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Motivation (1/11)

Experimental discovery of 3 very light v, species
» Super-Kamiokande: evidence for v oscillations in 1998
» Oscillations = Misalignment between Mass and Flavour

basis (W*lgl/i) = massive vy,

» Neutrino Oscillations = Neutral Lepton Flavour Violation
» Potentially inducing cLFV?

Since then

» 5 out of 7 (or 9) neutrino oscillation parameters determined
to good precision

2 2
Am3y, |Am3y |, 012, 023, 613

» Missing:
d, 1, ¢2,my,  (plus hierarchy)

» Very recently (Daya Bay v, — 7,):
013 7é 0at 520 & bfp 013 ~ 9°



Massive v SM extensions (2/11)
Naive vr-extended SM
» Unnaturally small Yukawa couplings <= Smallness should
be related to a symmetry enhancement in the vanishing
couplings limit! (*t-Hooft)
» Very suppressed cLFV observables: o m, /My ~ 0, e.g.

BR(l; — ljy) < 107°®

The seesaw mechanism:
» Assumes v is a Majorana particle
» Naturalness: smallness of m, /v with Y ~ O(1) justified
by breaking Lepton Number Conservation (or B — L) at a
very high energy scale! (close to GUT?)
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» Appealing scenario to explain the present BAU as
generated by Leptogenesis from a B-symmetric big-bang




SM seesaw or SUSY seesaw? (3/11)
SM+Seesaw?

» If motivated by Y, ~ O(1) (& A > 1010 GeV), it can
aggravate the Higgs “fine tuning” problem!

» Hard to reconstruct the parameters of the underlying
mechanism and to falsify a particular seesaw mechanism

» Does not solve the Hierarchy problem nor does it provide a
dark matter candidate

» Still, very suppressed cLFV since at low energy all LF'V is
as in the SM

SUSY+Seesaw?

» Solves the Hierarchy problem and ameliorates the Higgs
“fine tuning” problem

» Provides dark matter candidates, the most popular being
the lightest neutralino (x9)

» Potentially observable cLFV since the seesaw also leaves
imprint upon the charged slepton sector!



SUSY seesaw assumptions (4/11)

Choose SUSY +Seesaw type-I
» Avoid CP and Flavour problems = ¢cMSSM
= Universal soft-breaking masses
& tri-linear soft-breaking (proportional to Yukawas)

Sleptons: m% = m% =mil, Al=A4Y' (@ GUT)
» Mimicking the light-neutrinos: three species of N ~ Vi ® 17;[%
1 . O a A
Weesaw-1 = iNMNN - H,LY"N

enlarging the soft-breaking sector
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[Y” is the unique source of LFV!]




SUSY seesaw consequences (5/11)
At low energies:
» m,, after EWSB, from the unique dimension five operator
» Higher dimension operators quite suppressed by
naturalness requirements on Y”

» Deviation from mSUGRA-inspired flavour-blindness @
GUT due to RGE induced effects
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Example of Slepton Flavour Mixing (6/11)
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» Increasing the seesaw scale — natural Y” = slepton
flavour mixing increases

» Usually: two-(flavour,left-handed) slepton mass eigenstates



cLFV observables (7/11)

At the LHC we expect to
» Discover SUSY!
» Study the Slepton sector via x§ — EF - E0TY

am

Slepton Mass Splittings (SMS): i, 0;) ~ O(0.1%)

» cLFV decays xJ — E;rf; )

Low energy experiments we currently know and expect (e.g.)

BR(p — ev) < 2.4 %10~ (MEG @ PSI, 2011) 10~ (MEG)
BR(T — ) < 4.5 x 1078 (Belle @ KEKB, 2006) 1079 (SuperB)
10716 (Mu2e @ Fermilab)

CR(p—e,Ti) < 4.3x 1072 (SINDRUM II @ PSI, 1993)
10~1'8 (PRISM/PRISME @ J-PARC)



SUSY seesaw cLFV (8/11)
» cLFV at low energy: SM,, — SUSY seesaw

(SM+neutrino oscillations)
Y

2
0 4 o (Uins it Ulins)
2 vy J MNSM&V MNS ij



SUSY seesaw cLFV (8/11)

» cLFV at low energy: SM,, — SUSY seesaw
(SUSY+neutrino oscillations)
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SUSY seesaw cLFV (8/11)

» cLFV at low energy: SM,, — SUSY seesaw
(SUSY+neutrino oscillations)
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SMS and low energy cLFV interplay (9/11)
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» HMI1: If slepton mass splittings (SMS) are observed at
LHC = MEG should observe y — ey & M3 ~ 10 GeV
(dependent on 6;3)

» HM1: Given 613 ~ 9°, observation of SMS would be
incompatible with present bounds on BR(u — ev)!

» SU1L: Tight correlation between SMS and low energy cLFV



Edges in leptonic invariant mass distributions (10/11)
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» Two mass eigenstates = 2-edges
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» 3-edges = (in)direct evidence of sleptonic cLFV
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Conclusions (11/11)

Assuming minimal supergravity inspired SUSY breaking + the
standard natural seesaw

> A tight correlation exists between low energy cLFV within
future sensitivity and potentially observable slepton mass
splittings at the LHC

» Multiple edges in flavour conserving di-leptonic invariant
mass distribution already allow to hint towards sizable
charged (s)lepton flavour violation

We have also conducted a similar analysis for the type-III
Work in progress: prospects for the SUSY seesaw in a ete™ or
e~ e~ Linear Collider
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Point | mg (GeV) | My 5 (GeV) | Ay (TeV) | tan
P1 110 528 0 10
P2 110 471 1 10
P3 137 435 -1 10
P4 490 1161 0 40

P5-HM1 180 850 0 10
P6-SU1 70 350 0 10

Table: mSUGRA benchmark points selected for the LE'V analysis:
mg, My /o (in GeV) and Ag (in TeV), as well as tan 3. For all points
we take p > 0. Points P5-HM1 and P6-SU1 are LHC CMS- and
ATLAS-proposed benchmark points.



Point ]\4]\[1 (GQV) ]WN2 (GeV) MN3 (GGV) 013
P’ 1010 5 x 1010 5 x 1013 0.1°
p” 1010 1012 5 x 1012 1°
P 10" 10" 10" 0.1°

Table: Seesaw benchmark points. For the remaining parameters we

have taken R =1, and ¢1 = ¢ =§ = 0.
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Figure: Comparison between “real” (dashed lines) and “effective”
(full) slepton mass differences (€;, — fir,), normalised to the average
€1, iy, mass, as a function of Ay (in GeV). We have considered R =1,
013 = 0.1°, My, = 10'° GeV, My, = 10! GeV, taking three distinct
values for My, = 10'3 GeV (red), My, = 10'* GeV (green) and

My, = 10" GeV (blue). The mSUGRA parameters have been set as
for point P1 (except for |Ap| < 1.2 TeV). Black lines denote points
excluded due to the violation of at least one experimental and/or
observational constraint.
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Figure: On the left, 7/u flavour ratio in ji;, mass eigenstate as a function of
My, (in GeV). For the mSUGRA benchmark points of Table 1, we set R =1,

613 = 0.1° (with § = 1,2 = 0), and take My, = 100 GeV, My, = 10! GeV. On
the upper axis we display the values of Y35. The secondary panel illustrates

|Rl5uL |2 and |Rl5_,_L |2 for the same My, interval. On the right we depict the
flavour content of the 3 heavier mass eigenstates: red - €r,, green - fir,, blue
(magenta) - 71,(g), for P5-HM1 and P6-SU1, illustrating both the cMSSM case
(on the far left) and the type-I seesaw, for three values of My, (with the

remaining seesaw parameters as before).
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Figure: Upper left (right) panel: BR(u — ey) (BR(7 — p)) on the left y-axis as
a function of the mass difference é;, — fir,, normalised to the average €y, fi;, mass,
for seesaw variations of point P5-HM1. We display the corresponding predictions
of CR(u — e, Ti) on the secondary right y-axis. Lower panels: same as above, but
for point P6-SU1. Horizontal lines denote the corresponding current
bounds/future sensitivities. The distinct coloured regions correspond to three
different values of My, = {102, 103, 10'*} GeV. The remaining parameters
were set as My, = 1010 GeV, My, = 10! GeV, 613 = 0.1° and the complex R
matrix angles have been randomly varied as |0;| € [0, ], and arg(6;) € [—, 7].
The crosses correspond to the different seesaw benchmark points: from smaller to
larger mass splittings one has HM1” (SU1”), HM1’ (SU1’), HM1"” (SU1"""), for
the upper (lower) panels.
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Figure: BR(x3 — ppx)) as a function of the di-muon invariant mass
my, (in GeV) for different SUSY seesaw points (see Tables 1 and 2).
Upper panel: P1” (red), P2’ (pink), P3’ (blue) and P6-SU1" (black).
Dotted (coloured) lines denote in both panels the curves for the
corresponding cMSSM case. Secondary (right) y-axes denote the
corresponding expected number of events for /s = 7 TeV and 14
TeV, respectively with £ =1 fb™" and £ = 100 fb™ .



