

Bounds to Non-standard Neutrino Interactions

Toshihiko Ota

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) München

Preface

MINSIS signal

Flavour violation process with a neutrino in μ - τ sector

at the beam source: $\pi^+ \to \mu^+ \nu$

 $\nu N \rightarrow \tau^- X$:at a (near) detector

Categories of physics at MINSIS — Effective theory-wise

- Sterile neutrino mixing with light neutrals →Li Lopez-Pavon Yasuda
- Non-unitary PMNS matrix mixing with heavy neutrals →Antusch Blennow
- Non-standard neutrino interactions exotic four-Fermi int →Fernandez-Martinez Mena Parke Winter

Outline

Introduction

- Non-standard neutrino interactions in experiments
- Gauge invariant effective interactions for MINSIS

2 Bounds from charged LFV

- Under some assumptions for simplicity
- In general

Max-Planck-Institut fuer Playsik Werner-Heisenberg-Institut

Outline

- Non-standard neutrino interactions in experiments
- Gauge invariant effective interactions for MINSIS
- Bounds from charged LFV
 - Under some assumptions for simplicity
 - In general

NSI in oscillation experiments

 NSI — Exotic interactions with neutrinos which are parametrized as four-Fermi interactions:

Standard oscillation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}HL} | \nu_{\alpha} \rangle \right|^{2}$$

NSI in oscillation experiments

 NSI — Exotic interactions with neutrinos which are parametrized as four-Fermi interactions:

Standard oscillation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}HL} | \nu_{\alpha} \rangle \right|^{2}$$

With NSI in source and detection

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \boldsymbol{\nu}_{\beta}^{\boldsymbol{d}} | \mathrm{e}^{-\mathrm{i}HL} | \boldsymbol{\nu}_{\alpha}^{\boldsymbol{s}} \rangle \right|^{2}$$

• CC type NSI — flavour mixture states at source and detection Grossman PLB359 (1995) 141.

$$\begin{split} |\nu_{\alpha}^{s}\rangle = &|\nu_{\alpha}\rangle + \sum_{\gamma=e,\mu,\tau} \epsilon_{\alpha\gamma}^{s} |\nu_{\gamma}\rangle, \qquad \text{e.g., } \pi^{+} \xrightarrow{\epsilon_{\mu e}} \mu^{+}\nu_{e} \\ \langle\nu_{\alpha}^{d}| = &\langle\nu_{\alpha}| + \sum_{\gamma} \epsilon_{\gamma\alpha}^{d} \langle\nu_{\gamma}|, \qquad \text{e.g., } \nu_{\tau}N \xrightarrow{\epsilon_{\tau e}^{d}} e^{-}X \end{split}$$

 $\gamma = e, \mu, \tau$

NSI in oscillation experiments

 NSI — Exotic interactions with neutrinos which are parametrized as four-Fermi interactions:

Standard oscillation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}HL} | \nu_{\alpha} \rangle \right|^{2}$$

With NSI in propagation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}(H + V_{\mathrm{NSI}})L} | \nu_{\alpha} \rangle \right|^{2}$$

• NC type NSI — extra matter effect in propagation e.g., Wolfenstein PRD17 (1978) 2369. Valle PLB199 (1987) 432. Guzzo Masiero Petcov PLB260 (1991) 154. Roulet PRD44 (1991) R935.

$$(V_{\rm NSI})_{\beta\alpha} = \sqrt{2}G_F N_e \begin{pmatrix} \epsilon^m_{ee} & \epsilon^m_{e\mu} & \epsilon^m_{e\tau} \\ \epsilon^m_{e\mu} & \epsilon^m_{\mu\mu} & \epsilon^m_{\mu\tau} \\ \epsilon^{m*}_{e\tau} & \epsilon^m_{\mu\tau} & \epsilon^m_{\tau\tau} \end{pmatrix}, \qquad \text{e.g., } \underbrace{\nu_e}_{ie\tau} \frac{\epsilon^m_{e\tau}}{in \text{ propagation}} \nu_{\tau}$$

• Source and detection NSIs are relevant to MINSIS.

T. Ota (MPI für Physik München)

NSI in MINSIS

$$\mathcal{A}_{\rm SM}^{\nu N} \xrightarrow{\rm scat} \mathcal{A}(\pi^+ \xrightarrow{\epsilon_{\mu\tau}^s} \mu^+ \nu_{\tau})$$

Three (coherent) contributions

- Source NSI in pion decay
- Detection NSI at neutrino-nucleon scattering
- Standard(/non-standard) oscillation

Introduction

Non-standard neutrino interactions in experiments

NSI in MINSIS

$$\mathcal{A}_{\rm SM}^{\nu N\text{-}{\rm scat}}\mathcal{A}(\pi^+ \xrightarrow{\epsilon_{\mu\tau}^s} \mu^+ \nu_{\tau}) + \mathcal{A}(\nu_{\mu}N \xrightarrow{\epsilon_{\mu\tau}^d} \tau^- X) \mathcal{A}_{\rm SM}^{\pi\text{-}{\rm decay}}$$

Three (coherent) contributions

- Source NSI in pion decay
- Detection NSI at neutrino-nucleon scattering
- Standard(/non-standard) oscillation

Introduction

Non-standard neutrino interactions in experiments

NSI in MINSIS

at the beam source:
$$\pi^+ \xrightarrow{\mathrm{SM}} \mu^+ \nu_\mu$$

 $\downarrow_{\mathbb{R}}^{\mathbb{S}}$
 $\nu_\tau N \xrightarrow{\mathrm{SM}} \tau^- X$:at a detector

$$\mathcal{A}_{\rm SM}^{\nu N\operatorname{-scat}}\mathcal{A}(\pi^+ \xrightarrow{\epsilon_{\mu\tau}^s} \mu^+ \nu_{\tau}) + \mathcal{A}(\nu_{\mu}N \xrightarrow{\epsilon_{\mu\tau}^d} \tau^- X) \mathcal{A}_{\rm SM}^{\pi\operatorname{-decay}} + \mathcal{A}_{\rm SM}^{\nu N\operatorname{-scat}} \langle \nu_{\tau}| - \mathrm{i}HL |\nu_{\mu}\rangle \mathcal{A}_{\rm SM}^{\pi\operatorname{-decay}}$$

Three (coherent) contributions

- Source NSI in pion decay
- Detection NSI at neutrino-nucleon scattering
- Standard(/non-standard) oscillation

NSI in MINSIS

at the beam source:
$$\pi^+ \longrightarrow \mu^+ \nu$$

 \downarrow
 $\nu N \longrightarrow \tau^- X$:at a detector

MINSIS signal rate =

$$\left| \mathcal{A}_{\mathrm{SM}}^{\nu N \operatorname{-scat}} \mathcal{A}(\pi^+ \xrightarrow{\epsilon_{\mu\tau}^s} \mu^+ \nu_{\tau}) + \mathcal{A}(\nu_{\mu} N \xrightarrow{\epsilon_{\mu\tau}^d} \tau^- X) \mathcal{A}_{\mathrm{SM}}^{\pi \operatorname{-decay}} + \mathcal{A}_{\mathrm{SM}}^{\nu N \operatorname{-scat}} \langle \nu_{\tau}| - \mathrm{i} HL |\nu_{\mu}\rangle \mathcal{A}_{\mathrm{SM}}^{\pi \operatorname{-decay}} \right|^2$$

Three (coherent) contributions

- Source NSI in pion decay
- Detection NSI at neutrino-nucleon scattering
- Standard(/non-standard) oscillation

We will see source NSI is an interesting possibility...

T. Ota (MPI für Physik München)

Four-Fermi interactions

- including $(\bar{\nu}_{\tau}\mu)(\bar{d}u)$ or $(\bar{\tau}\nu_{\mu})(\bar{u}d)$
- SM gauge invariant

$$\begin{split} \mathscr{L}_{\mathsf{eff}} = & 2\sqrt{2}G_F \sum_{\beta,\alpha} \left[(\mathcal{C}_{LQ}^1)_{\beta}^{\ \alpha} (\mathcal{O}_{LQ}^1)_{\alpha}^{\ \beta} + (\mathcal{C}_{LQ}^3)_{\beta}^{\ \alpha} (\mathcal{O}_{LQ}^3)_{\alpha}^{\ \beta} \right] \\ & + 2\sqrt{2}G_F \sum_{\beta,\alpha} \left[(\mathcal{C}_{ED})_{\beta}^{\ \alpha} (\mathcal{O}_{ED})_{\alpha}^{\ \beta} + (\mathcal{C}_{EU})_{\beta}^{\ \alpha} (\mathcal{O}_{EU})_{\alpha}^{\ \beta} + \mathrm{H.c.} \right], \end{split}$$

defined with the operators

$$\begin{split} & (\mathscr{O}_{LQ}^{1})_{\alpha}^{\beta} = [\overline{L}^{\beta} \gamma^{\rho} L_{\alpha}] [\overline{Q} \gamma_{\rho} Q], \\ & (\mathscr{O}_{LQ}^{3})_{\alpha}^{\beta} = [\overline{L}^{\beta} \gamma^{\rho} \vec{\tau} L_{\alpha}] [\overline{Q} \gamma_{\rho} \vec{\tau} Q], \\ & (\mathscr{O}_{ED})_{\alpha}^{\beta} = [\overline{L}^{\beta} E_{\alpha}] [\overline{D} Q], \\ & (\mathscr{O}_{EU})_{\alpha}^{\beta} = [\overline{L}^{\beta} E_{\alpha}] (\mathrm{i} \tau^{2}) [\overline{Q} U], \end{split}$$

and the corresponding coefficients $\ensuremath{\mathcal{C}s}.$

T. Ota (MPI für Physik München)

Four-Fermi interactions

With component fields, the Lagrangian looks ...

$$\mathscr{L}_{\mathsf{eff}} = \underbrace{\mathscr{L}_{\mathsf{MINSIS}}}_{\nu\ell} + \underbrace{\mathscr{L}_{\mathsf{CLFV}}}_{\ell\ell} + \underbrace{\mathscr{L}_{\mathsf{NSI}}}_{\nu\nu}$$

$$\begin{aligned} \mathscr{L}_{\text{MINSIS}} =& 2\sqrt{2}G_F \left[2(\mathcal{C}_{LQ}^{3})_{\tau}{}^{\mu} [\bar{\nu}^{\tau} \gamma^{\rho} \mathbf{P}_{L} \mu] [\bar{d}\gamma_{\rho} \mathbf{P}_{L} u] + 2(\mathcal{C}_{LQ}^{3})_{\tau}{}^{\mu} [\bar{\tau}\gamma^{\rho} \mathbf{P}_{L} \nu_{\mu}] [\bar{u}\gamma_{\rho} \mathbf{P}_{L} d] \right. \\ & \left. + (\mathcal{C}_{ED})_{\tau}{}^{\mu} [\bar{\nu}^{\tau} \mathbf{P}_{R} \mu] [\bar{d}\mathbf{P}_{L} u] + (\mathcal{C}_{EU})_{\tau}{}^{\mu} [\bar{\nu}^{\tau} \mathbf{P}_{R} \mu] [\bar{d}\mathbf{P}_{R} u] \right. \\ & \left. + (\mathcal{C}_{ED}^{\dagger})_{\tau}{}^{\mu} [\bar{\tau}\mathbf{P}_{L} \nu_{\mu}] [\bar{u}\mathbf{P}_{R} d] + (\mathcal{C}_{EU}^{\dagger})_{\tau}{}^{\mu} [\bar{\tau}\mathbf{P}_{L} \nu_{\mu}] [\bar{u}\mathbf{P}_{L} d] + \cdots \right]. \end{aligned}$$

Source NSI: $(\mathcal{C}_{LQ}^{\mathbf{3}})_{\tau}^{\ \mu}$, $(\mathcal{C}_{ED})_{\tau}^{\ \mu}$, and $(\mathcal{C}_{EU})_{\tau}^{\ \mu}$, Detection NSI: $(\mathcal{C}_{LQ}^{\mathbf{3}})_{\tau}^{\ \mu}$, $(\mathcal{C}_{ED}^{\dagger})_{\tau}^{\ \mu}$, and $(\mathcal{C}_{EU}^{\dagger})_{\tau}^{\ \mu}$.

Note that $(\mathcal{C})_{\tau}{}^{\mu}$ and $(\mathcal{C}^{\dagger})_{\tau}{}^{\mu}$ are independent.

T. Ota (MPI für Physik München)

Four-Fermi interactions

With component fields, the Lagrangian looks ...

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{MINSIS}} + \mathscr{L}_{\mathsf{CLFV}} + \mathscr{L}_{\mathsf{NSI}}$$

$$\begin{split} \mathscr{L}_{\mathsf{CLFV}} = & \frac{G_F}{\sqrt{2}} \left[\left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} - (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\tau] [\bar{u}\gamma_{\rho}u] + \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} + (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\tau] [\bar{d}\gamma_{\rho}d] \\ & - \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} - (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5\tau] [\bar{u}\gamma_{\rho}u] - \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} + (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5\tau] [\bar{d}\gamma_{\rho}d] \\ & - \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} - (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5v] [\bar{u}\gamma_{\rho}\gamma^5u] - \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} + (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5\tau] [\bar{d}\gamma_{\rho}\gamma^5d] \\ & + \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} - (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5\tau] [\bar{u}\gamma_{\rho}\gamma^5u] + \left\{ (\mathcal{C}_{LQ}^1)_{\mu}{}^{\tau} + (\mathcal{C}_{LQ}^3)_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5\tau] [\bar{d}\gamma_{\rho}\gamma^5d] \\ & - \left\{ (\mathcal{C}_{ED})_{\mu}{}^{\tau} - (\mathcal{C}_{ED}^{\dagger})_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{d}\gamma^5d] - \left\{ (\mathcal{C}_{EU})_{\mu}{}^{\tau} - (\mathcal{C}_{EU}^{\dagger})_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{u}\gamma^5u] \\ & - \left\{ (\mathcal{C}_{ED})_{\mu}{}^{\tau} + (\mathcal{C}_{ED}^{\dagger})_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{d}\gamma^5d] - \left\{ (\mathcal{C}_{EU})_{\mu}{}^{\tau} + (\mathcal{C}_{EU}^{\dagger})_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{u}\gamma^5u] \\ & + \left\{ (\mathcal{C}_{ED})_{\mu}{}^{\tau} - (\mathcal{C}_{ED}^{\dagger})_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{d}d] - \left\{ (\mathcal{C}_{EU})_{\mu}{}^{\tau} - (\mathcal{C}_{EU}^{\dagger})_{\mu}{}^{\tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{u}u] + \cdots \right]. \end{split}$$

It is impossible to turn off $(\bar{\mu}\tau)(\bar{u}u)$ and $(\bar{\mu}\tau)(\bar{d}d)$ at the same time — MINSIS-NSIs are always constrained from CLFV.

T. Ota (MPI für Physik München)

Outline

Introduction

- Non-standard neutrino interactions in experiments
- Gauge invariant effective interactions for MINSIS

2 Bounds from charged LFV

- Under some assumptions for simplicity
- In general

3 Conclusion and Discussion

Effective Lagrangian for Charged LFV

$$\begin{split} \mathscr{L}_{\mathsf{CLFV}} = & \frac{G_F}{\sqrt{2}} \bigg[\left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} - (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau] [\bar{u}\gamma_{\rho}u] + \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} + (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau] [\bar{d}\gamma_{\rho}d] \\ & - \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} - (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\gamma^5\tau] [\bar{u}\gamma_{\rho}u] - \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} + (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau] [\bar{d}\gamma_{\rho}d] \\ & - \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} - (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau^5\tau] [\bar{u}\gamma_{\rho}\gamma^5u] - \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} + (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau] [\bar{d}\gamma_{\rho}\gamma^5d] \\ & + \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} - (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau^5\tau] [\bar{u}\gamma_{\rho}\gamma^5u] + \left\{ (\mathcal{C}_{LQ}^1)^{\ \tau} + (\mathcal{C}_{LQ}^3)^{\ \tau} \right\} [\bar{\mu}\gamma^{\rho}\tau^5\tau] [\bar{d}\gamma_{\rho}\gamma^5d] \\ & - \left\{ (\mathcal{C}_{ED})^{\ \tau} - (\mathcal{C}_{ED}^1)^{\ \tau} \right\} [\bar{\mu}\tau] [\bar{d}\gamma^5d] - \left\{ (\mathcal{C}_{EU})^{\ \tau} - (\mathcal{C}_{EU}^1)^{\ \tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{u}\gamma^5u] \\ & - \left\{ (\mathcal{C}_{ED})^{\ \tau} + (\mathcal{C}_{ED}^1)^{\ \tau} \right\} [\bar{\mu}\tau] [\bar{d}q^5d] - \left\{ (\mathcal{C}_{EU})^{\ \tau} + (\mathcal{C}_{EU}^1)^{\ \tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{u}\gamma^5u] \\ & + \left\{ (\mathcal{C}_{ED})^{\ \tau} + (\mathcal{C}_{ED}^1)^{\ \tau} \right\} [\bar{\mu}\tau] [\bar{d}d] - \left\{ (\mathcal{C}_{EU})^{\ \tau} - (\mathcal{C}_{EU}^1)^{\ \tau} \right\} [\bar{\mu}\tau] [\bar{u}u] \\ & + \left\{ (\mathcal{C}_{ED})^{\ \tau} - (\mathcal{C}_{ED}^1)^{\ \tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{d}d] - \left\{ (\mathcal{C}_{EU})^{\ \tau} - (\mathcal{C}_{EU}^1)^{\ \tau} \right\} [\bar{\mu}\gamma^5\tau] [\bar{u}u] + \cdots \bigg]. \end{split}$$

Relevant CLFV depends on the Lorenz structure of $\bar{q}q$

Vector: $\tau \to \mu \rho$ and $\tau \to \mu \omega$ Axial-vector and Pseudo-scalar: $\tau \to \mu \pi$ and $\tau \to \mu \eta$ Scalar: $\tau \to \mu \pi^+ \pi^-, \tau \to \mu K^+ K^-$, and $\tau \to \mu K^0 \overline{K}^0$.

T. Ota (MPI für Physik München)

Max-Planck-Institut fuer Physik Werner-Heisenberg-Institut

Under some assumptions for simplicity

For simplicity, let us ...

- concentrate on the NSI at source $\pi^+ \rightarrow \mu^+ \nu_{ au}$
- assume the all coeffs are real and Hermite e.g. $C_{ED} \equiv (C_{ED})_{\mu}{}^{\tau} = (C_{ED})_{\tau}{}^{\mu}$

$$\mathscr{L}_{\text{MINSIS}} = -2\sqrt{2}G_F \left[\mathcal{C}_{LQ}^{\mathbf{3}}[\bar{\nu}^{\tau}\gamma^{\rho}\mathcal{P}_L\mu][\bar{d}\gamma_{\rho}\gamma^5 u] + \frac{1}{2} \left(\mathcal{C}_{ED} - \mathcal{C}_{EU} \right) [\bar{\nu}^{\tau}\mathcal{P}_R\mu][\bar{d}\gamma^5 u] + \cdots \right] + \Gamma_{(\pi^+ \to \mu^+ \nu_{\tau})} = \Gamma_{\text{SM}} \times \left| 2\mathcal{C}_{LQ}^{\mathbf{3}} + \omega_{\mu} \left(\mathcal{C}_{ED} - \mathcal{C}_{EU} \right) \right|^2.$$

with the chiral enhancement factor $\omega_{\mu}=\frac{m_{\pi}}{m_{\mu}}\frac{m_{\pi}}{m_{u}+m_{d}}\sim 15.$

• Two relevant parameters:

 C_{LQ}^{3} and $C_{ED} - C_{EU}$ We will see the constraints to them from CLFV, especially $\tau \rightarrow \mu \rho, \tau \rightarrow \mu \pi$, and $\tau \rightarrow \mu \pi^{+} \pi^{-}$.

T. Ota (MPI für Physik München)

Max-Planck-Institut fuer Plausik Werner-Heisenberg-Institut

Bounds from charged LFV

Under some assumptions for simplicity

• Br
$$(\tau \rightarrow \mu \rho)$$
< $6.8 \cdot 10^{-8}$
 $|\mathcal{C}_{LQ}^3|$

T. Ota (MPI für Physik München)

Max-Planck-Institut fuer Pipsik Werner-Heisenberg-Institut

Bounds from charged LFV

Under some assumptions for simplicity

• Br
$$(\tau \rightarrow \mu \rho)$$
< $6.8 \cdot 10^{-8}$
 $|\mathcal{C}_{LQ}^3|$

• Br
$$(\tau \rightarrow \mu \pi^+ \pi^-)$$
<2.9 · 10⁻⁷
 $|\mathcal{C}_{ED} - \mathcal{C}_{EU}|$

Max-Planck-Institut fuer Playsik Werner-Heisenberg-Institut

Bounds from charged LFV

Under some assumptions for simplicity

- Br $(\tau \rightarrow \mu \rho)$ < $6.8 \cdot 10^{-8}$ $|\mathcal{C}_{LQ}^3|$
- Br($\tau \rightarrow \mu \pi^+ \pi^-$)<2.9 · 10⁻⁷ $|\mathcal{C}_{ED} - \mathcal{C}_{EU}|$
- Br $(\tau \rightarrow \mu \pi) < 1.1 \cdot 10^{-7}$ \mathcal{C}_{LQ}^{3} and $(\mathcal{C}_{ED} - \mathcal{C}_{EU})$

Max-Planck-Institut fuer Playsik Werner-Heisenberg-Institut

Bounds from charged LFV

Under some assumptions for simplicity

MINSIS/SM ratio can be

$$\frac{\Gamma(\pi^+ \to \mu^+ \nu_{\tau})}{\Gamma_{\rm SM}} = \left| 2 \underbrace{\mathcal{C}_{LQ}^3}_{<10^{-4}} + \underbrace{\omega_{\mu}}_{\sim 10} \underbrace{(\mathcal{C}_{ED} - \mathcal{C}_{EU})}_{<10^{-4}} \right|^2 < 10^{-6}$$

(

T. Ota (MPI für Physik München)

NSI bounds for MINSIS

• Br($\tau \rightarrow \mu \rho$)< $6.8 \cdot 10^{-8}$ $|\mathcal{C}_{LQ}^{\mathbf{3}}|$

• Br(
$$\tau \rightarrow \mu \pi^+ \pi^-$$
)<2.9 · 10⁻⁷
 $|\mathcal{C}_{ED} - \mathcal{C}_{EU}|$

Br
$$(\tau \rightarrow \mu \pi) < 1.1 \cdot 10^{-7}$$

 C_{LQ}^{3} and $(C_{ED} - C_{EU})$

Max-Planck-Institut fuer Plansk Werner-Heisenberg-Institut Bounds from charged LFV In general

Outline

Introduction

- Non-standard neutrino interactions in experiments
- Gauge invariant effective interactions for MINSIS

2 Bounds from charged LFV

- Under some assumptions for simplicity
- In general

3 Conclusion and Discussion

With gauge inv. effective NSI

• Source NSI — The pion decay process with \mathcal{O}_{ED} and \mathcal{O}_{EU} gets the chiral enhancement $\frac{\mathrm{MISIS}}{\mathrm{SM}} < 10^{-5} \cdot 10^{-6}$ under the CLFV bounds.

• Detection NSIs do not get such an enhancement.

\mathscr{O}_{ED} and \mathscr{O}_{EU} can be mediated by

- Higgs doublet in THDM (type III = FCNC)
- Slepton doublet in *R*-parity violating SUSY $(W_R = \frac{1}{2}\lambda LLE^c + \lambda'LQD^c)$
- Leptoquarks (V_2, U_1, S_1, R_2)