On the DM annual modulation signal (in collaboration with Thomas Schwetz and Jure Zupan) [JCAP03(2012)005, 1112.1627 [hep-ph]]

J. Herrero-García

IFIC, Universidad de Valencia - CSIC

Invisibles ITN pre-meeting

Madrid, March 2012

Introduction and goal

- A very distinctive signature of DM is its annual modulation.
- DAMA reports a significance of 8.9 σ and CoGeNT of 2.8 σ .
- Typical ratio modulation over constant rate:
- $\longrightarrow \sim$ 0.02 (DAMA), \sim 0.1 0.3 (CoGENT).
 - Assuming the observed modulated signal is DM and with very mild assumptions about the halo, we establish a consistency check between the *modulated* rate and the *constant* rate, that must be fulfilled within an experiment.
 - We also treat the case of an unknown background that contributes *only* to the constant rate (*NOT modulated*).

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 2/24

Annual modulation

 Depending on the time of the year, we should receive more or less DM flux.

• Typical velocities involved:

 $ar{v}\simeq$ 220 km/s, $v_S\simeq$ 220 km/s, $v_e\simeq$ 30 km/s, $v_{esc}\simeq$ 550 km/s.

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 3/24

Direct detection: event rate

Differential event rate (
 counts/ keV/ kg/ day):

$$R(E_r, t) = \frac{\rho_{\chi}}{m_{\chi} m_A} \int_{v_m} d^3 v \, \frac{d\sigma_{\chi}}{dE_r} v \, f_{det}(\vec{v}, t)$$

where $v_m = \sqrt{m_A E_r / (2\mu_{\chi A}^2)}$ and the velocity distribution fulfills: $f_{det}(\vec{v}, t) \ge 0$ and $\int d^3 v f_{det}(\vec{v}, t) = 1$

For SI we have that

 $R(E_r, t) \equiv C F^2(E_r) \eta(v_m, t)$ with $C \equiv \frac{\rho_{\chi} \sigma_A^0}{2m_{\chi} \mu_{\chi A}^2}$

and with the velocity integral defined by:

$$\eta(\mathbf{v}_m, t) \equiv \int_{\mathbf{v}_m} d^3 \mathbf{v} \, \frac{f_{det}(\vec{\mathbf{v}}, t)}{\mathbf{v}}$$

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 4/24

Relating the modulation with the rate

- For typical recoil energies E_r ~ 10 KeV, and for Na, I, Ge, v_m ≫ v_e, so we expand η(v_m, t) to first order in v_e/v ≪ 1.
- So the total rate can be divided into a time-ind. and a time-dep. part:

 $R(E_r,t)\equiv \overline{R}(E_r)+\delta R(E_r,t)\equiv$

 $\equiv C F^2(E_r) \eta(v_m, t) \equiv$

 $\overline{U} \equiv C F^2(E_r) \overline{[ar{\eta}(v_m) + A_\eta(v_m) \cos 2\pi(t-t_0)]}$

• We derive a relation between A_{η} and $\bar{\eta}$, and we translate it into observable quantities A_R and \overline{R} , with:

 $\overline{R} \equiv CF^2(\overline{E_r})\overline{\eta}(v_m)$ and $A_R \equiv \overline{CF^2(E_r)A_\eta}$

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 5/24

The general bound

- Smooth halo: spikes in v < 30 km/s may not be covered.
- Only time dependence comes from v_e(t). No explicit time dependence in f_{Sun} (no change on time-scales of months).
- OM halo spatially constant at scale Sun-Earth.

$$m{A}_\eta(m{v}_m)\leqslantm{v}_m{e}\left[-rac{dar{\eta}}{dm{v}_m}+rac{ar{\eta}(m{v}_m)}{m{v}_m}-\int_{m{v}_m}dm{v}rac{ar{\eta}(m{v})}{m{v}^2}
ight]$$

 It allows an arbitrary halo structure, including several streams from different directions.

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 6/24

Symmetric bounds

There is some preferred constant direction \hat{v}_{HALO} (independent of v_m) governing the shape of the DM velocity distribution in the Sun's rest frame.

$$\int_{vm1}^{vm2} dv_m A_\eta(v_m) \leqslant v_e \left[\bar{\eta}(v_{m1}) - v_{m1} \int_{v_{m1}} dv \, \frac{\bar{\eta}(v)}{v^2} \right]$$

- It is fulfilled for isotropic halos (Maxwellian), tri-axial ones (up to peculiar velocity), streams parallel to the motion of the Sun like a dark disc co-rotating with the stellar one...
- In general, natural cases like the above ones have v
 _{HALO} aligned with v
 _{SUN}. In this case we get:

$$\int_{vm1}^{vm2} dv_m \, A_\eta(v_m) \leqslant 0.5 \, v_e \left[\bar{\eta}(v_{m1}) - v_{m1} \int_{v_{m1}} dv \, \frac{\bar{\eta}(v)}{v^2} \right]$$

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 7/24

Applying the bounds to real data

- Experimental data is binned: We have to average over each bin and convert integrals to sums... etc.
- For bin *i*, bounds look like $A_i \leq v_e (R_i \alpha_i R_{i+1} \alpha_{i+1}...) \equiv B_i$.
- They vary depending on whether we have single detector (Ge in CoGeNT) or multi-target (Na, I in DAMA).
- The dependence on ρ_{χ} , σ_{χ} , v_{esc} drops from the bounds.
- They are valid for SI and SD (we only analyze SI).
- They depend on m_χ, Q(E_r) and F²(E_r). m_χ appears when translating v_m to E_e (E_e = Q(E_r)E_r).

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 8/24

Conservative approach: only a fraction ω_i ($0 \le \omega_i \le 1$) of R_i is due to DM, the rest being an unknown background. Assume NO modulated background.

- *Method 1.* Drop the negative term and set ω_i = 1. No background present.
- Method 2. Build a "Chi square":

$$\Delta X^2 = \sum_{i}^{N} \left(\frac{A_i - B_i}{\sigma_i^A} \right)^2 \Theta(A_i - B_i)$$

and minimize w.r.t the ω_i .

There is only a contribution to it when the bound is violated. Approximately Chi-square distributed with 1 d.o.f., m_{χ} .

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 9/24

Montecarlo

Method 3.

- For each m_χ, compute the less constraining set of ω_i by minimizing the X².
- With this set of ω_i, suppose the bound is saturated (conservative) and simulate pseudo-data (for the modulation) taking the upper bounds (r.h.s.) as the mean value for a Gaussian, with σ_i = error of the true A_i.
- For each random data set, calculate the X² value and obtain its distribution.
- Compare it with the X_{obs}^2 of the real data and calculate the probability of obtaining a $X^2 > X_{obs}^2$.

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 10/24

DAMA

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 11/24

CoGeNT

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 12/24

CoGENT (with surface events subtracted)

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 13/24

X² method (with/out surface events subtracted)

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 14/24

Montecarlo bounds

Probability to obtain $X^2 > X_{obs}^2 \equiv P_{bound is fulfilled}$:

If preliminary surface events are confirmed, under ass. 2 and 2a data is inconsistent with DM at the 97% and 90% C.L. resp.

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 15/24

Conclusions

- We have derived a consistency check between the modulation and the constant rate, under very mild assumptions about the DM halo.
- A violation of it suggests a non-DM origin or exotic properties which should have other striking signatures.
- We have applied it to DAMA and CoGeNT (elastic, SI):
- DAMA is consistent.
- Very strong tensions exist for CoGENT, with typical DM haloes excluded at > 90% C.L.

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 16/24

BACK-UP

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 17/24

Notation

Local DM density:

$$ho_{\chi}=n_{\chi}m_{\chi}pprox$$
 0.3 GeV/cm³

Flux (# particles/ area/ time):

$$\phi_{\chi} = n_{\chi} v = \left(\frac{100 \,\mathrm{GeV}}{m_{\chi}}\right) \,\mathrm{10^5 cm^{-2} s^{-1}}$$

Rate (# counts/ time):

$$\boldsymbol{R} = \phi_{\chi} \, \sigma_{\chi} \, \boldsymbol{N}_{target} = \frac{\rho_{\chi} \boldsymbol{v}}{m_{\chi}} \cdot \sigma_{\chi} \cdot \frac{\text{target mass}}{m_{A}}$$

• By kinematics there is a minimum velocity (elastic scatt.):

$$v_m = \sqrt{rac{m_A E_r}{2 \mu_{\chi A}^2}}$$

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 18/24

Expansion of $\eta(v_m, t)$

$$egin{aligned} &\eta(\mathbf{v}_m,t) = \int_{\mathbf{v}_m} d^3 \mathbf{v} \, rac{f_{det}(ec{\mathbf{v}})}{\mathbf{v}} = \ &= \int_{\mathbf{v}_m} d^3 \mathbf{v} \, rac{f_{Sun}(ec{\mathbf{v}})}{\mathbf{v}} + \end{aligned}$$

$$+\int d^3 v\, f_{Sun}(ec v)\, rac{ec v\cdot ec v_{ heta}(t)}{v^3} [\Theta(v-v_m)-\delta(v-v_m)\,v_m] \equiv$$

 $\equiv ar\eta(\mathbf{v}_m) + \mathbf{A}_\eta(\mathbf{v}_m) \cos 2\pi(t-t_0)$

v_e(*t*) ∝ *v_e* cos 2π(*t* − *t*₀), so the first terms is just the constant part η
 (*v_m*) and the second one is the modulated part *A_η*(*v_m*) cos 2π(*t* − *t*₀).

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 19/24

CoGENT (without subtraction of surface events)

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 20/24

Chi square minimization

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 21/24

CoGENT bounds on the DM mass

	Proc. 1	Proc. 1	Proc. 2	Proc. 2
Mean mass (GeV)	Normal	Surface	Normal	Surface
General bound	8.5	10	7.3	10
Symmetric bound	24	43	18	37
Sym. $lpha=\pi/6$	27.5	59.5	16	35

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 22/24

Iterative method

• **Method 4.** For each bin *i*, the inequality depends only on ω_j , with $j \ge i$. The most conservative option is to have ω_i (ω_i with j > i) as large (small) as possible.

Iterative prescription to find the set of ω_i corresponding to the most conservative choice of background:

- Saturate the bounds ($\leq \rightarrow =$). System of *N* (\sharp bins) linear equations in ω_i .
- Starting with the highest bin j = N, solve for the ω_N that saturates the bound. If $\omega_N \le 1$, it will be the smallest allowed value, so the bound for N 1 will be the weakest. If $\omega_N \ge 1$, i it is violated & we set it to one.
- Solution Then go to the bin j = N 1 with that value of ω_N and look for the ω_{N-1} that saturates the bound, and so on...

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 23/24

Iterative method bounds

	Proc. 4	Proc. 4
Mean mass (GeV)	Normal	Surface
General bound	10	12.5
Symmetric bound	29.5	63
Sym. $\alpha = \pi/6$	37.5	94.5

J. Herrero-García On the DM annual modulation signal Madrid, March 2012 24/24