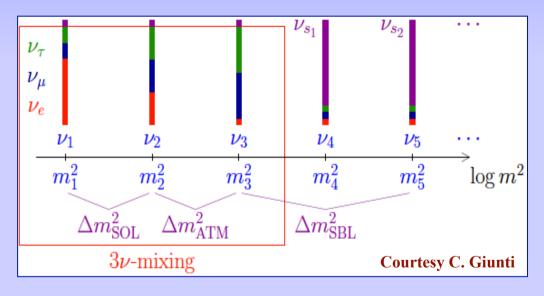
# Sterile Neutrino Searches: Current Status & Future Prospects

Sanjib Kumar Agarwalla

Sanjib.Agarwalla@ific.uv.es

IFIC/CSIC, University of Valencia, Spain








### Short Baseline Oscillation & Sterile Neutrinos

Recent Results from short baseline neutrino experiments hint towards high  $\Delta m^2 \approx 0.1 - 10 \text{ eV}^2$  oscillation

Require additional neutrinos with masses at eV scale



- $v_s$ : Sterile States (no weak interactions)
- Can feel gravity
- Can affect oscillations through mixing
- Well postulated in see-saw models

Introduce  $v_R$  in the SM: Dirac mass  $m_D \overline{\nu_R} v_L + Majorana mass <math>m_M \overline{v_R^c} v_R$ 

6 massive Majorana neutrinos :  $(v_{eL}, v_{\mu L}, v_{\tau L}) + (v_{eR}, v_{\mu R}, v_{\tau R})$ 

Light anti- $v_R$  = Light left-handed  $v_s$   $\nu_R^c \rightarrow \nu_{sL}$ 

# Definition of Short Baseline

Short-baseline means :  $L/E \sim 1 \text{ (m/MeV or km/GeV)}$ 

### It covers a wide range of experiments

- Radioactive  $\nu_e/\bar{\nu}_e$  Source experiments  $(L/E \sim 1 \text{ m/1 MeV})$
- Reactor  $\bar{\nu}_e$  experiments  $(L/E \sim 5 \text{ m/5 MeV})$
- Accelerator produced  $\nu$  experiments  $(L/E \sim 1 \text{ km/1 GeV})$
- Atmospheric Neutrinos in IceCube  $(L/E \sim 1000 \text{ km/1 TeV})$

# Short Baseline Experiments

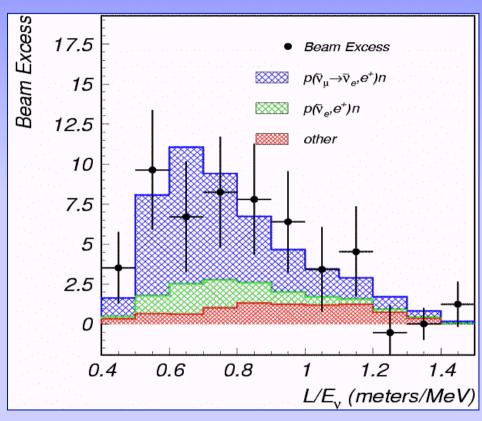
## $\bar{\nu}_e$ disappearance search (reactor experiments)

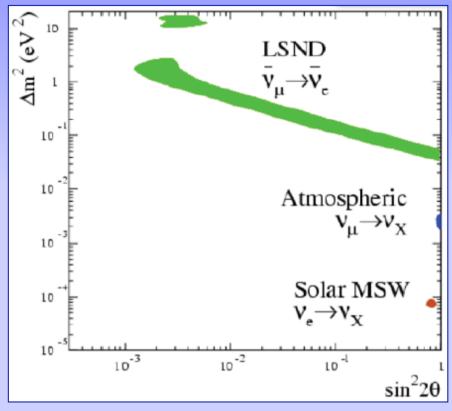
- > Spectral data: Bugey-3 (at 15, 40 & 95 m)
- Rate only: Bugey-4 (at 15 m), ROVNO, Gösgen, Krasnoyarsk, ILL
- $\triangleright$  Chooz and Palo Verde at L  $\approx$  1 km

### $\mathbf{D}$ $\nu_e$ disappearance search

- $\triangleright$  KARMEN & LSND  $v_e$  carbon cross section estimates
- ➤ GALLEX & SAGE radioactive source calibration experiments

# **D** Appearance searches $(\nu_{\mu} \rightarrow \nu_{e}, \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$


> LSND, MiniBooNE, KARMEN, NOMAD


### $\mathbf{D} \nu_{\mu}$ disappearance limits

- > CCFR, CDHS, MiniBooNE, Atmospheric neutrinos
- > Neutral current measurement of MINOS

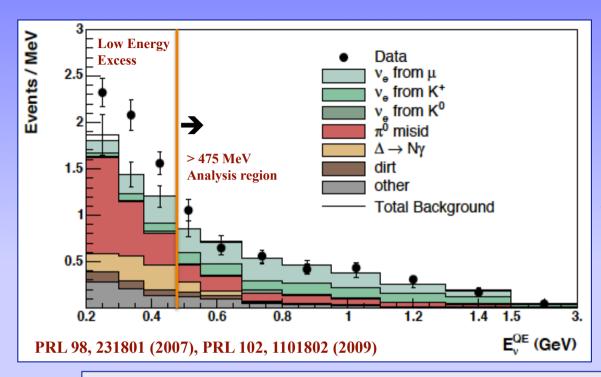
### LSND Result

### LSND : L = 30 m, $< E_{\nu_{\bar{\mu}}} > = 40 \text{ MeV}$





Saw an excess of  $87.9 \pm 22.4 \pm 6.0$  events


 $3.8\,\sigma$  excess of  $\bar{\nu}_e$  events in a beam of  $\bar{\nu}_\mu$ 

PRD 64, 112007 (2001)

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = (0.264 \pm 0.067 \pm 0.045)\%$ 

 $\Delta$ m $^2$   $\sim$ 0.1-10 eV $^2$ , small mixing Large (sin $^2$ 2 $\theta$ ,  $\Delta$ m $^2$ ) degeneracy

### MiniBooNE Neutrino Results



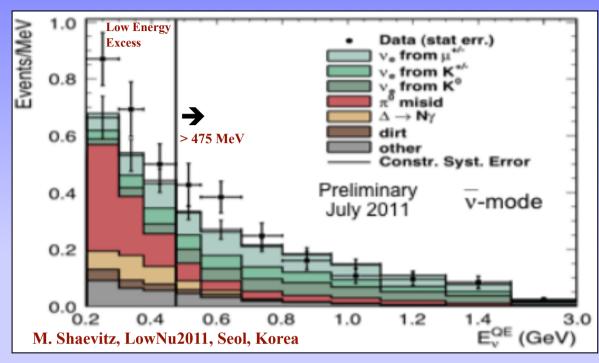
MiniBooNE : L = 541 m,  $\langle E_{\nu_{\mu},\nu_{\bar{\mu}}} \rangle$  = 700 MeV

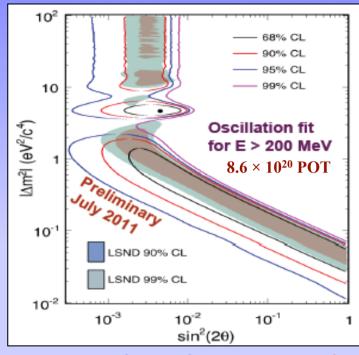
Aim to establish/refute the LSND claim: Similar L/E as LSND

 $6.5 \times 10^{20}$  POT in neutrino mode

#### E > 475 MeV

- Data matches quite well with background prediction
- > Ruled out simple 2v oscillations as LSND explanation at 90% C.L.


#### **E** < 475 MeV


- $\triangleright$  Excess of  $e^{-}/\gamma$ -like events:  $128.8 \pm 20.4 \pm 38.3$  (3 $\sigma$ )
- > Shape not consistent with simple 2v oscillations
- Magnitude consistent with LSND

**Low-Energy Anomaly!** 

Who ordered this?

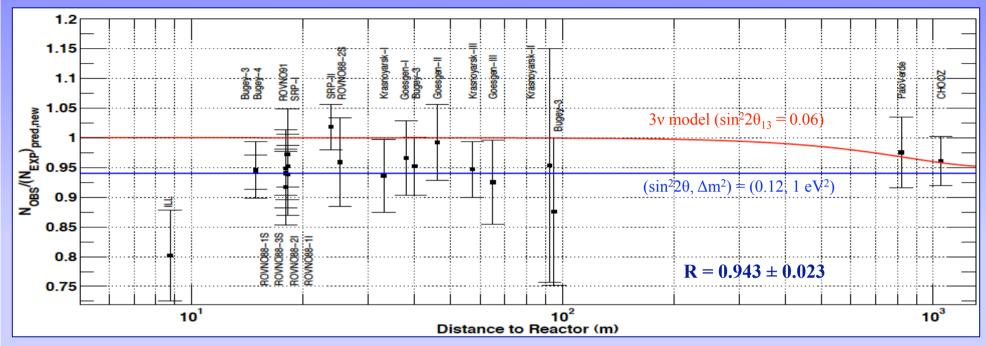
### MiniBooNE Anti-neutrino Results





Excess events:  $38.6 \pm 18.5$  (200-475 MeV),  $16.3 \pm 19.4$  (475-1250 MeV)

Best-fit:  $(\sin^2 2\theta, \Delta m^2) = (0.004, 4.6 \text{ eV}^2)$ 


#### E > 475 MeV (200 MeV)

Excess consistent with a LSND-like 2v oscillation over background only (null) hypothesis at 91.1% C.L. (97.6% C.L.) [hard to interpret as pure oscillation] E < 475 MeV

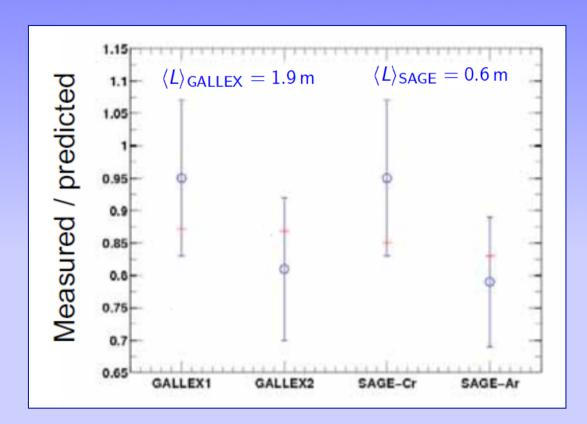
Excess of  $e^+/\gamma$ -like events: 38.6 ± 18.5 [v &  $\bar{v}$  results are now more similar]

MiniBooNE will continue running through spring 2012 to have  $15 \times 10^{20}$  POT

# Reactor Anti-neutrino Anomaly



Mention et al., arXiv:1101.2755 [hep-ex]


#### Recent reanalysis of reactor fluxes shows ~ 3.5% upward shift in flux

Mueller et al., arXiv:1101.2663, confirmed by P. Huber, arXiv:1106.0687

Overall reduction in predicted flux compared to existing data can be interpreted as  $\bar{\nu}_e$  disappearance with  $\Delta m^2 \sim 1 eV^2$  and L=10-100 m

Does source and detector size wash out oscillations?

# Gallium Neutrino Anomaly



Calibration measurements for the GALLEX & SAGE solar neutrino detectors using intense radioactive  $v_e$  fluxes from  $^{51}Cr$  &  $^{37}Ar$ 

<sup>51</sup>Cr: 747 KeV (82%)

<sup>37</sup>Ar: 811 KeV (90%)

#### **Detection process:**

$$u_e + {}^{71}\mathsf{Ga} o {}^{71}\mathsf{Ge} + e^-$$

Measurements consistently lower than expectation

Suggests possible  $v_e$  disappearance at 2.7 $\sigma$  due to active – sterile oscillation

Giunti and Laveder, arXiv:1006.3244

How well do we know the efficiencies of the radiochemical detection processes?

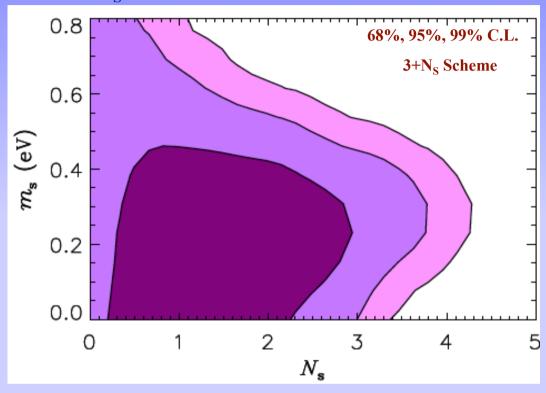
# Severe constraints for short baseline oscillations

ightharpoonup Limit on  $v_e$  disappearance from LSND & KARMEN using  $v_e$  - C scattering data

Conrad & Shaevitz, arXiv:1106.5552; Giunti & Laveder, arXiv:1111.1069

 $\diamond$  Strong limit on  $v_{\mu}$  disappearance from CDHS & CCFR experiments

CDHS: PLB 134 (1984) 281; CCFR: PRD 59 (1999) 031101


- ♦ New SciBooNE/MiniBooNE  $\nu_{\mu}$  disappearance limit even stronger than earlier K.B.M. Mahn et al., arXiv:1106.5685
  - $\Leftrightarrow$  Less stringent limits for  $\bar{\nu}_{\mu}$  disappearance from MiniBooNE A.A. Aguilar-Arevalo et al., PRL 103, 061802 (2009)
- ♦ No hint of steriles in atmospheric & solar v data in the required parameter range

  Maltoni & Schwetz, arXiv:0705.0107
  - ightharpoonup MINOS near and far detector NC data set limits on  $v_{\mu}$  disappearance

    P. Adamson et al., PRL 107, 011802 (2011); Giunti & Laveder, arXiv: 1109.4033
    - $\Leftrightarrow$  KARMEN limits  $\bar{\nu}_e$  appearance, NOMAD limits  $\nu_e$  appearance KARMEN: PRD 65, 112002 (2002); NOMAD: PLB 570, 19 (2003)

# Cosmological Constraints

 $N_S = \#$  of thermalized sterile  $\nu$  states

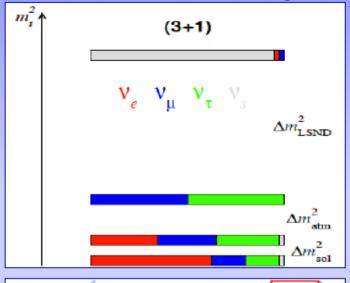


Precision cosmology & BBN mildly favor extra radiation in the universe beyond photons and ordinary neutrinos:

Supporting the existence of low mass sterile neutrinos

Hamann et al., arXiv:1006.5276

CMB & LSS in  $\Lambda$ CDM model:  $N_S = 1.3 \pm 0.9$  with  $m_s < 0.66$  eV @ 95% C.L.


CMB+LSS+BBN:  $N_s = 0.85^{+0.39}_{-0.56}$  (95% C.L.)

Hamann et al., arXiv:1108.4136

! New CMB data from Planck spacecraft will shed more light on this issue!

### 3+1 short baseline oscillations

#### Perturbation of 3v mixing



$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$V_{\mu 4} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} \frac{\Delta m_{41}^{2} L}{4E} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

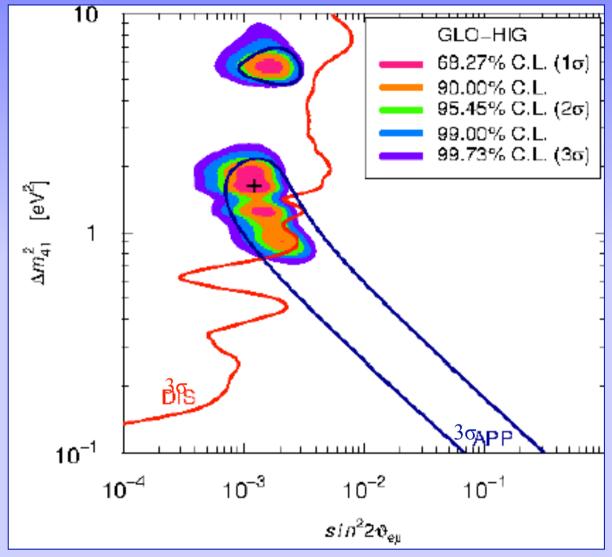
$$V_{\alpha \alpha} = 1 - \sin^{2} 2\theta_{dis} \sin^{2} 2\theta_{dis} \sin^{2} 2\theta_{dis} = 4|U_{\alpha 4}|^{2}(1 - |U_{\alpha 4}|^{2})$$

Add one sterile v with three active ones at the eV scale

SBL approximation :  $\Delta m_{21}^2 \approx \Delta m_{31}^2 \approx 0$  (2-flavor case)

#### Appearance

$$P_{\mu e} = \sin^2 2\theta_{\rm app} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$
  $\sin^2 2\theta_{\rm app} = 4|U_{e4}|^2|U_{\mu 4}|^2$ 


#### Disappearance

$$P_{lphalpha} = 1 - \sin^2 2 heta_{
m dis} \sin^2 rac{\Delta m_{
m 41}^2 L}{4E} \qquad \sin^2 2 heta_{
m dis} = 4|U_{lpha 4}|^2(1 - |U_{lpha 4}|^2)$$

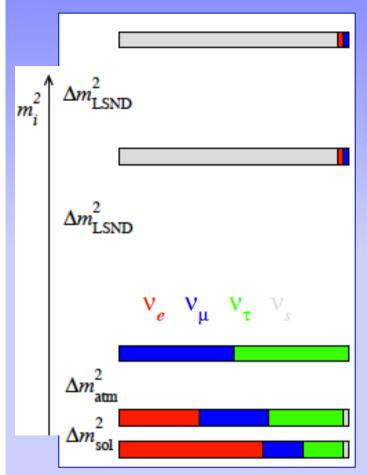
No CPV: Cannot fit v (LSND, MB) & v (MB) data

Constrain  $U_{e4}$  ( $U_{u4}$ ) from  $v_e$  ( $v_u$ ) disappearance experiments which put bound on appearance amplitude  $|U_{e4} U_{u4}|$ 

### 3+1 Global Fit



| $\chi^2_{ m min}$                 | 137.5  |
|-----------------------------------|--------|
| NDF                               | 138    |
| GoF                               | 50%    |
| $\Delta m_{41}^2 [\mathrm{eV^2}]$ | 1.6    |
| $ U_{e4} ^2$                      | 0.036  |
| $ U_{\mu 4} ^2$                   | 0.0084 |
| $\sin^2 2\vartheta_{e\mu}$        | 0.0012 |
| $\sin^2 2\vartheta_{ee}$          | 0.14   |
| $\sin^2 2\vartheta_{\mu\mu}$      | 0.034  |
|                                   |        |


Excluding MiniBooNE low energy anomaly

PG (GoF) = 0.3%

Giunti and Laveder, arXiv: 1111.1069 Similar findings in Kopp, Maltoni, Schwetz, arXiv: 1103.4570

#### Appearance & disappearance data are marginally compatible

### 3+2 short baseline oscillations



Add 2 sterile neutrinos with 3 active ones at the eV scale

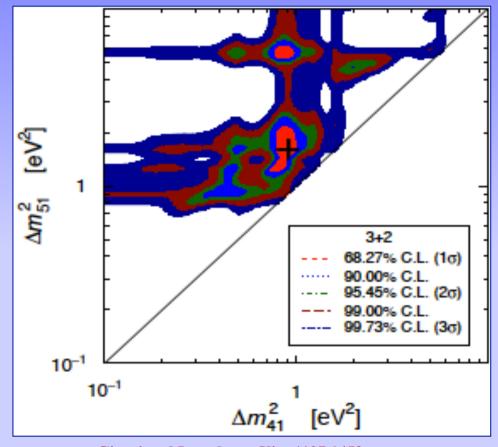
SBL approximation : 
$$\Delta m_{21}^2 \approx \Delta m_{31}^2 \approx 0$$
 and  $x_{ij} \equiv \Delta m_{ij}^2 L/4E$ 

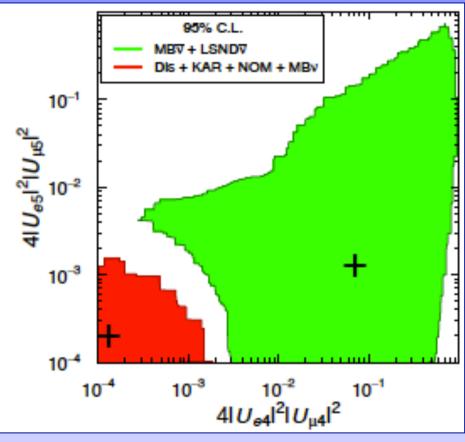
#### **Appearance**

$$P_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2 x_{41} + 4|U_{e5}|^2|U_{\mu 5}|^2\sin^2 x_{51}$$

$$+ 8|U_{e4}U_{\mu 4}U_{e5}U_{\mu 5}|\sin x_{41}\sin x_{51}\cos(x_{54} - \delta)$$

$$\delta \equiv arg(U_{e4}^*U_{\mu 4}U_{e5}U_{\mu 5}^*) \text{ is the } CP\text{-phase}$$


#### **Disappearance**


$$\begin{vmatrix} P_{\alpha\alpha} &= 1 - 4(1 - |U_{\alpha 4}|^2 - |U_{\alpha 5}|^2)(|U_{\alpha 4}|^2 \sin^2 x_{41} + |U_{\alpha 5}|^2 \sin^2 x_{51}) \\ &- 4|U_{\alpha 4}|^2 |U_{\alpha 5}|^2 \sin^2 x_{54} \end{vmatrix}$$

### CPV ( $\delta$ ): Can fit $\bar{v}$ (LSND, MB) & v (MB) data

Constrain  $|\mathbf{U}_{ei}|$  &  $|\mathbf{U}_{\mu i}|$  (i=4,5) from disappearance experiments which put bound on appearance amplitude  $|\mathbf{U}_{ei}|$ 

### 3+2 Global Fit





Giunti and Laveder, arXiv: 1107.1452 See also, Kopp, Maltoni, Schwetz, arXiv: 1103.4570

Severe tension in the 3+2 fit

|     | $\Delta m_{41}^2$ | $ U_{e4} $ | $ U_{\mu 4} $ | $\Delta m_{51}^2$ | $ U_{e5} $ | $ U_{\mu 5} $ | $\delta/\pi$ | $\chi^{2}/130$ |
|-----|-------------------|------------|---------------|-------------------|------------|---------------|--------------|----------------|
| KMS | 0.47              | 0.128      | 0.165         | 0.87              | 0.138      | 0.148         | 1.64         | 110.1          |
| GL  | 0.90              | 0.130      | 0.134         | 1.60              | 0.130      | 0.080         | 1.52         | 92/100         |

### Global Fits: Where do we stand?

### Considerable tension in the global fit

Data from LSND, MiniBooNE (anti-neutrino), Reactor and Gallium experiments point towards short baseline active - sterile neutrino oscillation

#### (3+1) short baseline oscillations

- CP violation: No
   Cannot fit v̄ (LSND, MB) & v (MB) data
- Tension: appearance .vs. disappearance
- Slight agreement with cosmology

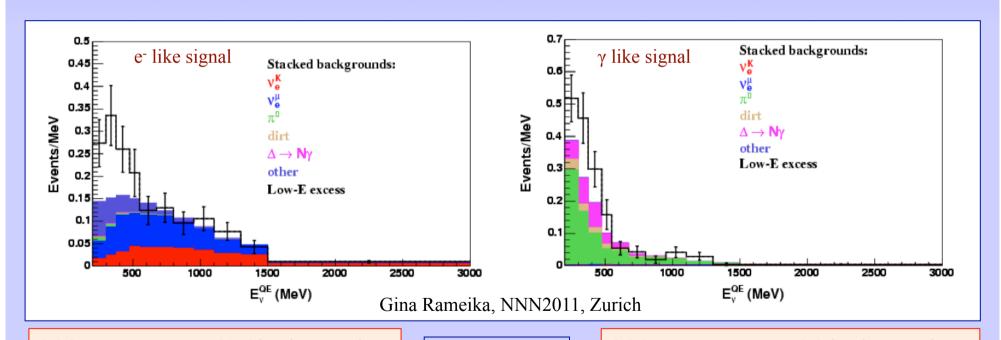
#### (3+2) short baseline oscillations

- CP violation: Yes
   Can fit v̄ (LSND, MB) & v (MB) data
- Tension: appearance .vs. disappearance
- Tension with cosmology

New 2011 MiniBooNE data have reduced the tension between neutrino & anti-neutrino

! New short baseline experiments are mandatory to have a clear picture !

# What do we need? Any Future Plans?


Both positive & negative hints for sterile high  $\Delta m^2$  oscillation !! Nothing is conclusive !!

Need new high precision short baseline experiments to perform appearance and disappearance searches at high significance involving both neutrinos and anti-neutrinos

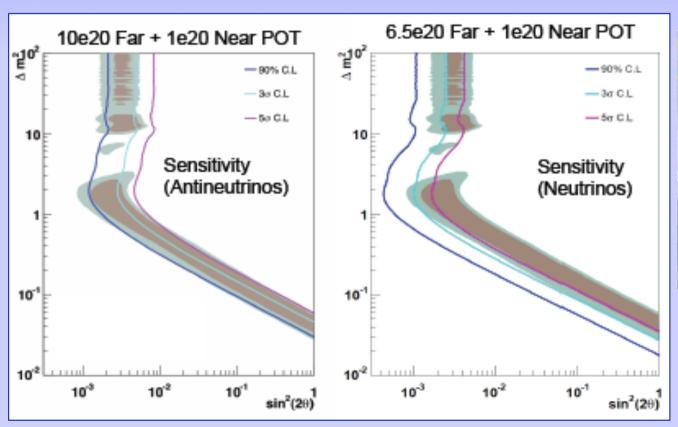
There is a diverse set of SBL experiments, spanning a wide range in L and E, have been proposed to validate/refute the 3+N models and to resolve the present anomalies at high significance

# MicroBooNE at FNAL (Approved)

- LArTPC (70 tons fiducial volume), located at 470 m in the Booster Neutrino Beamline
- 2 times better PID efficiency than MiniBooNE, only 3% mis-ID (Online late 2013)
- Unique  $e^{-}/\gamma$  discrimination: photons give twice the ionization at conversion point
- Can predict if low-E excess in MiniBooNE (v) due to single electron or photon events



36.8 excess events, 41.6 background 5.7σ stat. significance for E < 475MeV

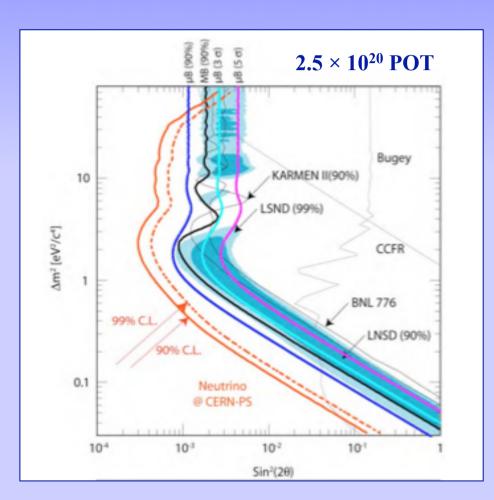

 $6 \times 10^{20} \text{ POT}$ 

36.8 excess events, 78.9 background  $4.1\sigma$  stat. significance for E < 475 MeV

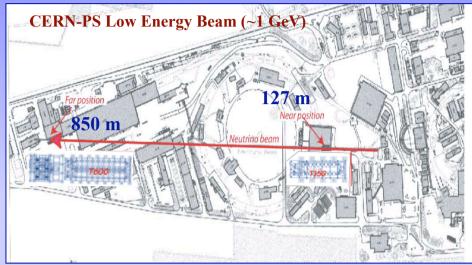
# BooNE (a near detector for MiniBooNE)

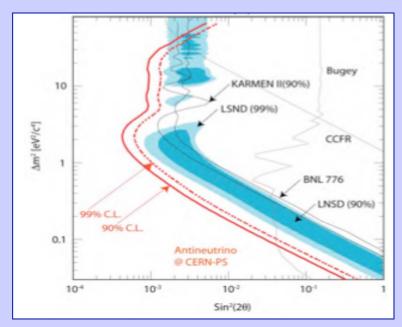
- Build a new MiniBooNE like detector at 200 m (near detector for MiniBooNE)
- Flux, cross-section and optical model errors cancel in 200 m/500 m ratio analysis

Gain statistics rapidly, already have far detector data

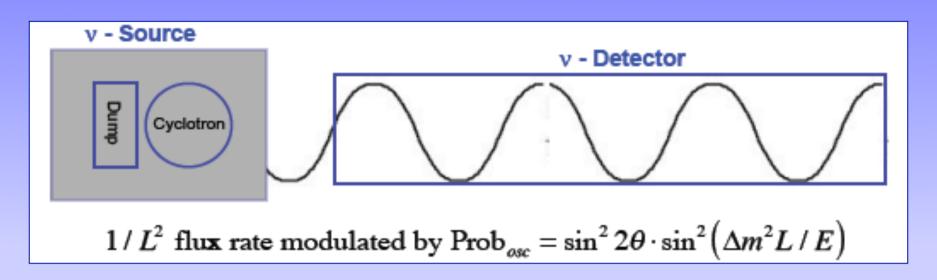






LOI arXiv:0910.2698


# CERN Low Energy Two Detector Experiment

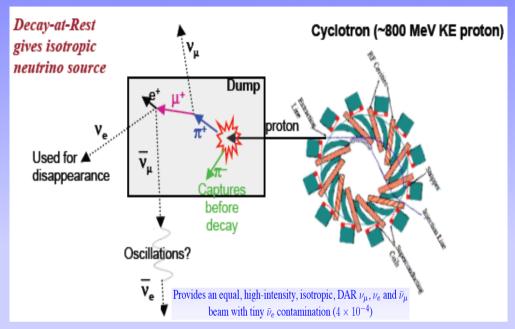
#### 600 tons ICARUS at 850 m and 150 tons LAr at 127 m in the CERN-PS beam line

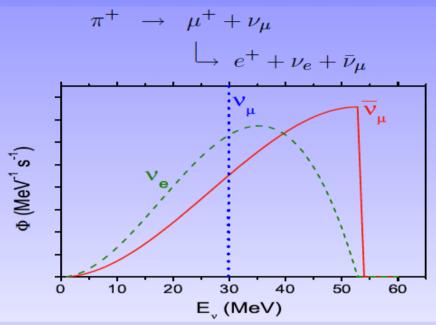



LOI arXiv:0909.0355






# Very Short Baseline Oscillation Experiment

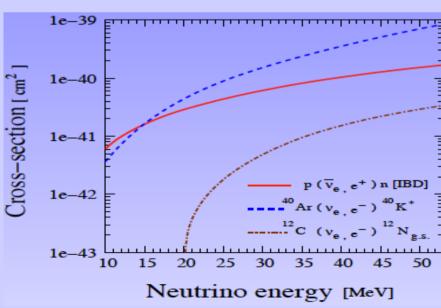



**Neutrino Sources** 

- Decay-at-rest beam from proton beam dump
- Small core reactor source
- Very high activity radioactive source
- Observe the L/E dependence of the event rates within a long v detector
- Background distribution is either independent of L or goes like 1/L<sup>2</sup>
- Powerful verification of the short baseline oscillation/new physics

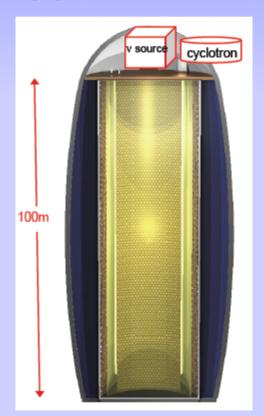
# Decay-At-Rest (or Beam Dump) Neutrino Source



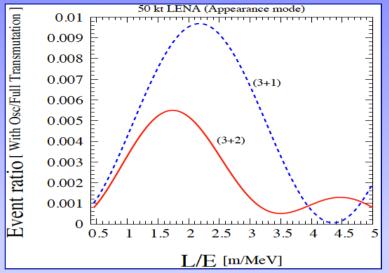


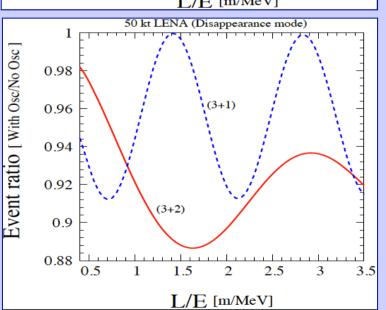

800 MeV protons from cyclotrons interact in a low-A target (C, H<sub>2</sub>O) producing  $\pi^+$  and, at a low level,  $\pi^-$ 

$$p + X \to \pi^{\pm} + X'$$


Low-A target is embedded in a high-A, dense material where pions are brought to rest

 $\pi^-$  & daughter  $\mu^-$  captured before DIF, minimizing  $\bar{\nu}_e$ 





### Short Baseline Neutrino Oscillation Waves

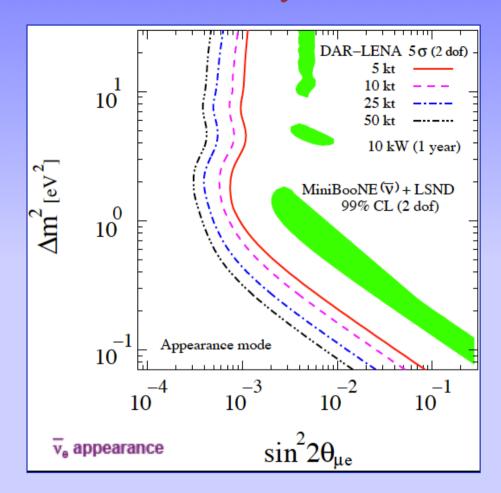
- LENA Scintillation Detector
- 50 kt fiducial mass
- Source-to-detector face = 20 m
- Deep location (4000 mwe)
- Negligible cosmic muon background

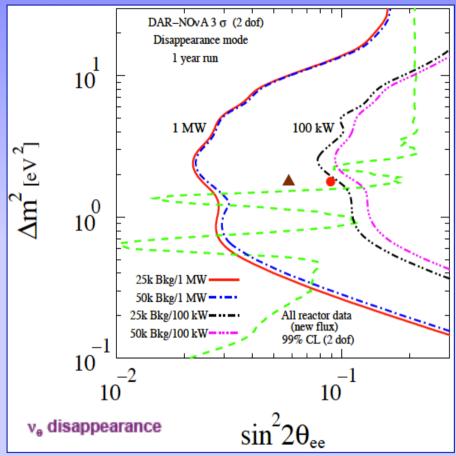


Similar study with NOvA & Gd doped Super-Kamiokande






Agarwalla and Huber, arXiv: 1007.3228
Agarwalla, Conrad and Shaevitz, arXiv: 1105.4984


Distinguish between (3+1) & (3+2) models

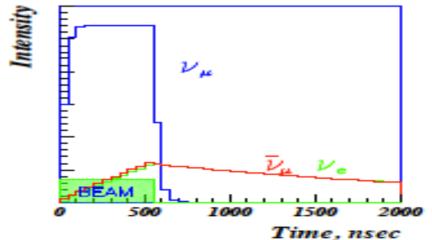
Rate + Shape measurement

Several L/E bins cancel systematic uncertainties

# Sensitivity Limit to Sterile Neutrino Oscillation

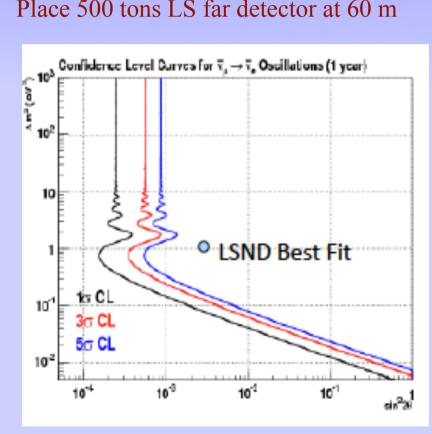





- LENA style detector
- Cover 'LSND' at 5σ with 5 kt LENA
   & 10 kW cyclotron in 1 year

- NOvA
- Cover 'Reactor Anomaly' at 3σ with 100 to 1000 kW in 1 year

Agarwalla, Conrad and Shaevitz, arXiv: 1105.4984


# OscSNS proposal at ORNL@USA





Short duty-factor, beam pulse 695 ns

- Spallation Neutron Source @ ORNL
- 1.3 GeV protons on Hg target (1.2 MW)
- Free source of v (well known spectrum)
- Place 25 tons LS near detector at 18 m
- Place 500 tons LS far detector at 60 m



OscSNS proposal, hep-ph/0501013

# **Concluding Remarks**

- **X** Several interesting, but inconclusive hints for sterile neutrinos
- Global fit of world neutrino and anti-neutrino data in both 3+1 and 3+2 schemes show considerable tension between various experiments
- $\aleph$  Need new powerful experiments to have a conclusive  $\geq 5\sigma$  results
- Establishing the existence of sterile neutrinos would open a powerful window on new physics beyond the Standard Model

For More Discussions on Steriles: Take a look at! http://cnp.phys.vt.edu/white\_paper/whitepaper.pdf

#### Thank You!