Higgs Mediated LFV in the Supersymmetric Inverse Seesaw Model

Cédric Weiland

Laboratoire de Physique Théorique d'Orsay, Université Paris-Sud 11, France

Invisibles ITN pre-meeting Madrid, March 29th, 2012

Motivations	Inverse Seesaw	Supersymmetry	Charged LFV	Results
Dlon				

- Neutrino oscillations = Neutral lepton flavour violation.
 - Why not have charged lepton flavour violation (cLFV) ?
 - cLFV arises from higher order processes
 ⇒ negligible in the Standard Model
 - If observed:
 - Clear evidence of physics at a higher scale
 - Probe the origin of lepton mixing
 - Probe the origin of new physics
 - Complementary to (other) neutrino and collider experiments $\Rightarrow (g-2)_{\mu}$, EDM, U_{PMNS} non-unitarity, etc

Motivations

- BSM to generate $m_{\nu} \neq 0$
 - Radiative models
 - Extra dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanism → BAU through leptogenesis ?
- The SM doesn't only lack neutrino masses ⇒ The hierarchy problem
 - Strongly coupled theories : Technicolor, Composite Higgs
 - Extra-dimensions : Randall-Sundrum, Large extra dimension
 - Extending the SM field content/gauge group : 2HDM, Little Higgs, 4th generation, etc
 - Supersymmetric extensions : MSSM, NMSSM → Gauge coupling unification, DM candidate, graviton in local SUSY

The Seesaw Mechanisms

- $m_{\nu} \neq 0 \Rightarrow$ New physics at a high scale (> SM)
- Seesaw mechanism: Consider new fields at this scale ($\sim M_R$) and Majorana mass terms \Rightarrow Generate m_{ν} in a renormalizable way
- Example: Type I seesaw $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -Y^{\ell} \overline{L} \Phi \ell_R Y^{\nu} \overline{L} \tilde{\Phi} \nu_R \frac{1}{2} M_R \overline{\nu_R^{C}} \nu_R + \text{h.c.}$ \Rightarrow After EW symmetry breaking, a neutrino mass matrix appears $M_{6\times 6}^{\nu}$

 $M^{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^{\mathsf{T}} & m_R \end{pmatrix} \qquad m_D = vY^{\nu} \text{ Dirac mass matrix} \\ \Rightarrow \text{ Seesaw limit } M_R \gg m_D \\ m_{\nu}^{\text{light}} \approx -m_D M_R^{-1} m_D^{\mathsf{T}} \qquad \nu^{\text{light}} \approx \nu_L + \nu_L^C \\ m_{\nu}^{\text{heavy}} \approx M_R \qquad \nu^{\text{heavy}} \approx \nu_R + \nu_R^C \end{cases}$

• M^{ν} symmetric (Majorana ν) $\Rightarrow M^{\nu} = ZD_{\nu}Z^{\dagger}$ with Z unitary matrix $Z = \begin{pmatrix} V & Y \\ X & W \end{pmatrix}$

The same goes for M^ℓ the charged leptons mass matrix $\Rightarrow M^\ell = A_R D_\ell A_L^\dagger$ with $A_{R,L}$ unitary matrices

 $\Rightarrow U_{PMNS} = A_L^{\dagger} V$ leptonic mixing matrix (similar to V_{CKM})

Effective approach to seesaw mechanisms

- Notice that lepton number conservation is accidental in the SM (from the gauge group, field content and renormalizability)
- Need to violate L conservation to generate m_ν ⇒ Effective non-renormalizable operators
- Unique dimension 5 operator for all seesaw mechanisms
 → Violates lepton number L ⇒ Majorana neutrinos

$$\delta \mathcal{L}^{d=5} = \frac{1}{2} c_{ij} \frac{(H \cdot L_i)^{\dagger} (H \cdot L_j)}{\Lambda} + \text{h.c.}$$

- To distinguish the several seesaw mechanisms, either
 - Directly produce the heavy states (LHC, ILC)
 - Look for dimension 6 (or higher) operators effects \rightarrow LFV

The Inverse Seesaw Mechanism

- Type I seesaw: $M_R \simeq 10^{14}$ GeV with natural Yukawa $Y_{\nu} \sim \mathcal{O}(1)$ or $M_R \sim 1$ TeV with Yukawa $Y_{\nu} \sim \mathcal{O}(10^{-6})$ \Rightarrow cLFV is suppressed
- Inverse seesaw: $M_R \simeq 1$ TeV with natural Yukawa $Y_{\nu} \sim O(1)$ \Rightarrow cLFV is much less suppressed
 - → Might be testable at the LHC and future B factories (SuperB)
- Inverse seesaw \Rightarrow Consider fermionic gauge singlets N_i (L = -1, i = 1, 2, 3) and X_i (L = +1, i = 1, 2, 3) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{inverse} = Y_{ij}^{\nu} H \cdot L_i N_j - (M_R)_{ij} N_i X_j - \frac{1}{2} (\mu_X)_{ij} X_i X_j + \text{h.c.}$$

$$m_D = Y^* v$$

$$m_\nu \approx \frac{m_D^2 \mu_X}{m_D^2 + M_R^2}$$

$$m_{1,2} \approx \mp \sqrt{m_D^2 + M_R^2} + \frac{M_R^2 \mu_X}{2(m_D^2 + M_R^2)}$$

x 71/

1 1 1:41-

The Minimal Supersymmetric Model

- Same gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Field content = SM fields and their SUSY partners
 ⇒ Except for the Higgs sector → Up- and down-type Higgs
- More than a 100 free parameters, most of them from soft SUSY breaking terms

 \Rightarrow Work in constrained frameworks (or find a SUSY breaking mechanism)

- mSUGRA: 4 free parameters $m_{1/2}$, m_0 , A_0 and sign(μ) \rightarrow Nearly entirely excluded
- Constrained MSSM: 5 free parameters $m_{1/2}$, m_0 , A_0 , $\tan(\beta)$ and $\operatorname{sign}(\mu) \rightarrow \operatorname{Very}$ restrictive boundary conditions
- Non-Universal Higgs Mass model (NUHM): 7 free parameters $m_{1/2}, m_0, m_{H_u}, m_{H_d}, A_0, \tan(\beta)$ and sign(μ) \rightarrow Still verify the MFV paradigm

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Supersymmetric Seesaw Models

- No ν_R in the MSSM $\Rightarrow m_{\nu} = 0$ \rightarrow Implement a seesaw mechanism
- Non diagonal neutrino Yukawa couplings
 ⇒ LFV in the slepton mass matrices (radiatively induced)
 ⇒ LFV at low energies through RGE
- Amount of cLFV proportional to the Yukawa couplings
 ⇒ In the usual seesaw (type I), large scale to accommodate natural Yukawa couplings
 ⇒ Impossible to directly produce ν_R
- Embed the inverse seesaw in the MSSM
 ⇒ Natural Yukawa couplings with a TeV new Physics scale

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

The Supersymmetric Inverse Seesaw Model

- MSSM extended by singlet chiral superfields \hat{N}_i and \hat{X}_i (i = 1, 2, 3) with respectively L = -1 and L = +1
- Defined by the superpotential:

$$\mathcal{W} = \varepsilon_{ab} \left[Y_d^{ij} \hat{H}_d^a \hat{Q}_i^b \hat{D}_j + Y_u^{ij} \hat{Q}_i^a \hat{H}_u^b \hat{U}_j + Y_e^{ij} \hat{H}_d^a \hat{L}_i^b \hat{E}_j + Y_\nu^{ij} \hat{L}_i^a \hat{H}_u^b \hat{N}_j \right. \\ \left. - \mu \hat{H}_d^a \hat{H}_u^b \right] + M_{R_i} \hat{N}_i \hat{X}_i + \frac{1}{2} \mu_{X_i} \hat{X}_i \hat{X}_i$$

• Derive one of the new couplings:

$$A_{Y_{\nu}}Y_{\nu}^{ij}\varepsilon_{ab}\widetilde{L}_{i}^{a}\widetilde{N}_{j}H_{u}^{b}+\text{h.c.}\in-\mathcal{L}$$

- Work with a flavour-blind mechanism for SUSY breaking
- Derive the right-handed sneutrino mass:

$$M_{\tilde{N}}^2 = m_{\tilde{N}}^2 + M_R^2 + Y_\nu^{ji*} Y_\nu^{ij} \mathbf{v}_u^2 \sim M_{\mathsf{SUSY}}^2 \sim (1\text{TeV})^2$$

cLFV in Supersymmetric Seesaw Models

- In SUSY, cLFV appears at the one-loop level through RGE-induced slepton mixing $(\Delta m_{\tilde{L}}^2)_{ij}$ [Borzumati and Masiero, 1986, Hisano et al., 1996, Hisano and Nomura, 1999] $\Rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \ln \frac{M_{GUT}}{M_R}$
- Contribute to all cLFV observables
 → Dominant in most of the SUSY seesaw models
- Type I seesaw ($Y_{\nu} \sim 1, M_R \sim 10^{14} \text{GeV}$) $\rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto 5$
- Inverse seesaw ($Y_{\nu} \sim 1, M_R \sim 1 \text{TeV}$) $\rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto 30$ $\rightarrow \tilde{N}$ -mediated processes are no longer suppressed

Supersymmetry

Results

Higgs-mediated cLFV

• Higgs mediated contributions dominant at large $\tan \beta = \frac{v_u}{v_d}$ \Rightarrow described by the effective Lagrangian [Babu and Kolda, 2002]

$$-\mathcal{L}^{\mathsf{eff}} = \bar{E}_R^i Y_e^{ii} \left[\delta_{ij} H_d^0 + \left(\epsilon_1 \delta_{ij} + \epsilon_2 (Y_\nu^\dagger Y_\nu)_{ij} \right) H_u^{0*} \right] E_L^j + \mathsf{h.c.}$$

Inverse seesaw

- $\epsilon_1 \simeq 0.003$
- $\epsilon_2 \simeq -0.0002$

Type I seesaw

- $\epsilon_1 \simeq 0.003$
- $\epsilon_2 \simeq -0.00004$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Higgs-mediated cLFV

• $M_{\tilde{N}} \sim 1 \text{TeV} \Rightarrow \text{New contribution}$, dominant in the SUSY Inverse Seesaw model

Inverse seesaw

 $\epsilon_2' \simeq -0.0006$

Type I seesaw

 $\epsilon_2' \simeq -1 \times 10^{-23}$

• Comparing type I and inverse seesaw

$$\epsilon^{\rm tot}_{2\,\rm type\,I}\simeq -2\times 10^{-4} \qquad \qquad \epsilon^{\rm tot}_{2\,\rm inverse}\simeq -4\times 10^{-3}$$

 ⇒ Two orders of magnitude enhancement of all Higgs mediated cLFV observables

Desults				
NOLIVATIONS	Inverse Seesaw	Supersymmetry	Charged Lr V	Results
Mativationa	Inverse Second	Superoummotru	Charged LEV/	Populto

Results

• Most relevant parameters: m_A and $tan(\beta)$

Benchmark points used for numerical evaluation :

Point	$\tan\beta$	$m_{1/2}$	m_0	$m_{H_U}^2$	$m_{H_D}^2$	A_0	μ	m_A
CMSSM-A	10	550	225	$(225)^2$	$(225)^2$	0	690	782
CMSSM-B	40	500	330	$(330)^2$	$(330)^2$	-500	698	604
NUHM-C	15	550	225	$(652)^2$	$-(570)^2$	0	478	150

・ロト・西ト・ヨト・ヨー シタぐ

Results

 Higgs-mediated contributions to some cLFV processes branching ratios are given in the following table

LFV Process	Present Bound	Future Sensitivity	CMSSM-A	CMSSM-B	NUHM-C
$\tau \rightarrow \mu \mu \mu$	2.1×10^{-8}	8.2×10^{-10}	1.4×10^{-15}	3.9×10^{-11}	8.0×10^{-12}
$\tau^- \rightarrow e^- \mu^+ \mu^-$	2.7×10^{-8}	$\sim 10^{-10}$	1.4×10^{-15}	3.4×10^{-11}	8.0×10^{-12}
$\tau \rightarrow eee$	2.7×10^{-8}	2.3×10^{-10}	3.2×10^{-20}	9.2×10^{-16}	1.9×10^{-16}
$\mu \rightarrow eee$	1.0×10^{-12}		6.3×10^{-22}	1.5×10^{-17}	3.7×10^{-18}
$ au ightarrow \mu\eta$	2.3×10^{-8}	$\sim 10^{-10}$	8.0×10^{-15}	3.3×10^{-10}	4.6×10^{-11}
$\tau \rightarrow \mu \eta'$	3.8×10^{-8}	$\sim 10^{-10}$	4.3×10^{-16}	1.1×10^{-10}	3.1×10^{-12}
$\tau \to \mu \pi^0$	2.2×10^{-8}	$\sim 10^{-10}$	1.8×10^{-17}	8.5×10^{-13}	1.0×10^{-13}
$B_d^0 \to \mu \tau$	2.2×10^{-5}		2.7×10^{-15}	8.5×10^{-10}	2.7×10^{-11}
$B_d^0 \to e\mu$	6.4×10^{-8}	1.6×10^{-8}	1.2×10^{-17}	3.1×10^{-12}	1.2×10^{-13}
$B_s^{(0)} ightarrow \mu au$			7.7×10^{-14}	2.5×10^{-8}	7.8×10^{-10}
$B_s^0 \rightarrow e\mu$	2.0×10^{-7}	6.5×10^{-8}	3.4×10^{-16}	8.9×10^{-11}	3.4×10^{-12}
$h ightarrow \mu au$			1.3×10^{-8}	2.6×10^{-7}	2.3×10^{-6}
$A, H \rightarrow \mu \tau$			3.4×10^{-6}	1.3×10^{-4}	5.0×10^{-6}

- Most promising channel: $\tau \rightarrow \mu \eta$
- Low $\tan \beta \Rightarrow$ Large contribution from γ and Z-penguin diagrams \Rightarrow Conservative estimates in the table (see Avelino's talk)

• Just a curiosity: strong dependence of Higgs-mediated processes on the heaviest lepton chirality \rightarrow For instance, Br($\tau_L \rightarrow \mu_R X$) suppressed by $\frac{m_{\mu}^2}{m_{\tau}^2}$ when compared to Br($\tau_R \rightarrow \mu_L X$).

$$\left(-\mathcal{L}^{\mathsf{eff}} = \bar{E}_R^i Y_e^{ii} \left[\delta_{ij} H_d^0 + \left(\epsilon_1 \delta_{ij} + \epsilon_2 (Y_\nu^{\dagger} Y_\nu)_{ij}\right) H_u^{0*}\right] E_L^j + \mathsf{h.c.}\right)$$

- ⇒ Asymmetry that can be used to identify the relative contribution from Higgs-mediated processes
 ⇒ Enhanced in the SUSY inverse seesaw
 - If photon penguins dominate $\Rightarrow \frac{Br(\tau \rightarrow 3\mu)}{Br(\tau \rightarrow \mu\gamma)} \sim 0.003$ [Hisano et al., 1996, Hisano and Nomura, 1999] \rightarrow No longer holds if Higgs mediated processes dominate

Conclusion

- $cLFV \Rightarrow Clear signal of new physics$
- Enhancement from the inverse seesaw ⇒ Model can be tested at future low energy experiments
- If nothing is detected ⇒ Strong constraints on the SUSY inverse seesaw, maybe exclusion if coupled with LHC (absence of) results on SUSY
- If cLFV is detected in the predicted range ⇒ Interplay of cLFV with other observables will help to disentangle the type of neutrino mass generation mechanism and shed light on the new physics
- Enhancement of Z-mediated diagrams ⇒ Under study (see Avelino's talk for further details)

▲□▶▲□▶▲□▶▲□▶ □ の�?

Higgs-mediated cLFV contribution through slepton mixing

Motivations Inverse Seesaw Supersymmetry Charged LFV Results

• Soft SUSY breaking lagrangian :

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &= -\mathcal{L}_{\text{soft}}^{\text{MSSM}} + m_{\widetilde{N}}^2 \widetilde{N}_i^{\dagger} \widetilde{N}_i + m_X^2 \widetilde{X}_i^{\dagger} \widetilde{X}_i + \left(A_{\nu} Y_{\nu}^{ij} \varepsilon_{ab} \widetilde{L}_i^a \widetilde{N}_j H_u^b \right. \\ &+ B_{M_{R_i}} \widetilde{N}_i \widetilde{X}_i + \frac{1}{2} B_{\mu_{X_i}} \widetilde{X}_i \widetilde{X}_i + \text{h.c.} \right) \end{aligned}$$

RGE corrections to the left-handed slepton soft-breaking masses
 :

$$\begin{aligned} (\Delta m_{\tilde{L}}^2)_{ij} &\simeq -\frac{1}{8\pi^2} (3m_0^2 + A_0^2) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij} \,, \ L &= \ln \frac{M_{GUT}}{M_R} \\ &= \xi (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \end{aligned}$$

• LFV coefficient :

$$\kappa_{ij}^{E} = \frac{\epsilon_{2ij}^{\text{tot}}(Y_{\nu}^{\dagger}Y_{\nu})_{ij}}{\left[1 + \left(\epsilon_{1} + \epsilon_{2ii}^{\text{tot}}(Y_{\nu}^{\dagger}Y_{\nu})_{ii}\right)\tan\beta\right]^{2}}$$

Motivations

Supersymmetry

• Branching ratios:

$$\mathsf{Br}(\tau \to 3\mu) \approx \frac{G_F^2 m_\mu^2 m_\tau^7 \tau_\tau}{768 \pi^3 M_A^4} |\kappa_{\tau\mu}^E|^2 \tan^6 \beta$$

$$\mathsf{Br}(B_s \to \ell_i \ell_j) = \frac{G_F^4 M_W^4}{8 \, \pi^5} \left| V_{tb}^* V_{ts} \right|^2 M_{B_s}^5 f_{B_s}^2 \, \tau_{B_s} \left(\frac{m_b}{m_b + m_s} \right)^2$$

$$imes ~ \sqrt{\left[1-rac{(m_{\ell_i}+m_{\ell_j})^2}{M_{B_s}^2}
ight]} \left[1-rac{(m_{\ell_i}-m_{\ell_j})^2}{M_{B_s}^2}
ight]$$

$$\times \left\{ \left(1 - \frac{(m_{\ell_i} + m_{\ell_j})^2}{M_{B_s}^2} \right) |c_s^{ij}|^2 + \left(1 - \frac{(m_{\ell_i} - m_{\ell_j})^2}{M_{B_s}^2} \right) |c_P^{ij}|^2 \right\}$$

$$c_{S}^{\mu\tau} = c_{P}^{\mu\tau} \approx \frac{8 \pi^{2} m_{\tau} m_{t}^{2}}{M_{W}^{2}} \frac{\epsilon_{Y} \kappa_{\tau\mu}^{E} \tan^{4} \beta}{\left[1 + (\epsilon_{0} + \epsilon_{Y} Y_{t}^{2}) \tan \beta\right] \left[1 + \epsilon_{0} \tan \beta\right]} \frac{1}{M_{A}^{2}}$$

$$\begin{aligned} \frac{\mathsf{Br}(\tau \to \mu\eta)}{\mathsf{Br}(\tau \to 3\mu)} &\simeq 36 \,\pi^2 \left(\frac{f_\eta^8 \, m_\eta^2}{m_\mu \, m_\tau^2}\right)^2 (1-x_\eta)^2 \left[\xi_s + \frac{\xi_b}{3} \left(1 + \sqrt{2} \frac{f_\eta^0}{f_\eta^8}\right)\right]^2 \\ \frac{\mathsf{Br}(\tau \to \mu\eta')}{\mathsf{Br}(\tau \to \mu\eta)} &\simeq \frac{2}{9} \left(\frac{f_{\eta'}^0}{f_\eta^8}\right)^2 \frac{m_{\eta'}^4}{m_\eta^4} \left(\frac{1-x_{\eta'}}{1-x_\eta}\right)^2 \left[\frac{1 + \frac{3}{\sqrt{2}} \frac{f_{\eta'}^6}{f_{\eta'}^6} \left(\frac{\xi_s}{\xi_b} + \frac{1}{3}\right)}{\frac{\xi_s}{\xi_b} + \frac{1}{3} + \frac{\sqrt{2}}{3} \frac{f_\eta^0}{f_\eta^8}}\right]^2 \\ \frac{\mathsf{Br}(\tau \to \mu\pi)}{\mathsf{Br}(\tau \to \mu\eta)} &\simeq \frac{4}{3} \left(\frac{f_\pi}{f_\eta^8}\right)^2 \frac{m_\pi^4}{m_\eta^4} (1-x_\eta)^{-2} \left[\frac{\frac{\xi_d}{\xi_b} \frac{1}{1+z} + \frac{1}{2} (1 + \frac{\xi_s}{\xi_b}) \frac{1-z}{1+z}}{\frac{\xi_s}{\xi_b} + \frac{1}{3} + \frac{\sqrt{2}}{3} \frac{f_\eta^0}{f_\eta^8}}\right]^2 \end{aligned}$$

$$\mathsf{Br}(H_k \to \mu \tau) = \tan^2 \beta \; (|\kappa^E_{\tau \mu}|^2) \; C_\Phi \; \mathsf{Br}(H_k \to \tau \tau)$$

$$C_h = \left[\frac{\cos(\beta - \alpha)}{\sin \alpha}\right]^2, \quad C_H = \left[\frac{\sin(\beta - \alpha)}{\cos \alpha}\right]^2, \quad C_A = 1$$

Motivations	Inverse Seesaw	Supersymmetry	Charged LFV	Results

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶