YO A GET YEAR ARY YOUR

An SU(5) GUT with non-zero θ_{13} from A4 A4×SU(5) GUT of Flavour with Trimaximal Neutrino Mixing, Cooper, King and Luhn, arXiv:1203.1324

Iain Cooper

Department of Physics University of Southampton

Invisibles pre-meeting, Madrid

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Outline

KORK ERREADEMENT

Introduction

- Various experiments have measured neutrino oscillation and mass differences.
- **Recently, the third oscillation angle,** θ_{13} **has been observed to be** non-zero
- Exciting! Potential to measure CP violation in oscillation experiments
- \bullet Also points towards TB mixing only being part of the story (since this predicts $\theta_{13} = 0$)

 \bullet

 $\Delta m^2_{21}[10^{-5}e{\sf V}^2] = 7.59^{0.20}_{-0.18}$ $\Delta m^2_{31}[10^{-3}e{\sf V}^2] = 2.5^{0.09}_{-0.16}$ $\sin^2 \theta_{12} = 0.312^{0.017}_{-0.015}$ $\sin^2 \theta_{23} = 0.52^{0.06}_{-0.07}$ $\sin^2 \theta_{13} = 0.092^{0.017}_{-0.017}$

The Type I seesaw

Introduce a heavy Majorana particle ν_R

$$
\mathcal{L}_N = -\left(L_L^T \widetilde{H} Y_\nu \nu_R^* + h.c.\right) - \frac{1}{2} \left((\nu_R^c)^T M_{RR} \nu_R + h.c.\right)
$$

 \bullet ν_R can be integrated out below M_{RR} to give an effective theory

The Lagrangian now looks like a Majorana mass for the ν_L

$$
\mathcal{L}_{\nu}=-\frac{1}{2}\nu_{L}^{T}m_{LL}\nu_{L}+h.c.
$$

$$
m_{LL}\sim -v^2\,Y_\nu M_{RR}^{-1}\,Y_\nu^T=-m_{LR}M_{RR}^{-1}\,m_{LR}^T\,\,with\,\,v=\langle H\rangle
$$

 \bullet This is equivalent to diagonalising the 6 \times 6 matrix

$$
\begin{pmatrix} 0 & \left(m_{LR}^D\right)^T \\ m_{LR}^D & M_{RR} \end{pmatrix} \longrightarrow \begin{pmatrix} m_{LL} & 0 \\ 0 & M_{RR} \end{pmatrix} \quad + \quad \textit{higher-order terms}
$$

under the assumption that $M_{RR} \gg m_{LR}$

KORK ERKERK EI VOOR

Trimaximal mixing

● Before T2K, Double Chooz, Daya Bay, oscillation data was consistent with the choice

$$
\theta_{12}=\text{sin}^{-1}\frac{1}{\sqrt{3}},~\theta_{13}=0,~\theta_{23}=\frac{\pi}{4}\Rightarrow U_{PMNS}=U_{TB}=\begin{pmatrix}\sqrt{\frac{2}{3}}&\frac{1}{\sqrt{3}}&0\\-\frac{1}{\sqrt{6}}&\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{6}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{2}}\end{pmatrix}
$$

- **•** This is the tribimaximal mixing pattern
- A combination of:
	- **Trimaximal mixing in the** ν_2 **eigenstate**
	- And bimaximal mixing in the ν_3 eigenstate
- \bullet Now there are observations (\sim 5.2 σ) of a sizeable θ_{13} , with a central value \sim 8.8 $^{\circ}$.

KORK ERREADEMENT

Trimaximal mixing

- **In light of this evidence, new mixing patterns must be considered.**
- Trimaximal mixing is promising: it retains the trimaximally mixed second column whilst allowing for $\theta_{13} \neq 0$

\bullet

$$
U^{\nu}_{\text{TM}}\;=\;\begin{pmatrix} \frac{2}{\sqrt{6}}\cos\vartheta & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}}\sin\vartheta\,e^{j\rho} \\ -\frac{1}{\sqrt{6}}\cos\vartheta-\frac{1}{\sqrt{2}}\sin\vartheta\,e^{-j\rho} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\cos\vartheta-\frac{1}{\sqrt{6}}\sin\vartheta\,e^{j\rho} \\ -\frac{1}{\sqrt{6}}\cos\vartheta+\frac{1}{\sqrt{2}}\sin\vartheta\,e^{-j\rho} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\cos\vartheta-\frac{1}{\sqrt{6}}\sin\vartheta\,e^{j\rho} \end{pmatrix}
$$

• Here,
$$
\frac{2}{\sqrt{6}} \sin \vartheta = \sin \theta_{13}^{\nu}
$$

In fact we can recover TB mixing by taking $\theta_{13} \rightarrow 0$ **; maybe this** suggests we can take a flavour model giving TB mixing and adapt it to obtain TM mixing?

KO KKO K S A B K S B K V S A V K S B K S A V S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K

The Atarelli Feruglio model

- A very simple and well known model of TB neutrino mixing is based on A4, the even permutation group on four elements (or the group of permutations of a tetrahedron)
- Has a triplet representations (where we unify our left handed lepton fields), **3**, and three inequivalent one dimensional representations, **1**, **1** ′ and **1** ′′
- **O** Multiplication of triplets is as follows:

$$
\mathbf{3} \otimes \mathbf{3} \sim \mathbf{1} + \mathbf{1}' + \mathbf{1}'' + \mathbf{3}_{\mathbf{S}} + \mathbf{3}_{\mathbf{A}}
$$

and in particular, the singlet above is constructed as follows (basis dependent)

$$
a_1b_1+a_2b_3+a_3b_2
$$

- The fact that the product of two triplets contains a triplet means that we can make a singlet with any number of triplets > 1 .
- ● Singlets multiply with addition of primes modulo 3.

The Altarelli Feruglio model

O Neutrino sector:

$$
w_{\nu} = yh(NI) + (x_{A}\xi + \widetilde{x}_{A}\xi') (NN) + x_{B} (\varphi_{S} NN)
$$

Here we have combined the flavours of lepton into a triplet, *I*, and similarly for right handed neutrinos, N.

 $\bullet \varphi_{\mathcal{S}}$ is a flavon - scalar triplet of A_4 which obtains a VEV and leads to the flavour structure

$$
\langle \varphi_S \rangle = v_S \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
$$

- ξ and ξ' are singlet flavons of A_4 with VEVs u and 0 respectively. All VEVs are complex
- The ξ contributes to reproducing the TB structure, while ξ' is required for the VEV alignment of $\varphi_{\rm S}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q @

The Altarelli Feruglio model

Once the flavons obtain their VEVs, Dirac and Majorana masses are \bullet given as

$$
m_D = yv_u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad M_{RR} = \begin{pmatrix} A + \frac{2B}{3} & -\frac{B}{3} & -\frac{B}{3} \\ -\frac{B}{3} & \frac{2B}{3} & A - \frac{B}{3} \\ -\frac{B}{3} & A - \frac{B}{3} & \frac{2B}{3} \end{pmatrix} u
$$

 $A = 2x_A$ and $B = 2x_B \frac{v_S}{u}$

 \bullet This leads to an effective LH neutrino mass matrix diagonalised by U_{TB} and with eigenvalues

$$
m_1 = \frac{y^2}{(A+B)} \frac{v_u^2}{u} \quad m_2 = \frac{y^2}{A} \frac{v_u^2}{u} \quad m_3 = \frac{y^2}{(-A+B)} \frac{v_u^2}{u}
$$

TM mixing from A4

- This model can be extended very minimally to predict trimaximal mixing (after all it is essentially a perturbation to TB).
- Introduce flavon singlet in the 1["] representation this means there are now flavon singlets furnishing each one dimensional A4 representation.
- **O** Neutrino sector now looks like

$$
w_{\nu} = yh(NI) + (y_1 \varphi_S + y_2 \xi + y_3' \xi' + y_3'' \xi'') (NN)
$$

which now leads to

$$
m_D = yv_u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
$$

$$
M_{RR} = \left[\alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma' \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \gamma'' \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right]
$$

KORK ERREADEMENT

TM as a perturbation from TB

The above matrix may be rewritten as a sum of two matrices, one of which preserves TB mixing and one which violates it:

$$
M_{RR} = M_{RR}^{IB} + \Delta M_{RR}
$$
\n
$$
M_{RR}^{IB} = \alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}
$$
\n
$$
\Delta M_{RR} = \Delta \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}
$$

- Here $\Delta = \frac{1}{2} (\gamma'' \gamma')$ and $\gamma = \frac{1}{2} (\gamma' + \gamma'')$
- ● Since experimentally the mixing is still close to TB mixing, we must have $|\Delta| \ll |\alpha|$, $|\beta|$, wheras no such constraint applies to γ .

 \circ

TM as a perturbation from TB

- **This observation allows one to diagonalise** M_{RR} **perturbatively, such that** one ends up with $U_{\tau M} = U_{\tau B} + \Delta U$
- **•** Performing this procedure gives the lepton mixing matrix arising from the A4 model

$$
U_{TM} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha_{13}^* \\ -\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha_{13}^* \\ -\frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{6}}\alpha_{13}^* \end{pmatrix}
$$

- This is of trimaximal form, and is manifestly a perturbation from TB mixing.
- **The complex parameter** α_{13} **is the only combination of input parameters** (i.e. α , β , γ , Δ) which appears.

$$
Re(\alpha_{13}) = -\frac{\sqrt{3}}{2} \left[Re \left(\frac{\Delta}{\beta - \gamma} \right) + Im \left(\frac{\Delta}{\beta - \gamma} \right) \frac{Im \left(\frac{3\alpha}{\beta - \gamma} \right)}{Re \left(\frac{3\alpha}{\beta - \gamma} \right)} \right]
$$

$$
Im(\alpha_{13}) = \frac{\sqrt{3}}{2} \frac{Im \left(\frac{3\alpha}{\beta - \gamma} \right)}{Re \left(\frac{3\alpha}{\beta - \gamma} \right)}
$$

TM as a perturbation from TB

- **This observation allows one to diagonalise** M_{RR} **perturbatively, such that** one ends up with $U_{TM} = U_{TR} + \Delta U$
- **•** Performing this procedure gives the lepton mixing matrix arising from the A4 model

$$
\textit{U}_{\textit{TM}}\approx\begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha_{13}^* \\ -\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{6}}\alpha_{13}^* \\ -\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\alpha_{13}^* \end{pmatrix}
$$

This is of trimaximal form, and is manifestly a perturbation from TB mixing. In order to try and constrain α_{13} , one can use TB deviation parameters:

$$
U_{\text{dev}} \approx \begin{pmatrix} \frac{2}{\sqrt{6}}(1-\frac{1}{2}s) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1+s-a+re^{i\delta}) & \frac{1}{\sqrt{3}}(1-\frac{1}{2}s-a-\frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1+a) \\ \frac{1}{\sqrt{6}}(1+s+a-re^{i\delta}) & -\frac{1}{\sqrt{3}}(1-\frac{1}{2}s+a+\frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1-a) \end{pmatrix}
$$

\n
$$
\sin \theta_{12} = \frac{1}{\sqrt{3}}(1+s), \quad \sin \theta_{23} = \frac{1}{\sqrt{2}}(1+a), \quad \sin \theta_{13} = \frac{r}{\sqrt{2}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

TM as a perturbation from TB

$$
U_{\text{TM}} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha_{13}^* \\ -\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha_{13}^* \\ -\frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{6}}\alpha_{13}^* \end{pmatrix} \\ U_{\text{dev}} \approx \begin{pmatrix} \frac{2}{\sqrt{6}}(1-\frac{1}{2}s) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1+s-a+re^{i\delta}) & \frac{1}{\sqrt{3}}(1-\frac{1}{2}s-a-\frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1+a) \\ \frac{1}{\sqrt{6}}(1+s+a-re^{i\delta}) & -\frac{1}{\sqrt{3}}(1-\frac{1}{2}s+a+\frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1-a) \end{pmatrix}
$$

• Comparing the two matrices, one may read off

$$
s \approx 0, \quad a \approx \frac{\text{Re}(\alpha_{13})}{\sqrt{3}}, \quad r \cos \delta \approx -\frac{2}{\sqrt{3}} \text{Re}(\alpha_{13}), \quad \delta \approx \arg \alpha_{13} + \pi
$$

$$
\Rightarrow a \approx -\frac{1}{2} r \cos \delta
$$

independently of α_{13}

● Once we uplift to a GUT, we will see these rules receive Cabibbo size corrections

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

A4⊗SU(5)

Table: Matter and Higgs chiral superfields in the model.

KOKK@KKEKKEK E 1990

A4⊗SU(5)

Table: Flavon chiral superfields in the model.

LO terms - neutrinos

$$
W_{\nu} = yFMH_5 + (y_1\varphi_S + y_2\xi + y_3'\xi' + y_3''\xi'')
$$
 NN

This is the simplest part - it's the same as before.

O Mass matrices are

$$
m_D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} yv_u
$$

and

$$
M_R = \left[\alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma' \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \gamma'' \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right]
$$

KOKK@KKEKKEK E 1990

LO terms - down quarks/charged leptons

$$
W_d \sim \left(\frac{\theta^2 \theta^{\prime\prime}}{\Lambda_d^4} \left(F\varphi_T\right)^{\prime} + \frac{\theta^2 \theta^{\prime}}{\Lambda_d^4} \left(F\varphi_T\right)^{\prime\prime}\right) H_{\overline{5}} T_1 + \frac{\sigma \theta \theta^{\prime} \left(\theta^{\prime\prime}\right)^2}{\Lambda^5} \left(F\varphi_T\right) H_{\overline{45}} T_1
$$

+
$$
\frac{\left(\theta^{\prime}\right)^2 \theta^{\prime\prime}}{\Lambda_d^4} \left(F\varphi_T\right) H_{\overline{5}} T_2 + \left(\frac{\theta \theta^{\prime\prime}}{\Lambda_d^3} \left(F\varphi_T\right)^{\prime} + \frac{\theta \theta^{\prime}}{\Lambda_d^3} \left(F\varphi_T\right)^{\prime\prime}\right) H_{\overline{45}} T_2
$$

+
$$
\left(\frac{\sigma^2 \theta^2 \left(\theta^{\prime}\right)^2}{\Lambda^6} \left(F\varphi_T\right) + \frac{1}{\Lambda_d} \left(\left(F\varphi_T\right)^{\prime\prime}\right)\right) H_{\overline{5}} T_3 + \left(\frac{\sigma^2 \theta^3}{\Lambda^5} \left(F\varphi_T\right)^{\prime\prime}\right) H_{\overline{45}} T_3
$$

● When we let the flavons and Higgs fields obtain their VEVs, this results in

$$
\begin{pmatrix} k_{f}\eta_{\sigma}\eta_{\theta}\eta_{\theta^{\prime}}\eta_{\theta^{\prime\prime}}^{2} & \eta_{\theta}^{2}\eta_{\theta^{\prime\prime}} & \eta_{\theta}^{2}\eta_{\theta^{\prime}} \\ \eta_{\theta^{\prime}}^{2}\eta_{\theta^{\prime\prime}} & k_{f}\eta_{\theta}\eta_{\theta^{\prime\prime}} & k_{f}\eta_{\theta}\eta_{\theta^{\prime}} \\ \eta_{\sigma}^{2}\eta_{\theta}^{2}\eta_{\theta^{\prime}}^{2} & k_{f}\eta_{\sigma}^{2}\eta_{\theta}^{3} & 1 \end{pmatrix} \eta_{T}v_{\alpha}
$$

- Here, $\eta_i = \frac{\langle |\varphi_i| \rangle}{\Lambda}$ is a small parameter. A can differ between sectors (so it will be different in the up quark sector)
- \bullet Charged lepton and down quark matrices unified \Rightarrow we need some way of ensuring different masses - k_f from the $H_{\overline{45}}$ does this for us. It is 1 for the down quark matrix and -3 for the charged l[ep](#page-16-0)t[on](#page-18-0)[s](#page-16-0)

LO terms - down quarks

$$
M_d \sim \begin{pmatrix} \epsilon^5 & \epsilon^3 & \epsilon^3 \\ \epsilon^3 & \epsilon^2 & \epsilon^2 \\ \epsilon^6 & \epsilon^5 & 1 \end{pmatrix} \epsilon \, V_d \quad M_e \sim \begin{pmatrix} -3\epsilon^5 & \epsilon^3 & \epsilon^6 \\ \epsilon^3 & -3\epsilon^2 & -3\epsilon^5 \\ \epsilon^3 & -3\epsilon^2 & 1 \end{pmatrix} \epsilon \, V_d
$$

- \bullet Here we assume the numerical value $\epsilon \sim 0.15$.
- These give mass ratios of ϵ^4 : ϵ^2 : 1 for the down quarks and $\frac{\epsilon^4}{3}$ $\frac{\epsilon^4}{3}$: 3 ϵ^2 : 1 for the charged leptons
- **In the low quark angle approximation, left-handed down quark mixing** angles $\theta_{12}^d\sim \epsilon,$ $\theta_{13}^d\sim \epsilon^3$ and $\theta_{23}^d\sim \epsilon^2$ are also predicted in agreement with data (assuming an approximately diagonal up sector which we obtain in the next Section).
- The corresponding charged lepton mixing angles are $\theta_{12}^e \sim \frac{\epsilon}{3}$, $\theta_{13}^e \sim \epsilon^6$ and $\theta_{23}^{\mathsf{e}} \sim 3 \epsilon^5$.

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

LO terms - up quarks

$$
W_{u} \sim \frac{\theta^{4} (\theta')^{2}}{\Lambda_{u}^{6}} T_{1} T_{1} H_{5} + \left(\frac{\theta^{2} (\theta')^{2} (\theta'')^{2}}{\Lambda_{u}^{6}} \right) (T_{1} T_{2} + T_{2} T_{1}) H_{5} + \frac{\theta^{2} \theta'}{\Lambda_{u}^{3}} (T_{1} T_{3} + T_{3} T_{1}) H_{5} + \frac{\theta \widetilde{\theta'}}{\Lambda_{u}^{2}} T_{2} T_{2} H_{5} + \frac{\theta' (\theta'')^{2}}{\Lambda_{u}^{3}} (T_{2} T_{3} + T_{3} T_{2}) H_{5} + T_{3} T_{3} H_{5}.
$$

In terms of the parameter η_i defined previously, this matrix may be written as

$$
\begin{pmatrix} \eta_\theta^4\eta_{\theta'}^2 & \eta_\theta^2\eta_{\theta'}^2\eta_{\theta''}^2 & \eta_\theta^2\eta_{\theta'} \\ \eta_\theta^2\eta_{\theta'}^2\eta_{\theta''}^2 & \eta_{\theta'}\eta_{\theta'}^2 & \eta_{\theta'}\eta_{\theta''}^2 \\ \eta_\theta^2\eta_{\theta'} & \eta_{\theta'}\eta_{\theta''}^2 & 1 \end{pmatrix} \mathsf{v}_\mathsf{u}
$$

• The top mass is renormalisable here

LO terms - up quarks

$$
M_u \sim \begin{pmatrix} \bar{\epsilon}^6 & \bar{\epsilon}^6 & \bar{\epsilon}^3 \\ \bar{\epsilon}^6 & \bar{\epsilon}^3 & \bar{\epsilon}^3 \\ \bar{\epsilon}^3 & \bar{\epsilon}^3 & 1 \end{pmatrix} v_u
$$

- This gives the up quark mass hierarchy $\overline{\epsilon}^6$: $\overline{\epsilon}^3$: 1
- This matrix is approximately diagonal, meaning the CKM mixing arises predominantly from the down quark sector, with the Cabibbo angle being $\theta_C \sim \theta_{12}^d \sim \epsilon (\Rightarrow \theta_{12}^e \sim \frac{\theta_C}{3})$

KORK EX KEY CRAY KON

CL corrections to neutrino mixing

- The presence of sizeable charged lepton mixing means that the О. physical mixing parameters are not simply from the neutrino sector, but are corrected by this lepton mixing
- The unification of charged leptons and down quarks means that this correction is in fact parameterised by the Cabibbo angle
- **Incorporating these corrections leads to the corrected sum rule bounds**

$$
|s| \leq \frac{\theta_C}{3} \qquad |a| \leq \frac{1}{2}\left(r + \frac{\theta_C}{3}\right)|\cos \delta|
$$

Taking $\theta_{13} \sim 8.8^\circ$ gives $r \sim$ 0.22; then using $\frac{\theta_{\rm C}}{3} \sim$ 0.075 gives the bounds

$$
|s| \leq 0.075 \qquad |a| \leq 0.15 \, |\text{cos }\delta|
$$

• These are consistent with approximate limits from the global fit of

$$
-0.06 < s < 0 \qquad |a| < 0.08
$$

KORK ERREADEMENT

Summary and Outlook

- **Recent neutrino data points towards non-zero** θ_{13}
- This means we need to move away from TB mixing but not too far!
- One can extend a well known A4 model of TB mixing to predict TM mixing instead
- **•** This results in a sum rule between mixing angles which can constrain the extra parameters of the model
- It is also possible to extend the model to a GUT, in order to try and generate the quark mixings as well
- Unified nature of the model introduces Cabibbo sized corrections into the neutrino mixings
- Translating these into bounds on TB deviation parameters is approximately consistent with data
- ● Would be nice to remove some of the extra flavons if possible