

From CUORICINO to CUORE: a ββου experiment

Cecilia G. Maiano Università degli Studi e Sezione INFN di Milano Bicocca

Outline:

* Introduction $\beta\beta0\nu$ and $\beta\beta2\nu$ *Process description *NME: Nuclear Matrix Elements - How to translate the observed experimental rate $\tau_{1/2}^{0\nu}$ in to effective ν mass $< m_{\nu e} > :$

* Experimental strategies: the *bolometric technique*

* CUORICINO: a pilot $\beta\beta$ experiment and test

* CCVR & TTT & CUORE-0

* CUORE: $\beta\beta$ experiment, the final goal

Double Beta Decay $\beta\beta2\nu$

 $(\mathbf{A},\mathbf{Z}) \rightarrow (\mathbf{A},\mathbf{Z}{+}2) + 2\mathbf{e}^{\cdot}{+}\dots$

*It is a second-order - allowed SM $\Delta L=0$ - nuclear transition, favored with respect to the sequence of two single beta decays for 35 isotopes *Continuum - max@ ~1/3 Q-value

It can undergo through many decay modes: $\beta^{\text{-}}\beta^{\text{-}},\beta^{\text{+}}\beta^{\text{+}} \ , \ EC \ \beta^{\text{+}} \ , \ ECEC$

 $\beta^{-}\beta^{-}$ has the highest rates observed for 11 isotopes: $T_{_{1/2}} \ge 10^{_{18}} \text{ y}$

Neutrinoless Double Beta Decay ββ2ν

Besides the Standard Model allowed $\beta^{-}\beta^{-}$, other more intriguing channels have been proposed, i.e. $0\nu\beta\beta$, $0\nu\chi^{0}(\chi^{0})\beta\beta$

 $\beta\beta0\nu$ channel has become particularly compelling after the evidence of neutrino oscillations (i.e. evidence of a non zero neutrino mass)

0νββ IMPLICATIONS IN PARTICLE PHYSICS :

1. L violation $\Delta L \neq 0$

2. v Majorana nature

- 3. Absolute v mass scale measurement
- 4. Neutrino mass hierarchy determination

5. CP violation measurement in the leptonic sector

$\beta\beta0\nu$ via light ν

 $0\nu\beta\beta$ can be mediated by the exchange of a variety of unconventional particles Ifs amplitude depends on their mass and coupling constants

For light vM exchange the Decay Rate is:

<m > v mass spectrum

$$\langle m_{ee} \rangle = \left| \sum |U_{ei}|^2 m_i e^{i \alpha_i} \right|$$

* 3 unknown quantities: m_{MIN} , α_1 , α_2 * Cancellations are possible due to α_i * $\beta\beta0\nu$ can access mass hierarchy

Invisibles-premeeting-March-29-30-2012 - Maiano C.G.

0vββ experimental signature

Minimal information: 30 two e- energy sum spectrum 2.0-9-01 × 10 1.5 $\beta\beta0\nu$ exhibits a peak at Q 0.90 1.00 1.10 K /Q over $\beta\beta2\nu$ tail 1.0 enlarged only by detector resolution 0.5-0.0 0.0 0.2 0.4 0.6 0.8 1.0 K /Q

Additional signatures:

- * Single electron energy spectrum
- * Angular correlation between the two electrons
- * Track and event topology
- * Time Of Flight
- * Daughter nuclear specie

Experimental sensitivity in τ^{ov}

Defined as the lifetime corresponding to the minimum detectable number of events over background at a given C.L.

$$F_0 = \ln(2) N_{\beta\beta} \frac{T_{meas}}{n_{peak}} \epsilon$$

$$F_{0} \propto \frac{\epsilon a.i.}{A} \left(\frac{MT}{b\Delta E} \right)^{1/2}$$
$$F_{0} \propto \frac{\epsilon a.i.}{A} (MT)$$

$\mathbf{F}_{_{0v}}$ involves only detector and set-up parameters:

- Source mass: M [kg]
- Measured bkg in the ROI: b [c/keV/kg/y]
- Detector resolution in the ROI: ΔE [keV]
- Measure livetime: T [y]
- Detecting efficiency for $\beta\beta0\nu$ events: ϵ
- Isotopic abundance: ai

- Improvements on F_{0v} :
 - Increasing exposition (MT)
- Better technology and detector performances (ΔE , ϵ)
- Lower background in the ROI(b)
 - Isotopic enrichment

Sensitivity in <m___>

$$F_{m} \propto \left(\frac{A}{\epsilon a.i.}\right)^{1/2} \frac{1}{G_{0\nu}(Q,Z)^{1/2} |M_{0\nu}|} \left(\frac{b \Delta E}{MT}\right)^{1/4} \mathsf{b} \neq \mathsf{0}$$

Fm involves also atomic and nuclear properties:

Phase Space Factor: G^{0v}(Q,Z) ÷ Q⁵
Nuclear Matrix Elements: M^{0v}

Improvements on F_m: Good isotope choice

Discrepancies between NME calculations with different models: a factor ~ 2 - 3

Isotope Choice: M^{0v}

$$\mathbf{F}_{N} \rightarrow \mathbf{G}^{0\nu} \ast |\mathbf{M}^{0\nu}|^{2}$$

Phase Space Factors G^{0v}

* Known and univoque* Nuclear Model independent

$\mathbf{NME} \mid \mathbf{M}^{0 \vee} \mid$

* Initial & Final state dependent

* Nuclear Model dependent

** Several phase space factors, not standard ** Different Nuclear Models use different starting hypothesis, but converge

Invisibles-premeeting-March-29-30-2012 - Maiano C.G.

NME

 $\beta\beta2\nu$ nuclear structure NME inherited from β decay $\beta\beta0\nu$ dominant players NME $0^+ \rightarrow 0^+$ GT & <u>F</u> operators

$$M_F^{0\nu} = - \langle N_f | \sum_{ij} \vec{\tau^-}(i) \vec{\tau^-}(j) H | (\vec{x}_i - \vec{x}_j) | | N_i \rangle$$

$$c_A^2 M_{GT}^{0\nu} = c_A^2 \langle N_f | \sum_{ij} \vec{\sigma}(i) \vec{\tau^-}(i) \vec{\sigma}(j) \vec{\tau^-}(j) H | (\vec{x}_i - \vec{x}_j) | | N_i \rangle$$

Total NME potential parametrization. $X_{_{\rm F}}$ – Fermi part

$$R_0 M^{0\nu} = c_A^2 (1 - X_F) R_0 M_{GT}^{0\nu}$$

 $\mathbf{M}^{0\mathbf{v}}$ ruled by :

* Hadronic currents density

* i & f hamiltonian states

* Nuclear Model

Phase Space Factors G^{ov} & SRC (Short Range Correlations)

Mid-eighties: scaling factor R introduced in v potential ($r_0 = 1.1$ or 1.2 fm!)

Critical and not unique parameters $R = r_0 A^{1/3} g_A$

$$G_{01} = \frac{a_{01}}{m_e^2 ln2} \int d\omega_{0\nu} F_0(Z, \epsilon_1) F_0(Z, \epsilon_2) \qquad a_{0\nu} = G_{01}^S(R) = \frac{a_{01}}{(m_e^R)^2 ln2} \int d\omega_{0\nu} F_0(Z, \epsilon_1) F_0(Z, \epsilon_2)$$

$$(T_{1/2}^{0\nu})^{-1} = |M^{(0\nu)}|^2 \cdot G_{01} \left(\frac{\langle m_{\nu e} \rangle}{m_e}\right)^2$$

Nuclear models in $\beta\beta$ decay calculations: independent particle picture.

* Long-range correlations taken into account (mixing of states within their model spaces),

* Short-range repulsive correlations (nucleon hard core) absent in wavefunctions. * SRC effect relevant for operators ~ order of the hard core radius.

Approximate way to correct for this: correlation function f(|r1 - r2|)

$$< ppJ_p ||O^J||nn'J_n > = < ppJ_pf||O^J||fnn'J_n >$$

Estimate for f

* Step function * Miller-Spencer f(r) $a=1.1 \text{ fm}^{-2} b=0.68 \text{ fm}^{-2}$

$$f(r) = 1 - e^{ar^2}(1 - br^2)$$

$$a = 1.1fm^{-2}b = 0.68fm - 2$$

Correct Comparison: F⁰^v

The background issue

Which is the required bkg to have sensitivity to IH and NH (1 σ CL)? Let's take ⁷⁶Ge as an example, M=1 t, i.a. 86%, ϵ =1, FWHM~0.15%, T=5y

$IH: \langle m_{m} \rangle = 50 \text{ meV}:$	$n_{_{\beta\beta}} \sim 30$	$=> b \sim 0.05 c / keV / kg / y$
$NH: \langle m_{ee} \rangle = 15 \text{ meV}:$	$n_{_{\beta\beta}} \sim 2.5$	$=> b \sim 4x10 - 4 c / keV / kg / y$

For ~ 3 signal events an almost "background free" experiment is needed

Background reduction techniques:

- Operating underground
- Shields with increasing cleanliness + active vetoes
- Select clean materials for detector and set-up construction
- •Select isotope with high Q-value (eg. ⁴⁸Ca, ⁸²Se, ¹⁰⁰Mo, ¹⁵⁰Nd
- Particle Id & location (eg. with tracking, PSA, light/heat...)
- •Spectroscopic id of daughter nucleus (eg. ¹³⁶Ba⁺⁺ tag)
- •Good energy resolution (for $2\nu\beta\beta$ bkg a σ <2% is needed)

15

Experimental Techniques

Two main approaches: calorimetric (source \leq detector) or external-source detector

Calorimeters

Solid-state devices, bolometers, scintillators, gas/L detectors

- Constraints on detector choice (except for bolometers)
- Very large M possibles (demonstrated ~50kg, proposed ~1t)
- High efficiency $(\epsilon \sim 1)$
- Very high resolution ($\Delta E \sim 0.15\%$) with Ge-diodes, bolometers
- Event topology in gas/liquid Xe detectors or pixellization

External-source detectors Scintillators, gas TPC, gas DC, magnetic field and TOF

- Difficult to get large source M
- Difficult to get high efficiency
- Difficult to get good resolution
- Event topology allowing "clean bkg" (except $2\nu\beta\beta$)
- Several $\beta\beta$ candidates can be studied with same det.

Experimental Techniques (2): Bolometers

Energy resolution's intrinsic limitation: Statistical Energy fluctuations $\langle \Delta U^2 \rangle = k_B T^2 C$...Electronic noise...etc

Whole deposited energy measured
The detector is fully sensitive

Detection principle ΔT=E/C C: heat capacity T < 1K

<u>Thermal Detectors features</u>

- ▲ Excellent Energy Resolution.
- ▲Wide material choice.
- Only Energy info
- ▼ Slow time response

TeO₂ absorbers:

- 🔺 Low specific heat
- 🔺 relatively big crystals available
- 🔺 radiopure

$0\nu\beta\beta$ status of the art

Experiments carried out so far had masses of ~ tens of kg of the $\beta\beta$ candidate Sensitivity in the QD region of the ν mass spectrum

CUORICINO (qino): ¹³⁰Te ββ0ν decay to the GS

Bkg at Q-value: 0.17 counts/(keV kg y) **Statistics:** 19.75 kg(¹³⁰Te) y

Maximum likelihood fit with 8 free parameters:

- $\beta\beta0\nu$ rate
- 3 flat bkg rates (big, small and enriched xtals)
- \bullet 3 ⁶⁰Co rates (big, small and enriched xtals)

• ⁶⁰Co sum energy (same for all detectors)

$$\Gamma^{0\nu} = (-0.2 \pm 1.4(stat) \pm 0.3(syst)) \times 10^{-25} y^{-1}$$

Half life limit: Bayesian approach with flat prior $T_{1/2}^{0\nu} > 2.8 \times 10^{24} y$ @ 90% CL Astropart. Phys. 34 (2011) 822–831

The CUORICINO limit on $m_{\beta\beta}$ is comparable with the one reported by the Heidelberg-Moscow experiment in 76 Ge, but can not exclude the claim of observation

QINO: ¹³⁰Te ßß on 0⁺ excited ¹³⁰Xe

Decay accompanied by the emission of two $\gamma {\rm 's:}$

1257 keV and 536 keV The electrons (and neutrinos, in the 2ν decay mode) share a total energy of 734 keV

Theoretical calculations:

0ν (mββ = 1 eV): $T_{1/2}$ =7.5×10²⁵ y 2ν: $T_{1/2}$ =(0.5÷1.4)×10²³ y

Coincidence-based analysis

Search for events involving two or three crystals $\beta\beta$

- Require that the photons are completely absorbed in one crystal
- Three possible scenarios:

Q = 2527.5 keV Q = 252

QINO: ¹²⁰Te β /EC double beta decay

 $^{120}Te \rightarrow ^{120}Sn + e^{+}(+2\nu)$

Q = (1714.8 ± 1.3) keV

0v: not available 2v: $T_{1/2}^{2v} = 4.4 \times 10^{26} y$

Theoretical calculations:

Isotopic abundance: 0.096% Statistics: 0.0573 kg(120Te) y

Analysis approach

In the 0v decay mode, the energy transferred to the positron is $K_{max} = Q - 2 \text{ mec}^2 - E_b (E_b \text{ binding energy of the captured e}).$ If E_b is contained in the detector, the total energy release is $E_0 = K_{max} + E_b = 692.8 \text{ keV}$

In the 2v decay mode the kinetic energy of the positron has a continuous distribution between E_{b} and $K_{max}(E_{b} = 30.5 \text{ keV}$ if the capture proceeds through the K shell).

Coincidence-based analysis:

search for events in coincidence with one or two 511 keV gammas (from positron annihilation)

		0ν	2v	Efficiency
		692.8 keV ⊕ 511 keV	(30.5 - 692.8) keV ⊕ 511 keV	3.40 ± 0.02 %
	692.8 keV ⊕ 511 keV ⊕ 511 keV	(30.5 - 692.8) keV ⊕ 511 keV ⊕ 511 keV	0.45 ± 0.01 %	
`		1203.8 keV ⊕ 511 keV	(541.5 - 1203.8 keV) ⊕ 511 keV	6.23 ± 0.03 %
		W ²		

Efficiencies evaluated using a GEANT4-based simulation

QINO ¹²⁰Te : ββ0ν & ββ2ν results

Global upper limit for the number of signal counts obtained by combining the posterior p.d.f.s of the three considered signatures

$$T_{1/2}^{0v} > 1.9 \times 10^{21} y @90\% CL$$

Upper limit on the number of signal counts estimated using a Bayesian approach Assume 4 bkg events over 8 observed events: $n_{_{SIG}} < 9 @ 90\%$ CL

$$T_{1/2}^{2v} > 0.9 \times 10^{20} y$$
 @90%CL

CUORE

988 TeO2 (34.167% ai 130Te) bolometers at ~ 10 mK in a granular structure (741 kg mass) @LNGS Phase-I: starts ~ end 2011 Phase-II: ~ 2014 Future: enr., scintill. bolom...

 $< m_{ee} > < 40 \div 94$ meV in 5y – IH region

CUORE(2) Starting Point: Qino bkg

Flat background in the energy region above the ²⁰⁸Tl 2615 keV line: contribution to the counting rate in the 0vDBD region: ~ 60% . Origin: **degraded alpha particles.**

CUORE(3) CCVR & TTT

The production of CUORE crystals • 7 CCVR already performed:

- started at SICCAS Jiading in 2008
 - ~ 30 crystals/month
 - ~ 700 crystals already at LNGS

CUORE Crystals Validation Run: a dedicated cryogenic setup to test crystals extracted by every production batch.

Three Towers Test: a large mass detector to test the Cu contaminations in 3 different configurations inside the CUORICINO cryostat (same background and operation conditions).

- the bulk activity is within the limit specified in the contract with the crystals producer
- improved the Cuoricino bolometric performance: FWHM on the calibration gamma line from ^{208}TI (2615 keV) = 4.6 +/- 1.2 keV (excluding CCVR4
 - didn't reach the base T due to cryostat ems)

CUORE Status

CUORE-0: - in commissioning, will start in a few months (end 2011) in CUORICINO cryostat

CUORE: - Hut construction, detector engineering and design completed

- Crystal production, cryogenics (new cryostat, shields), electronics, DAQ in progress **Resolution FWHM:** 0.2% @ Qββ (already achieved)

Demonstrated bkg for CUORE-0: (TTT test): < 0.05 c/keV/kg/y

(mainly degraded α from near surfaces, γ Compton from cryostat)

Bkg reduction strategy for CUORE: new cryostat with optimized shields, controlled low activity materials, minimization of facing materials, surface contamination reduction, anticoincidence cut

	Bkg source	Rate @ ROI [c/keV/kg/y]
up to date a projection of bkg <0.025 c/keV/kg/y	External bkg	< 2.0x10 ⁻³
	γ Compton from cryostat	< 1.0x10 ⁻³
	Cu holder bulk	< 2.0x10 ⁻³
	Cu holder surface	< 2.5x10 ⁻²

Conclusions

* $\beta\beta0\nu$ search is well motivated (L violation, ν nature etc.) and is actually a hot topic * Claim for evidence in ⁷⁶Ge with $\langle m_{ee} \rangle \sim 0.3 \text{ eV}$ (DH) at > 6 σ by part of the HM collaboration

 \ast In 5 y: many 100-200 kg $\beta\beta$ isotope experiments currently under preparation should be able toscrutinize Ge claim in many isotopes

* In 5-10 y: many ~1 ton $\beta\beta$ isotope experiments will enter the IH region (10-50 meV) but without being able to completely cover it.

