The Potential of Minimal Flavour Violation

Rodrigo Alonso

Invisibles Premeeting, Madrid, March 2012

Departamento de Física Teórica Universidad Autónoma de Madrid & IFT-UAM/CSIC

in Visibles

arXiv:1103.2915

based on the work with Belén Gavela.

Luca Merlo, Stefano Rigolin & Daniel

Hernández JHEP 1107, 012 (2011).

A B + A B +

< 67 ▶

-

Outline

Introduction

The Flavour Puzzle Minimal Flavour Violation

The Dynamics Behind MFV Quarks Leptons

Summary

The Flavour Puzzle

- Why 3 generations? CP violation?
- Visible part of the universe → 1st generation

- 4 同 2 4 日 2 4 日 2

э

э

・ 同 ト ・ ヨ ト ・ ヨ ト

The Flavour Puzzle

The Three Generations

How do we tell one generation from the other?

A wildly hierarchical mass spectrum

The Three Generations

How do they connect with each other?

$$V_{CKM} = \begin{pmatrix} \sim 1 & \lambda & \lambda^3 \\ \lambda & \sim 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & \sim 1 \end{pmatrix} \quad U_{PMNS} = \begin{pmatrix} 0.8 & 0.5 & ?0.2 \\ -0.4 & 0.5 & -0.7 \\ -0.4 & 0.5 & 0.7 \end{pmatrix}$$

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペマ

The Flavour Puzzle

The flavour structure is encoded in the Yukawa couplings in the SM

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$$
$$-\mathcal{L}_{Yukawa} = \overline{Q}_L \underline{Y}_U U_R \tilde{H} + \overline{Q}_L \underline{Y}_D D_R H + \overline{\ell}_L \underline{Y}_E E_R H + h.c. + (\nu \text{ mass})$$

That can be parametrized as

$$Y_U = V_{CKM}^{\dagger} \mathbf{y}_U \qquad Y_D = \mathbf{y}_D \qquad Y_E = \mathbf{y}_E$$
$$\& \ m_{\nu_1}, \ m_{\nu_2} \ m_{\nu_3}$$

 $egin{aligned} \mathbf{y}_U &\sim \mathsf{Diag}\left(m_u, m_c, m_t
ight) \ \mathbf{y}_D &\sim \mathsf{Diag}\left(m_d, m_s, m_b
ight) \ \mathbf{y}_E &\sim \mathsf{Diag}\left(m_e, m_\mu, m_ au
ight) \end{aligned}$

Normal or Inverted hierarchy

Flavour Physics

The Flavour Phenomenology of the SM is very specific

- There are no Flavour Changing Neutral Currents at tree level in the SM
- FCNC processes occur at the loop level and GIM suppressed
- CP violation 'small'; Jarlskog Inv.×GIM in SM

- A 🚍 🕨

 \rightarrow Sensitivity to new physics

< 6 >

프 () () () (

э

The Flavour Puzzle

Beyond the Standard Model; Effective Field Theory

Fermi's Theory of β decay

 $\mathcal{L}_{em} + G_F \bar{e} \gamma_\mu \nu \bar{u} \gamma^\mu d$

 $\mathcal{L}_{em} + (g^2/M_W^2) \bar{e} \gamma_\mu
u_L \bar{u} \gamma^\mu d_L$

Beyond the Standard Model; Effective Field Theory

Fermi's Theory of β decay

 $\mathcal{L}_{em} + G_F \bar{e} \gamma_\mu \nu \bar{u} \gamma^\mu d$

BSM physics

 $\mathcal{L}_{em} + (g^2/M_W^2) \bar{e} \gamma_\mu \nu_L \bar{u} \gamma^\mu d_L$

- 4 回 > - 4 回 > - 4 回 >

-

The Flavour Problem

All the flavour data is \sim consistent with the SM

This translates into $\Lambda > 10^{2-3} TeV$, and the second s

Minimal Flavour Violation

Minimal Flavour Violation (MFV)

MFV is a **symmetry approach** to the flavour problem that takes the **experimental data at face value**.

The MFV hypothesis: The Yukawa couplings are the **only** sources of flavour violation in and **beyond** the Standard Model¹.

Minimal Flavour Violation

Minimal Flavour Violation; Realization

Generations are distinguished by masses; in the limit of zero mass

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{Higgs} + \mathbf{\cancel{L}}_{Yukawa}$$

the SM presents an extended symmetry group :

$$G_{f} = \overbrace{SU(3)_{Q_{L}} \times SU(3)_{D_{R}} \times SU(3)_{U_{R}}}^{Q_{uark}} \times \overbrace{SU(3)_{\ell_{L}} \times SU(3)_{E_{R}}}^{Lepton} \times \cdots$$
$$D_{R} = \begin{pmatrix} d_{R} \\ s_{R} \\ b_{R} \end{pmatrix} \qquad D_{R} \sim (1, 3, 1 \cdots)$$

The Yukawa couplings break the symmetry, unless

 $\overline{Q}_L Y_D D_R H$ $Y_D \sim (3, \overline{3}, 1)$ 'SPURIONS'

| ▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● � � � �

- 4 E 6 4 E 6

Minimal Flavour Violation

Minimal Flavour Violation; Realization

Generations are distinguished by masses; in the limit of zero mass

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{Higgs} + \mathbf{\cancel{L}}_{Yukawa}$$

the SM presents an extended symmetry group :

$$G_{f} = \overbrace{SU(3)_{Q_{L}} \times SU(3)_{D_{R}} \times SU(3)_{U_{R}}}^{Q_{uark}} \times \overbrace{SU(3)_{\ell_{L}} \times SU(3)_{E_{R}}}^{Lepton} \times \cdots$$
$$D_{R} = \begin{pmatrix} d_{R} \\ s_{R} \\ b_{R} \end{pmatrix} \qquad D_{R} \sim (1, 3, 1 \cdots)$$

The Yukawa couplings break the symmetry, unless

$$\overline{Q}_L Y_D D_R H$$
 $Y_D \sim (3, \overline{3}, 1)$ 'SPURIONS'

Minimal Flavour Violation

MFV: Effective Field Theory Prescription

Take the operator

$$\mathcal{L}_{SM} + \frac{c_{\alpha\beta}}{\Lambda_{NP}^2} \overline{Q}_{\alpha} \gamma^{\mu} Q_{\beta} \overline{E}_R \gamma_{\mu} E_R + \dots$$

containing all flavors α , β , then:

$$\begin{array}{l} \mathsf{MFV} \ \rightarrow \ c_{\alpha\beta} = \left(Y_U\right)_{\alpha\gamma} \left(Y_U^{\dagger}\right)_{\gamma\beta} \simeq V_{t\alpha}^* V_{t\beta} y_t^2 \\ c \sim \left(\mathbf{3} \times \mathbf{\bar{3}}, \mathbf{1}, \mathbf{1}\right) = \left(\mathbf{3}, \mathbf{1}, \mathbf{\bar{3}}\right) \times \left(\mathbf{\bar{3}}, \mathbf{1}, \mathbf{3}\right) \sim \left(\mathbf{3} \times \mathbf{\bar{3}}, \mathbf{1}, \mathbf{1}\right) \end{array}$$

The predictions have the Standard Model flavour structure:

$$\mathcal{A}(d^i
ightarrow d^j)_{MFV} = (V_{ti}^* V_{tj}) \mathcal{A}_{SM}^{(\Delta F=1)} \left(1 + rac{(4\pi)^2 y_t^2 M_W^2}{\Lambda_{NP}^2}
ight)$$

Antonelli et al.

The strongest experimental bound sets ∧_{NP} >oTeVa~(A_{EW}.≥) ≥ ೨९९

Minimal Flavour Violation

MFV: Effective Field Theory Prescription

Take the operator

$$\mathcal{L}_{SM} + \frac{c_{\alpha\beta}}{\Lambda_{NP}^2} \overline{Q}_{\alpha} \gamma^{\mu} Q_{\beta} \overline{E}_R \gamma_{\mu} E_R + \dots$$

containing all flavors α , β , then:

$$\begin{array}{l} \mathsf{MFV} \ \rightarrow \ c_{\alpha\beta} = \left(Y_U\right)_{\alpha\gamma} \left(Y_U^{\dagger}\right)_{\gamma\beta} \simeq V_{t\alpha}^* V_{t\beta} y_t^2 \\ \mathfrak{c} \sim \left(3 \times \bar{3}, 1, 1\right) = \left(3, 1, \bar{3}\right) \times \left(\bar{3}, 1, 3\right) \sim \left(3 \times \bar{3}, 1, 1\right) \end{array}$$

The predictions have the Standard Model flavour structure:

$$\mathcal{A}(d^i
ightarrow d^j)_{MFV} = (V_{ti}^* V_{tj}) \mathcal{A}_{SM}^{(\Delta F=1)} \left(1 + rac{(4\pi)^2 y_t^2 M_W^2}{\Lambda_{NP}^2}
ight)$$

Antonelli et al.

The strongest experimental bound sets $\Lambda_{NP} > \text{TeV} \sim \Lambda_{EW}$.

The Potential of Minimal Flavour Violation

1

What if we take seriously the flavour symmetry reasoning?

The Dynamics Behind MFV

Suggests that the Yukawa couplings have a dynamical origin .

The Yukawa Interaction involves extra fields increasing the dimension of the 'Yukawa Operator'.

$$Y \sim \langle \Psi
angle$$
? $Y = \left\langle \Psi^2
ight
angle$? $Y = \left\langle \Psi^n
ight
angle$?

These fields acquire a v.e.v. and fix the Yukawa couplings.

The Dynamics Behind MFV: Quarks Different cases shorted by EFT & Group Theory

- 1. The Yukawas are the vev of 1 field $Y \ \sim \ \langle \Sigma \rangle$
 - Dim. 5 \leftrightarrow Bifundamental Fields

$$\overline{Q}_L rac{\Sigma_d}{\Lambda_f} D_R H \qquad \Sigma_d \sim (3, \overline{3}, 1)$$

- 2. The Yukawas are 'composite' Y $\sim \langle \chi \chi \rangle$
 - ► Dim. 6 ↔ Fundamental Fields

$$\overline{Q}_{L} \frac{\chi_{d}^{L} \chi_{d}^{R\dagger}}{\Lambda_{f}^{2}} D_{R} H \qquad \begin{array}{c} \chi_{d}^{L} \sim (3, 1, 1) \\ \chi_{d}^{R} \sim (1, 3, 1) \end{array}$$

What is the potential giving rise to spontaneous symmetry breaking?

What are the differences in this potential for Quarks and Leptons?

Let's start with quarks and the fundamental field case for illustration

What is the potential giving rise to spontaneous symmetry breaking?

What are the differences in this potential for Quarks and Leptons?

Let's start with quarks and the fundamental field case for illustration

What is the potential giving rise to spontaneous symmetry breaking?

What are the differences in this potential for Quarks and Leptons?

Let's start with quarks and the fundamental field case for illustration

Fundamental Fields: Quarks

First gather invariants

$$\begin{split} \chi_{u}^{L\dagger}\chi_{u}^{L}, & \chi_{u}^{R\dagger}\chi_{u}^{R}, & \chi_{d}^{L\dagger}\chi_{d}^{L}, \\ \chi_{d}^{R\dagger}\chi_{d}^{R}, & \chi_{u}^{L\dagger}\chi_{d}^{L} = \left|\chi_{u}^{L}\right|\left|\chi_{d}^{L}\right|\cos\theta_{c}. \end{split}$$

Put the invariants together in the potential:

 θ naturally O(1)

$$V' = \sum_{i=u,d} \lambda_i \left(\chi_i^{L\dagger} \chi_i^L - \frac{\mu_i^2}{2\lambda_i} \right)^2 + \lambda_{ud} \left(\chi_u^{L\dagger} \chi_d^L - \frac{\mu_{ud}^2}{2\lambda_{ud}} \right)^2 + \cdots$$

Minimum (2 gen.): $y_c^2 = \frac{\mu_u^2}{2\lambda_u \Lambda^2}$, $y_s^2 = \frac{\mu_d^2}{2\lambda_d \Lambda^2}$, $\cos \theta = \frac{\mu_{ud}^2 \sqrt{\lambda_u \lambda_d}}{\mu_u \mu_d \lambda_{ud}}$

Summary

Quarks

Fundamental Fields (are special)

Masses: Let's take a careful look at the Yukawa structure:

$$Y_{D} = \frac{\left\langle \chi_{d}^{L} \chi_{d}^{R\dagger} \right\rangle}{\Lambda^{2}} \qquad ; \qquad Y_{U} = \frac{\left\langle \chi_{u}^{L} \chi_{u}^{R\dagger} \right\rangle}{\Lambda^{2}}$$

A 'matrix' made out of 2 'vectors '.

Such a construction has rank 1, that is one nonvanishing eigenvalue only!

Mixing:

Diagonalizing the Yukawa coupling = finding the moduli \sim masses + the relative angle \sim mixing

- 4 周 ト 4 戸 ト 4 戸 ト

Summary

Quarks

Fundamental Fields (are special)

Masses: Let's take a careful look at the Yukawa structure:

$$Y_{D} = \frac{\left\langle \chi_{d}^{L} \chi_{d}^{R\dagger} \right\rangle}{\Lambda^{2}} \qquad ; \qquad Y_{U} = \frac{\left\langle \chi_{u}^{L} \chi_{u}^{R\dagger} \right\rangle}{\Lambda^{2}}$$

A 'matrix' made out of 2 'vectors '.

Such a construction has rank 1, that is one nonvanishing eigenvalue only!

Mixing:

$$\chi^{L}_{u} \qquad \theta \qquad \chi^{L}_{d}$$

Diagonalizing the Yukawa coupling = finding the moduli \sim masses + the relative angle \sim mixing

マロト イヨト イヨト

Bifundamental Fields

Invariants

$$\langle \Sigma_{u} \rangle = \Lambda_{f} \cdot \frac{V_{CKM}^{\dagger}}{V_{CKM}} \text{Diag}\{y_{u_{i}}\}, \qquad \langle \Sigma_{d} \rangle = \Lambda_{f} \cdot \text{Diag}\{y_{d_{i}}\};$$

$$\text{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\Sigma_{d}\Sigma_{d}^{\dagger}\right) \propto \text{Tr}\left(V^{\dagger}y_{U}^{2}Vy_{D}^{2}\right) \xrightarrow{\text{2gen}} (m_{c}^{2} - m_{u}^{2})(m_{s}^{2} - m_{d}^{2})\cos 2\theta$$

The Potential:

$$V = -\mu_{u}^{2} \operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \right) + \lambda_{u} \left(\operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \right) \right)^{2} + \cdots$$

We can directly minimize in the 'vevs' $y_{d_i}, y_{u_i}, V_{CKM}$. Outcome:

- For obtaining the actual masses fine tunning is needed mass hierarchy
- ► For fixing the mixing huge (10⁻⁸) fine tuning + dim≥ 8 Operators

Bifundamental Fields

Invariants

$$\langle \Sigma_{u} \rangle = \Lambda_{f} \cdot \frac{V_{CKM}^{\dagger}}{V_{CKM}} \text{Diag}\{y_{u_{i}}\}, \qquad \langle \Sigma_{d} \rangle = \Lambda_{f} \cdot \text{Diag}\{y_{d_{i}}\};$$

$$\text{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\Sigma_{d}\Sigma_{d}^{\dagger}\right) \propto \text{Tr}\left(V^{\dagger}y_{U}^{2}Vy_{D}^{2}\right) \xrightarrow{\text{2gen}} (m_{c}^{2} - m_{u}^{2})(m_{s}^{2} - m_{d}^{2})\cos 2\theta$$

The Potential:

$$V = -\mu_{u}^{2} \operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \right) + \lambda_{u} \left(\operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \right) \right)^{2} + \cdots$$

We can directly minimize in the 'vevs' $y_{d_i}, y_{u_i}, V_{CKM}$. Outcome:

- For obtaining the actual masses fine tunning is needed mass hierarchy
- ► For fixing the mixing huge (10⁻⁸) fine tuning + dim≥ 8 Operators

Introduction 00000000 000	The Dynamics Behind MFV 00000● 000	Summary

What about Leptons?

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Leptons

What about Leptons?

- Dirac Mass ν 's \rightarrow All the previous analysis applies...
- Majorana Mass ν's
 - Weinberg operator

$$O_W = rac{1}{M} ar{\ell}_{Llpha} ilde{H} \lambda_{lphaeta} ilde{H}^\dagger \ell^c_{Leta}$$

 $\lambda \sim (3 imes 3, 1) \hspace{1.5cm} ext{under} \hspace{1.5cm} SU(3)_{\ell_L} SU(3)_{E_R}$

- Bifundamental
 - $$\begin{split} \lambda &= \Sigma_{\nu} / \Lambda \sim \textit{Um}_{\nu} \textit{U}^{T} \\ \rightarrow & \text{Much like in the quark case } \Sigma_{\nu} \Sigma_{\nu}^{\dagger} \sim \Sigma_{u} \Sigma_{u}^{\dagger} \end{split}$$
- Fundamental

$$\lambda = \chi_{\nu}^2 / \Lambda^2 \sim U m_{\nu} U^T$$

But this forces a 1 ν mass only...

Summary

Leptons

Leptons

Lets go to a (predictive) Seesaw Model

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{l}_L H Y_E E_R + \bar{l}_L \tilde{H} Y N + \bar{l}_L Y' \tilde{H} N' + M \overline{N'} N^c + h.c.,$$
$$m_{\nu} = \frac{v^2}{M} \left(Y Y'^T + Y' Y^T \right) \qquad |Y'| << |Y| \text{ approx LN}$$
$$\text{N.H.} \qquad Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0\\ -i\sqrt{m_{\nu_2}}\\ \sqrt{m_{\nu_3}} \end{pmatrix}$$

Gavela, Hambye, P. Hernández, D. Hernández

The symmetry for vanishigh Yukawa couplings is: $SU(3)_{\ell_L} \times SU(3)_{E_R} \times U_{LN}$ The straightforward assignments:

$$Y_{E} = \frac{\langle \Sigma_{E} \rangle}{\Lambda} \sim (3, \bar{3})_{0}; \quad Y = \frac{\langle \chi_{N} \rangle}{\Lambda} \sim (3, 1)_{0}; \quad Y' = \frac{\langle \chi'_{N} \rangle}{\Lambda} \sim (3, 1)_{2}.$$

Leptons

Leptons

The invariants containing the angle (2 family case & (|Y'| < < |Y|)):

$$\chi_N^{\dagger} \Sigma_E \Sigma_E^{\dagger} \chi_N \propto (m_\mu^2 - m_e^2) \left((m_{\nu_2} - m_{\nu_1}) \cos 2\theta + 2\sqrt{m_{\nu_2} m_{\nu_1}} \sin 2\alpha \sin 2\theta \right) \,,$$

 $[\chi_N^{\dagger} \Sigma_E \Sigma_E^{\dagger} \chi_N] = 4 \rightarrow \text{Renormalizable level: } \partial_{\theta} V = 0 \text{ yields:}$

$$-(m_{\nu_2} - m_{\nu_1})\sin 2\theta + 2\sqrt{m_{\nu_2}m_{\nu_1}}\sin 2\alpha\cos 2\theta = 0 \rightarrow \text{tg}2\theta = \sin 2\alpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}}$$

Quarks

Let's bring back the quark invariant (Bifundamental):

$$\operatorname{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\Sigma_{d}\Sigma_{d}^{\dagger}
ight)\propto(m_{c}^{2}-m_{u}^{2})(m_{s}^{2}-m_{d}^{2})\cos2 heta$$

which yields

$$(m_c^2 - m_u^2)(m_s^2 - m_d^2)\sin 2\theta = 0 \rightarrow \sin 2\theta = 0$$

Leptons

Leptons

The invariants containing the angle (2 family case & (|Y'| << |Y|)):

$$\chi_N^{\dagger} \Sigma_E \Sigma_E^{\dagger} \chi_N \propto (m_\mu^2 - m_e^2) \left((m_{\nu_2} - m_{\nu_1}) \cos 2\theta + 2\sqrt{m_{\nu_2} m_{\nu_1}} \sin 2\alpha \sin 2\theta \right) \,,$$

 $[\chi_N^{\dagger} \Sigma_E \Sigma_E^{\dagger} \chi_N] = 4 \rightarrow \text{Renormalizable level: } \partial_{\theta} V = 0 \text{ yields:}$

$$-(m_{\nu_2} - m_{\nu_1})\sin 2\theta + 2\sqrt{m_{\nu_2}m_{\nu_1}}\sin 2\alpha\cos 2\theta = 0 \rightarrow \text{tg}2\theta = \sin 2\alpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}}$$

Quarks

Let's bring back the quark invariant (Bifundamental):

$$\operatorname{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\Sigma_{d}\Sigma_{d}^{\dagger}
ight)\propto(m_{c}^{2}-m_{u}^{2})(m_{s}^{2}-m_{d}^{2})\cos2 heta$$

which yields

$$(m_c^2 - m_u^2)(m_s^2 - m_d^2)\sin 2\theta = 0 \rightarrow \sin 2\theta = 0$$

Summary

The study of a SSB mechanism for flavour lead to

- 1. The flavour symmetry is restrictive, making the fixing of flavour parameters far from trivial.
- 2. The Fundamental case for Quarks gives a 'reason' for the strong hierarchical mass spectrum and accommodates mixing
- 3. The Lepton sector, when the Seesaw mechanism generates majorana masses, offers an interesting mass degeneracy ⇔ maximal angles connection