An SU(5) GUT with non-zero θ_{13} from A4 A4×SU(5) GUT of Flavour with Trimaximal Neutrino Mixing, Cooper, King and Luhn, arXiv:1203.1324

lain Cooper

Department of Physics University of Southampton

Invisibles pre-meeting, Madrid

Outline

▲□▶▲@▶▲目▶▲目▶ 目 のへの

Introduction

- Various experiments have measured neutrino oscillation and mass differences.
- Recently, the third oscillation angle, θ₁₃ has been observed to be non-zero
- Exciting! Potential to measure CP violation in oscillation experiments
- Also points towards TB mixing only being part of the story (since this predicts $\theta_{13} = 0$)
- ۲

 $\Delta m_{21}^2 [10^{-5} eV^2] = 7.59^{0.20}_{-0.18} \quad \Delta m_{31}^2 [10^{-3} eV^2] = 2.5^{0.09}_{-0.16}$ $\sin^2 \theta_{12} = 0.312^{0.017}_{-0.015} \quad \sin^2 \theta_{23} = 0.52^{0.06}_{-0.07} \quad \sin^2 \theta_{13} = 0.092^{0.017}_{-0.017}$

The Type I seesaw

Introduce a heavy Majorana particle v_R

$$\mathcal{L}_{N} = -\left(L_{L}^{T}\widetilde{H}Y_{\nu}\nu_{R}^{*} + h.c.\right) - \frac{1}{2}\left(\left(\nu_{R}^{c}\right)^{T}M_{RR}\nu_{R} + h.c.\right)$$

• ν_R can be integrated out below M_{RR} to give an effective theory

The Lagrangian now looks like a Majorana mass for the ν_L

$$\mathcal{L}_{\nu} = -rac{1}{2}
u_L^T m_{LL}
u_L + h.c.$$

$$m_{LL} \sim -v^2 Y_{\nu} M_{RR}^{-1} Y_{\nu}^T = -m_{LR} M_{RR}^{-1} m_{LR}^T$$
 with $v = \langle H \rangle$

This is equivalent to diagonalising the 6 × 6 matrix

$$\begin{pmatrix} 0 & (m_{LR}^{\mathcal{D}})^{\mathsf{T}} \\ m_{LR}^{\mathcal{D}} & M_{RR} \end{pmatrix} \longrightarrow \begin{pmatrix} m_{LL} & 0 \\ 0 & M_{RR} \end{pmatrix} + higher order terms$$

under the assumption that $M_{RR} \gg m_{LR}$

Trimaximal mixing

 Before T2K, Double Chooz, Daya Bay, oscillation data was consistent with the choice

$$\theta_{12} = \sin^{-1} \frac{1}{\sqrt{3}}, \ \theta_{13} = 0, \ \theta_{23} = \frac{\pi}{4} \Rightarrow U_{PMNS} = U_{TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

- This is the tribimaximal mixing pattern
- A combination of:
 - Trimaximal mixing in the ν₂ eigenstate
 - And bimaximal mixing in the ν_3 eigenstate
- Now there are observations ($\sim 5.2\sigma$) of a sizeable θ_{13} , with a central value $\sim 8.8^{\circ}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Trimaximal mixing

- In light of this evidence, new mixing patterns must be considered.
- Trimaximal mixing is promising: it retains the trimaximally mixed second column whilst allowing for $\theta_{13} \neq 0$

۲

$$\mathcal{U}_{\mathrm{TM}}^{\nu} = \begin{pmatrix} \frac{2}{\sqrt{6}}\cos\vartheta & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}}\sin\vartheta \, e^{i\rho} \\ -\frac{1}{\sqrt{6}}\cos\vartheta - \frac{1}{\sqrt{2}}\sin\vartheta \, e^{-i\rho} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\cos\vartheta - \frac{1}{\sqrt{6}}\sin\vartheta \, e^{i\rho} \\ -\frac{1}{\sqrt{6}}\cos\vartheta + \frac{1}{\sqrt{2}}\sin\vartheta \, e^{-i\rho} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\cos\vartheta - \frac{1}{\sqrt{6}}\sin\vartheta \, e^{i\rho} \end{pmatrix}$$

• Here,
$$\frac{2}{\sqrt{6}}\sin\vartheta = \sin\theta_{13}^{\nu}$$

In fact we can recover TB mixing by taking θ₁₃ → 0; maybe this suggests we can take a flavour model giving TB mixing and adapt it to obtain TM mixing?

The Atarelli Feruglio model

- A very simple and well known model of TB neutrino mixing is based on A₄, the even permutation group on four elements (or the group of permutations of a tetrahedron)
- Has a triplet representations (where we unify our left handed lepton fields), 3, and three inequivalent one dimensional representations, 1, 1' and 1"
- Multiplication of triplets is as follows:

$$\mathbf{3}\otimes\mathbf{3}\sim\mathbf{1}+\mathbf{1}'+\mathbf{1}''+\mathbf{3_S}+\mathbf{3_A}$$

and in particular, the singlet above is constructed as follows (basis dependent)

$$a_1b_1 + a_2b_3 + a_3b_2$$

- The fact that the product of two triplets contains a triplet means that we can make a singlet with any number of triplets > 1.
- Singlets multiply with addition of primes modulo 3.

The Altarelli Feruglio model

Neutrino sector:

$$w_{\nu} = yh(NI) + \left(x_{A}\xi + \widetilde{x}_{A}\xi'\right)(NN) + x_{B}\left(\varphi_{S}NN\right)$$

Here we have combined the flavours of lepton into a triplet, I, and similarly for right handed neutrinos, N.

• φ_S is a flavon - scalar triplet of A_4 which obtains a VEV and leads to the flavour structure

$$\langle \varphi_{\rm S} \rangle = v_{\rm S} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- ξ and ξ' are singlet flavons of A₄ with VEVs u and 0 respectively. All VEVs are complex
- The ξ contributes to reproducing the TB structure, while ξ' is required for the VEV alignment of φ_S

The Altarelli Feruglio model

 Once the flavons obtain their VEVs, Dirac and Majorana masses are given as

$$m_{D} = yv_{u} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad M_{RR} = \begin{pmatrix} A + \frac{2B}{3} & -\frac{B}{3} & -\frac{B}{3} \\ -\frac{B}{3} & \frac{2B}{3} & A - \frac{B}{3} \\ -\frac{B}{3} & A - \frac{B}{3} & \frac{2B}{3} \end{pmatrix} u$$

 $A = 2x_A$ and $B = 2x_B \frac{v_S}{u}$

 This leads to an effective LH neutrino mass matrix diagonalised by U_{TB} and with eigenvalues

$$m_1 = \frac{y^2}{(A+B)} \frac{v_u^2}{u}$$
 $m_2 = \frac{y^2}{A} \frac{v_u^2}{u}$ $m_3 = \frac{y^2}{(-A+B)} \frac{v_u^2}{u}$

▲口▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

TM mixing from A4

- This model can be extended very minimally to predict trimaximal mixing (after all it is essentially a perturbation to TB).
- Introduce flavon singlet in the 1" representation this means there are now flavon singlets furnishing each one dimensional A4 representation.
- Neutrino sector now looks like

$$w_{\nu} = yh(NI) + (y_{1}\varphi_{S} + y_{2}\xi + y_{3}'\xi' + y_{3}''\xi'') (NN)$$

which now leads to

$$m_D = y v_u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$M_{RR} = \begin{bmatrix} \alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma' \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \gamma'' \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix}$$

TM as a perturbation from TB

 The above matrix may be rewritten as a sum of two matrices, one of which preserves TB mixing and one which violates it:

$$M_{RR}^{TB} = \alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
$$\Delta M_{RR} = \Delta \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

• Here $\Delta = \frac{1}{2} (\gamma'' - \gamma')$ and $\gamma = \frac{1}{2} (\gamma' + \gamma'')$

• Since experimentally the mixing is still close to TB mixing, we must have $|\Delta| \ll |\alpha|, |\beta|$, wheras no such constraint applies to γ .

TM as a perturbation from TB

- This observation allows one to diagonalise M_{RR} perturbatively, such that one ends up with $U_{TM} = U_{TB} + \Delta U$
- Performing this procedure gives the lepton mixing matrix arising from the A4 model

$$U_{TM} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha_{13}^{*} \\ -\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha_{13}^{*} \\ -\frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{6}}\alpha_{13}^{*} \end{pmatrix}$$

- This is of trimaximal form, and is manifestly a perturbation from TB mixing.
- The complex parameter α₁₃ is the only combination of input parameters (i.e. α, β, γ, Δ) which appears.

$$Re(\alpha_{13}) = -\frac{\sqrt{3}}{2} \left[Re\left(\frac{\Delta}{\beta - \gamma}\right) + Im\left(\frac{\Delta}{\beta - \gamma}\right) \frac{Im\left(\frac{3\alpha}{\beta - \gamma}\right)}{Re\left(\frac{3\alpha}{\beta - \gamma}\right)} \right]$$
$$Im(\alpha_{13}) = \frac{\sqrt{3}}{2} \frac{Im\left(\frac{3\alpha}{\beta - \gamma}\right)}{Re\left(\frac{3\alpha}{\beta - \gamma}\right)}$$

TM as a perturbation from TB

- This observation allows one to diagonalise M_{RR} perturbatively, such that one ends up with U_{TM} = U_{TB} + ΔU
- Performing this procedure gives the lepton mixing matrix arising from the A4 model

$$U_{TM} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha_{13}^{*} \\ -\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha_{13}^{*} \\ -\frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{6}}\alpha_{13}^{*} \end{pmatrix}$$

 This is of trimaximal form, and is manifestly a perturbation from TB mixing. In order to try and constrain α₁₃, one can use TB deviation parameters:

$$U_{dev} \approx \begin{pmatrix} \frac{2}{\sqrt{6}}(1-\frac{1}{2}s) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1+s-a+re^{i\delta}) & \frac{1}{\sqrt{3}}(1-\frac{1}{2}s-a-\frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1+a) \\ \frac{1}{\sqrt{6}}(1+s+a-re^{i\delta}) & -\frac{1}{\sqrt{3}}(1-\frac{1}{2}s+a+\frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1-a) \end{pmatrix}$$

$$\sin\theta_{12} = \frac{1}{\sqrt{3}}(1+s), \quad \sin\theta_{23} = \frac{1}{\sqrt{2}}(1+a), \quad \sin\theta_{13} = \frac{r}{\sqrt{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

TM as a perturbation from TB

$$U_{TM} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha_{13}^{*} \\ -\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha_{13}^{*} \\ -\frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha_{13} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{6}}\alpha_{13}^{*} \end{pmatrix}$$

$$U_{dev} \approx \begin{pmatrix} \frac{2}{\sqrt{6}}(1 - \frac{1}{2}s) & \frac{1}{\sqrt{3}}(1 + s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1 + s - a + re^{i\delta}) & \frac{1}{\sqrt{3}}(1 - \frac{1}{2}s - a - \frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1 + a) \\ \frac{1}{\sqrt{6}}(1 + s + a - re^{i\delta}) & -\frac{1}{\sqrt{3}}(1 - \frac{1}{2}s + a + \frac{1}{2}re^{i\delta}) & \frac{1}{\sqrt{2}}(1 - a) \end{pmatrix}$$

Comparing the two matrices, one may read off

$$s \approx 0$$
, $a \approx \frac{\operatorname{Re}(\alpha_{13})}{\sqrt{3}}$, $r \cos \delta \approx -\frac{2}{\sqrt{3}} \operatorname{Re}(\alpha_{13})$, $\delta \approx \arg \alpha_{13} + \pi$
 $\Rightarrow a \approx -\frac{1}{2} r \cos \delta$

independently of α_{13}

Once we uplift to a GUT, we will see these rules receive Cabibbo size corrections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A4⊗*SU*(5)

Field	N	F	<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃	H ₅	$H_{\overline{5}}$	$H_{\overline{45}}$
SU(5)	1	5	10	10	10	5	5	45
A ₄	3	3	1″	1′	1	1	1′	1″
$U(1)_{R}$	1	1	1	1	1	0	0	0
<i>U</i> (1)	1	-1	3	3	0	0	-1	-2
Z ₂	+	+	+	+	+	+	+	—
Z_3	ω	ω^2	ω^2	1	1	1	ω	ω
Z 5	ρ	ρ^4	1	1	1	1	ρ	ρ

Table: Matter and Higgs chiral superfields in the model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$A4\otimes SU(5)$

Field	φ_{S}	ξ	ξ'	ξ''	φ_T	θ	θ'	$\theta^{\prime\prime}$	$\widetilde{ heta}'$	σ
SU(5)	1	1	1	1	1	1	1	1	1	1
A4	3	1	1′	1″	3	1	1′	1″	1′	1
U(1) _R	0	0	0	0	0	0	0	0	0	0
<i>U</i> (1)	-2	-2	-2	-2	2	-1	-1	-1	-5	2
Z ₂	+	+	+	+	+	—	+	+	—	+
Z ₃	ω	ω	ω	ω	1	ω	ω^2	ω^2	ω^2	1
Z_5	ρ^3	ρ^3	ρ^3	ρ^3	1	1	1	1	1	1

Table: Flavon chiral superfields in the model.

LO terms - neutrinos

$$W_{
u} = yFNH_{5} + (y_{1}\varphi_{S} + y_{2}\xi + y_{3}'\xi' + y_{3}''\xi'') NN$$

• This is the simplest part - it's the same as before.

Mass matrices are

$$m_D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} y v_u$$

and

$$M_{R} = \left[\alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma' \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \gamma'' \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right]$$

<□▶ <□▶ < 三▶ < 三▶ < 三 < つへぐ

LO terms - down quarks/charged leptons

$$\begin{split} \mathcal{W}_{d} &\sim \left(\frac{\theta^{2}\theta''}{\Lambda_{d}^{4}}\left(F\varphi_{T}\right)' + \frac{\theta^{2}\theta'}{\Lambda_{d}^{4}}\left(F\varphi_{T}\right)''\right)H_{\overline{\mathbf{5}}}T_{1} + \frac{\sigma\theta\theta'\left(\theta''\right)^{2}}{\Lambda^{5}}\left(F\varphi_{T}\right)H_{\overline{\mathbf{45}}}T_{1} \\ &+ \frac{\left(\theta'\right)^{2}\theta''}{\Lambda_{d}^{4}}\left(F\varphi_{T}\right)H_{\overline{\mathbf{5}}}T_{2} + \left(\frac{\theta\theta''}{\Lambda_{d}^{3}}\left(F\varphi_{T}\right)' + \frac{\theta\theta'}{\Lambda_{d}^{3}}\left(F\varphi_{T}\right)''\right)H_{\overline{\mathbf{45}}}T_{2} \\ &+ \left(\frac{\sigma^{2}\theta^{2}\left(\theta'\right)^{2}}{\Lambda^{6}}\left(F\varphi_{T}\right) + \frac{1}{\Lambda_{d}}\left(\left(F\varphi_{T}\right)''\right)\right)H_{\overline{\mathbf{5}}}T_{3} + \left(\frac{\sigma^{2}\theta^{3}}{\Lambda^{5}}\left(F\varphi_{T}\right)'\right)H_{\overline{\mathbf{45}}}T_{3} \end{split}$$

 When we let the flavons and Higgs fields obtain their VEVs, this results in

$\left(\mathbf{k}_{\mathrm{f}} \eta_{\sigma} \eta_{\theta} \eta_{\theta'} \eta_{\theta''}^2 \right)$	$\eta_{\theta}^2 \eta_{\theta''}$	$\eta_{\theta}^2 \eta_{\theta'}$	
$\eta_{\theta'}^2 \eta_{\theta''}$	$k_{f}\eta_{ heta}\eta_{ heta^{\prime\prime}}$	$k_f \eta_{\theta} \eta_{\theta'}$	$\eta_T V_d$
$\int \eta_{\sigma}^2 \eta_{\theta}^2 \eta_{\theta'}^2$	$k_{\rm f}\eta_\sigma^2\eta_ heta^3$	1 /	

- Here, η_i = (|φ_i|)/Λ is a small parameter. Λ can differ between sectors (so it will be different in the up quark sector)
- Charged lepton and down quark matrices unified ⇒ we need some way of ensuring different masses k_f from the H₄₅ does this for us. It is 1 for the down quark matrix and -3 for the charged leptons → (a) → (b) → (b)

(日) (日) (日) (日) (日) (日) (日)

LO terms - down quarks

$$M_{d} \sim \begin{pmatrix} \epsilon^{5} & \epsilon^{3} & \epsilon^{3} \\ \epsilon^{3} & \epsilon^{2} & \epsilon^{2} \\ \epsilon^{6} & \epsilon^{5} & 1 \end{pmatrix} \epsilon V_{d} \quad M_{e} \sim \begin{pmatrix} -3\epsilon^{5} & \epsilon^{3} & \epsilon^{6} \\ \epsilon^{3} & -3\epsilon^{2} & -3\epsilon^{5} \\ \epsilon^{3} & -3\epsilon^{2} & 1 \end{pmatrix} \epsilon V_{d}$$

- Here we assume the numerical value $\epsilon \sim 0.15$.
- These give mass ratios of ε⁴ : ε² : 1 for the down quarks and ε⁴/3 : 3ε² : 1 for the charged leptons
- In the low quark angle approximation, left-handed down quark mixing angles $\theta_{12}^d \sim \epsilon$, $\theta_{13}^d \sim \epsilon^3$ and $\theta_{23}^d \sim \epsilon^2$ are also predicted in agreement with data (assuming an approximately diagonal up sector which we obtain in the next Section).
- The corresponding charged lepton mixing angles are θ^e₁₂ ~ ^ε/₃, θ^e₁₃ ~ ε⁶ and θ^e₂₃ ~ 3ε⁵.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

LO terms - up quarks

$$\begin{split} W_{u} &\sim \frac{\theta^{4} \left(\theta'\right)^{2}}{\Lambda_{u}^{6}} T_{1} T_{1} H_{5} + \left(\frac{\theta^{2} \left(\theta'\right)^{2} \left(\theta''\right)^{2}}{\Lambda_{u}^{6}}\right) (T_{1} T_{2} + T_{2} T_{1}) H_{5} + \frac{\theta^{2} \theta'}{\Lambda_{u}^{3}} (T_{1} T_{3} + T_{3} T_{1}) H_{5} \\ &+ \frac{\theta \widetilde{\theta'}}{\Lambda_{u}^{2}} T_{2} T_{2} H_{5} + \frac{\theta' \left(\theta''\right)^{2}}{\Lambda_{u}^{3}} (T_{2} T_{3} + T_{3} T_{2}) H_{5} + T_{3} T_{3} H_{5}. \end{split}$$

• In terms of the parameter η_i defined previously, this matrix may be written as

$$\begin{pmatrix} \eta_{\theta}^{\theta} \eta_{\theta'}^{2} & \eta_{\theta}^{2} \eta_{\theta'}^{2} \eta_{\theta''}^{2} & \eta_{\theta}^{2} \eta_{\theta'} \\ \eta_{\theta}^{2} \eta_{\theta'}^{2} \eta_{\theta''}^{2} & \eta_{\theta} \eta_{\widetilde{\theta}}^{2} & \eta_{\theta'} \eta_{\theta''}^{2} \\ \eta_{\theta}^{2} \eta_{\theta'} & \eta_{\theta'} \eta_{\theta''}^{2} & 1 \end{pmatrix} \mathsf{V}_{u}$$

The top mass is renormalisable here

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LO terms - up quarks

$$M_{u} \sim \begin{pmatrix} \overline{\epsilon}^{6} & \overline{\epsilon}^{6} & \overline{\epsilon}^{3} \\ \overline{\epsilon}^{6} & \overline{\epsilon}^{3} & \overline{\epsilon}^{3} \\ \overline{\epsilon}^{3} & \overline{\epsilon}^{3} & 1 \end{pmatrix} V_{u}$$

- This gives the up quark mass hierarchy $\overline{\epsilon}^6 : \overline{\epsilon}^3 : 1$
- This matrix is approximately diagonal, meaning the CKM mixing arises predominantly from the down quark sector, with the Cabibbo angle being $\theta_C \sim \theta_{12}^d \sim \epsilon (\Rightarrow \theta_{12}^e \sim \frac{\theta_C}{3})$

(日) (日) (日) (日) (日) (日) (日)

CL corrections to neutrino mixing

- The presence of sizeable charged lepton mixing means that the physical mixing parameters are not simply from the neutrino sector, but are corrected by this lepton mixing
- The unification of charged leptons and down quarks means that this correction is in fact parameterised by the Cabibbo angle
- Incorporating these corrections leads to the corrected sum rule bounds

$$|s| \le rac{ heta_{\mathcal{C}}}{3} \qquad |a| \le rac{1}{2} \left(r + rac{ heta_{\mathcal{C}}}{3}
ight) |\cos \delta|$$

• Taking $\theta_{13} \sim 8.8^{\circ}$ gives $r \sim 0.22$; then using $\frac{\theta_C}{3} \sim 0.075$ gives the bounds

$$|s| \le 0.075$$
 $|a| \le 0.15 |\cos \delta|$

These are consistent with approximate limits from the global fit of

$$-0.06 < s < 0$$
 $|a| < 0.08$

Summary and Outlook

- Recent neutrino data points towards non-zero θ₁₃
- This means we need to move away from TB mixing but not too far!
- One can extend a well known A4 model of TB mixing to predict TM mixing instead
- This results in a sum rule between mixing angles which can constrain the extra parameters of the model
- It is also possible to extend the model to a GUT, in order to try and generate the quark mixings as well
- Unified nature of the model introduces Cabibbo sized corrections into the neutrino mixings
- Translating these into bounds on TB deviation parameters is approximately consistent with data
- Would be nice to remove some of the extra flavons if possible