In Collaboration with I. Mocioiu and G. Giordano, Penn State U.

Non standard neutrino interactions bounds in

In memory of Jan Wennekers

PostDoc at IFIC & Valencia University in the lattice group of Pilar Hernandez, who passed away unexpectedly on December 4th at the age of 31. All IFIC group will miss him sadly.

Non standard neutrino interactions bounds in

Low Energy Deep Core Array!

= Denser core in the center of the loccube array

Low Energy Deep Core Array!

= Denser core in the center of the loccube array

Penser in strum ntation= Uwer ergy detection threshold

ICPC extends leecube low energy reach by 1 order of magnitude!

What do THEY want to look for?

Neutrinos from: Southern sky neutrino sources (AGNs, GRBs,SNRs)

Dark matter annihilations (Solar and Earth cores, Galactic center)

HUGE atmospheric neutrino background!!

What do WE want to look for?

Cool topics!

Their Atmospheric neutrino background is Signal for US!

What do WE want to look for?

Their Atmospheric neutrino background is Signal for US!

What can we do with these atmospheric neutrinos?

Muon tracks: muon events coming from CC muon neutrino and antineutrino interactions

$$N_{i,j,\mu} = \frac{2\pi N_{\mathrm{T}} t}{V_{\mathrm{det}}} \int_{E_i}^{E_i + \Delta_i} dE_{\nu} \int_{c_{\nu,j}}^{c_{\nu,j} + \Delta_j} dc_{\nu} V_{\mu} \times \left(\frac{d\phi_{\nu_{\mu}(\nu_e)}}{dE_{\nu} d\Omega} \,\sigma_{\nu_{\mu}(\nu_e)}^{\mathrm{CC}} P_{\nu_{\mu}(\nu_e) \to \nu_{\mu}} + \frac{d\phi_{\bar{\nu}_{\mu}(\bar{\nu}_e)}}{dE_{\nu} d\Omega} \,\sigma_{\bar{\nu}_{\mu}(\bar{\nu}_e) \to \bar{\nu}_{\mu}}^{\mathrm{CC}}\right)$$

$$V_{\mu}(E_{\mu},\theta) = 2hr^2 \arcsin\left(\sqrt{1 - \frac{R_{\mu}^2(E_{\mu})}{4r^2}\sin^2\theta}\right) \left(1 - \frac{R_{\mu}(E_{\mu})}{h}|\cos\theta|\right)$$

We exploit the energy and angular dependence of the physics we are interested in measuring...

Energy distribution

E< 50 GeV Neutrino oscillations 50 GeV < E < 5 TeV Flux normalization E> 10 TeV Earth Profile M.C.Gonzalez-Garcia, et al PRL'08

Angular distribution

0 < cos t < 1 Flux normalization

-1 <cos t<0 Atmospheric mixing parameters

-1 <cos t<-0.7 Matter effects

Cool topic: Non standard neutrino interactions "in matter":

 $H_{\text{mat}} = \sqrt{2}G_F n_e \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu}^* & \epsilon_{e\tau}^* \\ \epsilon_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau}^* \\ \epsilon_{e\tau} & \epsilon_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$

Cool topic: Non standard neutrino interactions "in matter":

 $H_{\text{mat}} = \sqrt{2}G_F n_e \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu}^* & \epsilon_{e\tau}^* \\ \epsilon_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau}^* \\ \epsilon_{e\tau} & \epsilon_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$

Biggio, Blennow & Fernandez-Martinez, JHEP'09

Cool topic: Non standard neutrino interactions "in matter":

 $H_{\text{mat}} = \sqrt{2}G_F n_e \begin{pmatrix} 1+\epsilon_{ee} & \epsilon_{e\mu}^* & \epsilon_{e\tau}^* \\ \epsilon_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau}^* \\ \epsilon_{e\tau} & \epsilon_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$

 $\left|\varepsilon_{\alpha\beta}^{\oplus}\right| < \begin{pmatrix} 4.2 & 0.33 & 3.0\\ 0.33 & 0.068 & 0.33\\ 3.0 & 0.33 & 21 \end{pmatrix}$

Biggio, Blennow & Fernandez-Martinez, JHEP'09

Cool topic: Non standard neutrino interactions "in matter":

 $H_{\text{mat}} = \sqrt{2}G_F n_e \begin{pmatrix} 1 + \epsilon_{e\tau} & \epsilon_{e\tau}^* & \epsilon_{e\tau}^* \\ \text{in the following!} & \epsilon_{\mu\tau}^* \\ \epsilon_{e\tau} & \epsilon_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$

Cool topic: Non standard neutrino interactions "in matter":

 $H_{\text{mat}} = \sqrt{2}G_F n_e \begin{pmatrix} 1 + \epsilon_{e\tau} & \epsilon_{e\tau}^* & \epsilon_{e\tau}^* \\ \text{in the following!} & \epsilon_{\mu\tau}^* \\ \epsilon_{e\tau} & \epsilon_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$

Lets focus on ν_{μ} - ν_{τ} Kopp, Ota & Winter PRD'08

$$\Delta \tilde{m}_{31}^2 = \Delta m_{31}^2 \sqrt{\sin^2 2\theta_{23}} + (\hat{A} \epsilon_{\tau\tau}^m + \cos 2\theta_{23})^2$$

$$\sin^2 2\tilde{\theta}_{23} = \frac{\sin^2 2\theta_{23}}{\sin^2 2\theta_{23} + (\hat{A}\epsilon^m_{\tau\tau} + \cos 2\theta_{23})^2}$$

where
$$\hat{A} = \frac{2\sqrt{2}EG_FN_e}{\Delta m_{31}^2}$$

Gonzalez-Garcia et al PRL'99 Bergmann, Grossman&Pierce PRD'00 Fornengo et al PDR'01 Gonzalez-Garcia & Maltoni PRD'04 Friedland, Lunardini & Maltoni PRD'04

A non vanishing NSI parameter decrease the effective mixing in matter @ angles at which the matter effects are important, for a given energy

What can we do with these atmospheric neutrinos?

Cascades

EM

Hadronic

Tau decay: $\tau \rightarrow e + \bar{\nu}_e + \nu_{\tau}$ Tau decay: $\tau \rightarrow \nu_{\tau} + X$ ν_e CC interactions: $\nu_e + N \rightarrow e + X$ ν_{τ} NC interactions: $\nu_{\tau} + N \rightarrow \nu_{\tau} + X$ ν_{τ} CC interactions: $\nu_{\tau} + N \rightarrow \tau + X$ $\nu_{e,\mu}$ NC and CC interactions