) & [0)+ 1
1) &) 1) & 10)=1)
o 2-qubit gates:
ABRS 00) <> |00)
1. Control-NOT Ol> o ‘01>
10) <> [11)
D 1) & [10)




CIRCUIT MODEL

;-‘—- QUANTUM COMPUTING

Requirements:

10y —(@ H < - Identify qubits.
- Initialization.
1 0) > - Controlled manipulation:
Logic gates:
10) OB < + single-qubit
+ 2-qubit
10) <> @ S - Read-ouit.
K0 R D H
) O ~ S + Scalable
1 0) H 2




QUANTUM COMPUTING:
DECOHERENCE AND ERROR CORRECTION



DECOHERENCE

J-‘_-' QUANTUM COMPUTING

@ |Interaction with the environment destroys the computation.

1 error messes up the outcome. e eVle e ¢
@ Probability:

: Prob. P : nothing happens
qubit:
Prob. 1-p :error|0) «|1)

Success probability: p"

Numero of repetitions: LN
p

We have lost the exponential speed-up!



= QUANTUM COMPUTING
1 ERROR CORRECTION

(Shor, Steane, 95)

o Redundant codes:

10) —! 000) coecocaors

1) —I111) / \

- We detect if all the qubits are in the same state
- If not, we use majority vote to correct the one which is different.

It fails if there are two or more errors

Error probability: (1— p)* << (1— p) forsmallp

o Continuous measurement: Repeating the detection-correction procedure
very often the errors can be kept arbitrarily small.



ERROR CORRECTION

J-‘-' QUANTUM COMPUTING

B Fault-tolerant error correction:

- There are errors during the logical gates.
- There are errors while correcting errors...

B Error threshold:

Probability: 10~ —10™* for each elementary step.



QUANTUM COMPUTING:
EXPERIMENTAL SITUATION



=4~ QUANTUM SYSTEMS
/|7 EXPERIMENTAL PROGRESS

¢ Atomic, molecular, and optical systems
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/|7 EXPERIMENTAL PROGRESS

¢ Solid-state systems




J=/ = EXPERIMENTAL SITUATION
L} IONS

Phase I1l 2 planes Jid
staggered square

Phaﬂe | plane
single plane hexagonal

(Innsbruck, Boulder, Munich,
Oxford, Barcelona, Maryland, ...)

¢ Mechanism: ¢ Achievements:

¢ Crystals: 1-1.000-100.000 ions

« Single and two-qubit gates: > 99% fidelities
¢« Detection: 99.99

¢ Entanglement of up to 8 ions.

10) 1)




IONS

;—‘——' EXPERIMENTAL SITUATION

¢ Scalable versions:

processor unit

L3 3 L 3

mermanry

¢ Mechanism: ¢ Achievements:
¢ Motion, simpathetic cooling, etc
'\'\M"\' ¢ Violation Bell‘s inequalities
) « Teleportation

¢« Distant entanglement
¢ Precission measurements
¢ Simulation



4 EXPERIMENTAL SITUATION
14, NEUTRAL ATOMS IN TRAPS

¢ Achievements:

: (Paris, Vienna, Hannover, London,
¢ From single atoms to condensates Winsconsy, Boulder, Munich, ...)

¢« BEC ... optical lattices ...

¢ Single qubit gates: > 90% fidelities Selective
« Two atoms: Rydberg blockade/collisions W W inolicual Dl
Traps

« Detection: 99.99%
<« Moving atoms
< Quantum simulations ﬁf

. /
Dipole Traps

teeeteeet Ittl\t/licrolens Array

¢ Mechanisms:

—

T

~

10) 1)




OTHER APPROACHES:
MEASUREMENT-BASED QUANTUM COMPUTING
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= OTHER APPROACHES

" MEASUREMENT BASED QC

(Raussendorf and Briegel, 01)
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¢ Create an entangled-state (cluster):

¢ Perform local measurements:

CLe U e eEeEOEeweewesd
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" MEASUREMENT BASED QC

(explanation: Verstraete and IC, 03)

¢ Teleportation-based gates:

0) | H
0) 'T

@ L/

can be carried out as follows:

‘0> o e—e 0—

‘0> 0 c—ele—r
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" MEASUREMENT BASED QC

(explanation: Verstraete and IC, 03)

¢ Teleportation-based gates:

0) | H
0) 'T

@ L/

can be carried out as follows:

‘0> OF—re —

‘0> 0 r—ele—e




\—— OTHER APPROACHES
" MEASUREMENT BASED QC

(explanation: Verstraete and IC, 03)

¢ Teleportation-based gates:

0) | H
0) 'T

@ N

can be carried out as follows:

‘O> o —¢

f—

0) o

phase and Hadamard gates
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" MEASUREMENT BASED QC

(explanation: Verstraete and IC, 03)

¢ Teleportation-based gates:

0) | H
0) 'T

@ L/

can be carried out as follows:

‘0> 0,

f—

0) o
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" MEASUREMENT BASED QC

(explanation: Verstraete and IC, 03)

¢ Teleportation-based gates:

0)

0)

can be carried out as follows:

— 1

?,,\u
[ )
[ )

Controlled-not gate




/= OTHER APPROACHES
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o |n a 2D lattice
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In a 2D lattice
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OTHER APPROACHES:
DISSIPATION-DRIVEN QUANTUM COMPUTING



~ OTHER APPROACHES
F‘_ DISSIPATIVE QC

(Verstraete; Wolf and I1C, 09)

Quantum computing:

10) @ H—< i) Anitiahzationtoo—6—

10) < i) Controfted-maniputationt ¥ =t,—t;t,T6070)
0 @O {HHO i) Detection

10) P1+—o—< . ' o

10) DT o Aamélgecoherence/dlssmatlon.|lP>ep

10) [H— <




~ OTHER APPROACHES
—L DISSIPATIVE QC

(Verstraete; Wolf and I1C, 09)

N qubits:
e e e e e e 0 € 0 e e ¢ ;,;;,;;;;;/;
10) (@ [H] 9
. . 1
10) AN P MZQPQ _5|:ZL}L<Lk’pj|
0 -@-S—HE-S-< k T
o~ no coherent \ local
1 0) N @< interaction traceless
10) - D——D—H—<
10) m—< * Unique steady state: o,

* The steady state is reached after a time O(M )
¥, Y=U,,..U,U,100..0)

K=7’(3+2M)~
M gates
* ¥, can be obtained from p_ with prob. 1/ M

e The Liouvillian can be engineered by coupling
pairs of qubits to a local environment
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|
i R

;.

" DISSIPATIVE QC

Main Idea: (Verstraete; Wolf and 1C, 09)

o Standard QC:
e e e e e e e |V¥Y,)=U,.UU100.0

o With dissipation: Use Feynman construction:

Jime-register’: M-level system
. . 1
Prre-—Tgh "g-Tg" Gy gl o lg "o 's iy p:ZLkaL_E{ZLZLk’p}
o Define: I'¥,)=U...U,U, 100...0)

e Assume we start out with: 100...0)®10)

*Wetake L =U ®It+1)t1+U ' ®It)t+11 as Lindblad operators

® The evolution takes place in the subspace spanned byl¥,)®1¢)
. 1 A
e For t > one ends up in p, :mgl‘ﬂ)(‘{'t | ® 1)z

* By measuring the second register we obtain the right state with prob. 1/(1+M)



OTHER APPROACHES:
TOPOLOGICAL QUANTUM COMPUTING



~ OTHER APPROACHES
1 TOPOLOGICAL QC

(Kitaev 97)

o,
AN

Main Idea:

Non-abelian anyons

® Gates are performed by ,braiding*
® Gates are robust against imprecisions

® The state is ,topologically proctected® against decoherence

Search for systems with (universal) non-abelian excitations!
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¢ Multi-disciplanary area:

¢ Applications:

¢ Communication

¢ Computation

¢ Precission measurement
¢ Sensors

¢ Materials science

\ -

[

Main distinctive feature: coherent quantum phenomena.
Common objectives.

e

e

Next step after nano-science.

e

Preparation of the ,second quantum revolution®

¢ Goal: control of quantum systems
¢ A theory to be developed ...



