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In memory of Jan Wennekers 

PostDoc at IFIC & Valencia University in the lattice group of Pilar Hernandez, who passed away 
unexpectedly on December 4th  at the age of 31.

All IFIC group will miss him sadly.
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Low Energy Deep Core Array!

= Denser core in the center  of the Icecube array

Deep Core Array

Doug Cowen, Nu2008
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19 strings / stations installed during the 
2008 - 2009 austral sum mer

Total of 59 strings and 118 IceTop tanks
 over two thirds com plete!

Integrated e x posure reaching 1 k m 3 .year

IceTop: Air shower detector
80 stations / 2 tanks each 
threshold ~ 300 TeV

InIce array:
80 Strings 
60 O ptical Modules
17 m between Modules
125 m between Strings

1450 m

2450 m

DeepCore array:
6 additional strings
60 O ptical Modules
7 / 10 m between Modules
72 m between Strings

IceCube status

1 string already taking data!

77 already!

Low Energy Deep Core Array!

= Denser core in the center  of the Icecube array
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Denser instrumentation= lower energy detection threshold

D. Cowen/Penn State & Humboldt U. Physics Potential of IceCube!s Deep Core

ICDC Aeff and Veff
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D. Cowen, NEUTEL 09 10 GeV   100 GeV

ICDC extends Icecube low energy reach by 1 order of magnitude!
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What do THEY want to look  for ?

Neutrinos from:  Southern sky neutrino sources 
        (AGNs, GRBs,SNRs)

                     Dark matter annihilations 
                                     (Solar and Earth cores, Galactic center)

Hot topics!
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D. Cowen/Penn State & Humboldt U. Physics Potential of IceCube!s Deep Core

Detecting a WIMP Signal

• Look for:
• few signal events per 

year from the 
direction of the sun or 
earth

• Soft:
• Eµ~0.01M!-0.06M! 

• Hard:

• Eµ ~0.03M!-0.3M!

• Bkgd: ~5"1010 cosmic-
ray µ and ~105 atm. # 
bkgd events per year

16

!

atm #

cosmic-ray µ’s

#µ

#µ

!

The sun

cosmic-ray
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HUGE atmospheric neutrino background!!
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What do WE want to look for?

Cool topics!

Their Atmospheric neutrino background is Signal for US!

D. Cowen/Penn State & Humboldt U. Physics Potential of IceCube!s Deep Core
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What can we do with these atmospheric neutrinos?
Muon tracks: muon events coming from CC muon neutrino and antineutrino interactions

3

III. ANALYSIS

The IceCube detector has the ability to measure sep-
arately the muon tracks and electron/tau generated cas-
cades, thus providing good flavour identification in some
energy ranges. This would be extremely useful for an
oscillation analysis, especially when searching for sub-
dominant effects. In particular, the atmospheric neutrino
sensitivity to the mass hierarchy comes from the matter
effects on νµ → νe (νe → νµ) oscillations and previous
studies dealing with water Cherenkov detectors have used

the electron signal to extract this information. In the low
energy range relevant for neutrino oscillations however,
it is extremely hard in IceCube (and even in the deep
core array) to obtain information about neutrino direc-
tion and energy for electron cascades.

We thus focus here on the µ-like contained events pro-
duced by the interactions of atmospheric upward going
neutrinos in deep ice. Formally, the expected number
of muon neutrino-induced contained events in the i- and
j-th energy and cosine of the nadir angle (cν) bins read:

Ni,j,µ =
2πNT t

Vdet

∫ Ei+∆i

Ei

dEν

∫ cν,j+∆j

cν,j

dcνVµ ×
(

dφνµ(νe)

dEνdΩ
σCC

νµ(νe)Pνµ(νe)→νµ
+

dφν̄µ(ν̄e)

dEνdΩ
σCC

ν̄µ(ν̄e)Pν̄µ(ν̄e)→ν̄µ

)

, (12)

where ∆i and ∆j are respectively the energy and cν bin
widths, NT is the number of available targets, Vdet is the
total volume of the detector, t is the exposure time, dφν ’s
are the atmospheric (anti)neutrino differential spectra,

σCC is the CC (anti)neutrino cross section and Vµ is the
effective detector volume. For a detector with cylindrical
shape of radius r and height h, Vµ is given by [15]

Vµ(Eµ, θ) = 2hr2 arcsin

(
√

1 −
R2

µ(Eµ)

4 r2
sin2 θ

)

(

1 −
Rµ(Eµ)

h
| cos θ|

)

, (13)

where Rµ(Eµ) is the energy-dependent muon range in ice.
For σCC we use the charged current (anti)neutrino inter-
action cross-sections in [25]. It is useful to note that in
the relevant energy range the anti-neutrino cross-section
is smaller than the neutrino cross-section by about a fac-
tor of two. This difference is what allows for the (statisti-
cal) discrimination between neutrinos and anti-neutrinos
and thus between normal and inverted hierarchy in this
experiment.

Equation (12) contains the atmospheric electron and

muon (anti) neutrino fluxes, dφνα

dEνdΩ . For the results pre-
sented in this study we use the results from Refs. [22].
The atmospheric neutrino fluxes from Refs. [23] have
also been used, and, overall, we obtain a similar dif-
ference between the number of muon neutrino induced
events for the normal and inverted hierarchies both in
energy and cν . The absolute electron and muon atmo-
spheric (anti)neutrino fluxes are found to have errors of
10% − 15% in the energy region of interest here [24].
Those errors are mostly induced by our ignorance in
modeling hadron production, although the situation is
expected to improve with HARP and MIPP data. The
uncertainties quoted above are reduced for the neutrino-
antineutrino flavor ratio case [30], i.e. for νµ/ν̄µ and

νe/ν̄e, where the uncertainty is ∼ 7% in the energy range
we explore in the current study. Even smaller uncertain-
ties are expected when the muon-to-electron flavor ratio
(νµ + ν̄µ)/(νe + ν̄e) is considered. We will comment on
the impact of the atmospheric neutrino flux uncertainties
on our results below, when including systematic uncer-
tainties to our numerical analysis.

The energy of secondary muons from CC interaction
in the 10-100 GeV neutrino energy range of interest here
is 〈Eµ〉 = 0.52 Eν and 0.66 Eν, respectively for neutri-
nos and antineutrinos [25]. We illustrate in Fig. 1 the
expected µ-like contained events in 5 GeV muon energy
bins for a combined detector mass times exposure of 50
Mt yr. From left to right, the panels depict the con-
tained µ-like events within the (−1,−0.9), (−0.9,−0.8)
and (−0.8,−0.7) cν bins. We assume sin2 2θ13 = 0.1 and
δ = 0 along with other best-fit parameters in Eq. (8).
Although we used a detector geometry of 1 km height
and ∼ 40 m radius, all events are contained in these cν

bins except for the highest energy bin: (25,30) GeV. As
we will shortly see, the oscillation signals solely affect the
low energy events. Thus our results are valid for a va-
riety of detector geometries, only affected by the total
instrumented volume times the exposure.

For the first cν bin used in Fig. 1 the (anti)neutrinos
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We exploit the energy and angular dependence of the physics we are interested in measuring... 

Energy distribution Angular distribution
E< 50 GeV Neutrino oscillations

50 GeV < E < 5 TeV  Flux normalization

E> 10 TeV Earth Profile 
M.C.Gonzalez-Garcia, et al PRL’08

 0 <cos t<1     Flux normalization 
 -1 <cos t<0     Atmospheric mixing parameters 
 -1 <cos t<-0.7  Matter effects
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Cool topic: Non standard neutrino interactions 
“in matter”:

2

parameterized as

Hmat =
√

2GF ne





1+ εee ε∗eµ ε∗eτ

εeµ εµµ ε∗µτ

εeτ εµτ εττ



 . (2)

Here GF is the Fermi constant, ne is the number density
of electrons in the medium.

The physical origin of the epsilon contributions in Hmat

can be the exchange of a new heavy vector or scalar [22]
particle. We parameterize the resulting NSI with the
effective low-energy four-fermion Lagrangian

LNSI = −2
√

2GF (ν̄αγρνβ)(εff̃L
αβ f̄Lγρf̃L + εff̃R

αβ f̄Rγρf̃R)

+ h.c. (3)

Here εff̃L
αβ (εff̃R

αβ ) denotes the strength of the NSI be-
tween the neutrinos ν of flavors α and β and the left-
handed (right-handed) components of the fermions f and
f̃ . The epsilons in Eq. (2) are the sum of the contri-
butions from electrons (εe), up quarks (εu), and down
quarks (εd) in matter: εαβ ≡

∑

f=u,d,e εf
αβnf/ne. In

turn, εf
αβ ≡ εfL

αβ + εfR
αβ and εfP

αβ ≡ εffP
αβ . Notice that

the matter effects are sensitive only to the interactions
that preserve the flavor of the background fermion f (re-
quired by coherence [10]) and, furthermore, only to the
vector part of that interaction.

Neutrino scattering tests, like those of NuTeV [11] and
CHARM [12], mainly constrain the NSI couplings of the
muon neutrino, e.g., | εeµ | ! 10−3, | εµµ | ! 10−3−10−2.
The limits they place on εee, εeτ , and εττ are rather loose,
e. g., |εuuR

ττ | < 3, −0.4 < εuuR
ee < 0.7, |εuu

τe | < 0.5,
|εdd

τe| < 0.5 [13]. Stronger constraints exist on the cor-
responding interactions involving the charged leptons.
Those, however, cannot, in general, be extended to the
neutrinos, for example when the underlying operators
contain the Higgs fields [14], and hence will not be con-
sidered here.

Given the above bounds we will set εeµ and εµµ to zero
in our analysis. Furthermore, for simplicity we will also
set εµτ to zero. The earlier analyses of the atmospheric
neutrino data [1] have indicated that this parameter is
quite constrained (εµτ< 10−2 − 10−1). Corrections due
to non-vanishing εµτ will be described in [7]. Here, we
have a three-dimensional NSI parameter space, spanned
by εee, εeτ , and εττ .

III. CONVERSION EFFECTS AND
SENSITIVITY TO THE NSI

The physics of the sensitivity of the atmospheric neu-
trino data to εee, εeτ , and εττ can be understood as fol-
lows. The data are known to be very well fit by large-
amplitude oscillations between the νµ and ντ states. This
holds both at high energy (Eν " 10 GeV), where only
the muon neutrino flux is measured, and at lower ener-
gies, where both the muon and electron neutrino data

are available. These oscillations are driven by the off-
diagonal νµ − ντ mixing in Eq. (1) and the introduction
of sufficiently large NSI for the tau neutrino will, in gen-
eral, suppress that mixing. Since the vacuum Hamilto-
nian scales as E−1

ν , this suppression should be especially
strong at high energy, in the through-going muon sample.

As a simple illustration, consider the case when only
εττ is nonzero. Clearly, εττ introduces a diagonal split-
ting between the νµ and ντ states, thereby decreasing
the effective mixing angle in matter. The correspond-
ing bound can be estimated by comparing the mat-
ter term

√
2 εττ GF ne to the vacuum oscillation term

∆m2/(2Eν). For neutrinos going through the center
of the Earth, the highest energy at which an oscilla-
tion minimum occurs in the standard case is around
E0 ∼ 20 − 30 GeV. If the matter term is sufficiently
large,

√
2 εττ GF ne " ∆m2/(2E0), the mixing in mat-

ter and hence the oscillation amplitude are expected to
be suppressed. Substituting numerical values, we find a
bound εττ! 0.2.

Next, we generalize this argument to the case of non-
vanishing εee, εeτ . The matter part of the Hamiltonian
Hmat can be diagonalized by rotating in the νe − ντ sub-
space. In the new basis (νe′ , νµ, ντ ′), Hmat has the form
diag(λe′ , 0, λτ ′), with λe′,τ ′ =

√
2GF ne(1+ εee + εττ

±
√

(1+ εee − εττ )2 + 4| εeτ |2)/2. It straightforwardly
follows that if |λe′,τ ′| % ∆m2/(2E0), the oscillations of
the muon neutrinos proceed unimpeded, while in oppo-
site case, |λe′,τ ′| " ∆m2/(2E0), they are suppressed.

It is very important to consider the intermediate
regime, when the spectrum has the hierarchy (a) |λτ ′ | <
∆m2/(2E0) % |λe′ | or (b) |λe′ | < ∆m2/(2E0) % |λτ ′ |.
In both cases, the oscillations between νµ and the corre-
sponding light eigenstate are allowed to proceed while
those between νµ and the heavy eigenstates are sup-
pressed. Remarkably, the resulting oscillation pattern is
indistinguishable from the standard case at high energy,
where only muon neutrinos are detected.

From now on we specialize to hierarchy (a), which is
smoothly connected to the origin εee=εeτ=εττ= 0 ((b)
is realized only if εee + εττ is a large negative number).
When it is satisfied, muon neutrinos oscillate into the
state

ντ ′ = −sβe2iψ νe +cβ ντ , (4)

where cβ = cosβ, sβ = sinβ, 2ψ = Arg(εeτ ), tan 2β =
2| εeτ |/(1+ εee − εττ).

The condition |λτ ′ | ! ∆m2/(2E0) implies

|1+ εee + εττ −
√

(1+ εee − εττ)2 + 4| εeτ |2| ! 0.4. (5)

This equation gives our analytical prediction for the
bound on εee, εeτ , εττ . When εee=εeτ= 0, it reduces to
the bound εττ! 0.2 given above.

The region Eq. (5) describes extends to large values of
εeτ , εττ . To see this, note that in the limit λτ ′ = 0, or

εττ= | εeτ |2/(1+ εee) , (6)

set to 0
 in the following!
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The region Eq. (5) describes extends to large values of
εeτ , εττ . To see this, note that in the limit λτ ′ = 0, or

εττ= | εeτ |2/(1+ εee) , (6)

set to 0
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Here GF is the Fermi constant, ne is the number density
of electrons in the medium.

The physical origin of the epsilon contributions in Hmat

can be the exchange of a new heavy vector or scalar [22]
particle. We parameterize the resulting NSI with the
effective low-energy four-fermion Lagrangian

LNSI = −2
√

2GF (ν̄αγρνβ)(εff̃L
αβ f̄Lγρf̃L + εff̃R

αβ f̄Rγρf̃R)

+ h.c. (3)

Here εff̃L
αβ (εff̃R

αβ ) denotes the strength of the NSI be-
tween the neutrinos ν of flavors α and β and the left-
handed (right-handed) components of the fermions f and
f̃ . The epsilons in Eq. (2) are the sum of the contri-
butions from electrons (εe), up quarks (εu), and down
quarks (εd) in matter: εαβ ≡

∑

f=u,d,e εf
αβnf/ne. In

turn, εf
αβ ≡ εfL

αβ + εfR
αβ and εfP

αβ ≡ εffP
αβ . Notice that

the matter effects are sensitive only to the interactions
that preserve the flavor of the background fermion f (re-
quired by coherence [10]) and, furthermore, only to the
vector part of that interaction.

Neutrino scattering tests, like those of NuTeV [11] and
CHARM [12], mainly constrain the NSI couplings of the
muon neutrino, e.g., | εeµ | ! 10−3, | εµµ | ! 10−3−10−2.
The limits they place on εee, εeτ , and εττ are rather loose,
e. g., |εuuR

ττ | < 3, −0.4 < εuuR
ee < 0.7, |εuu

τe | < 0.5,
|εdd

τe| < 0.5 [13]. Stronger constraints exist on the cor-
responding interactions involving the charged leptons.
Those, however, cannot, in general, be extended to the
neutrinos, for example when the underlying operators
contain the Higgs fields [14], and hence will not be con-
sidered here.

Given the above bounds we will set εeµ and εµµ to zero
in our analysis. Furthermore, for simplicity we will also
set εµτ to zero. The earlier analyses of the atmospheric
neutrino data [1] have indicated that this parameter is
quite constrained (εµτ< 10−2 − 10−1). Corrections due
to non-vanishing εµτ will be described in [7]. Here, we
have a three-dimensional NSI parameter space, spanned
by εee, εeτ , and εττ .

III. CONVERSION EFFECTS AND
SENSITIVITY TO THE NSI

The physics of the sensitivity of the atmospheric neu-
trino data to εee, εeτ , and εττ can be understood as fol-
lows. The data are known to be very well fit by large-
amplitude oscillations between the νµ and ντ states. This
holds both at high energy (Eν " 10 GeV), where only
the muon neutrino flux is measured, and at lower ener-
gies, where both the muon and electron neutrino data

are available. These oscillations are driven by the off-
diagonal νµ − ντ mixing in Eq. (1) and the introduction
of sufficiently large NSI for the tau neutrino will, in gen-
eral, suppress that mixing. Since the vacuum Hamilto-
nian scales as E−1

ν , this suppression should be especially
strong at high energy, in the through-going muon sample.

As a simple illustration, consider the case when only
εττ is nonzero. Clearly, εττ introduces a diagonal split-
ting between the νµ and ντ states, thereby decreasing
the effective mixing angle in matter. The correspond-
ing bound can be estimated by comparing the mat-
ter term

√
2 εττ GF ne to the vacuum oscillation term

∆m2/(2Eν). For neutrinos going through the center
of the Earth, the highest energy at which an oscilla-
tion minimum occurs in the standard case is around
E0 ∼ 20 − 30 GeV. If the matter term is sufficiently
large,

√
2 εττ GF ne " ∆m2/(2E0), the mixing in mat-

ter and hence the oscillation amplitude are expected to
be suppressed. Substituting numerical values, we find a
bound εττ! 0.2.

Next, we generalize this argument to the case of non-
vanishing εee, εeτ . The matter part of the Hamiltonian
Hmat can be diagonalized by rotating in the νe − ντ sub-
space. In the new basis (νe′ , νµ, ντ ′), Hmat has the form
diag(λe′ , 0, λτ ′), with λe′,τ ′ =

√
2GF ne(1+ εee + εττ

±
√

(1+ εee − εττ )2 + 4| εeτ |2)/2. It straightforwardly
follows that if |λe′,τ ′| % ∆m2/(2E0), the oscillations of
the muon neutrinos proceed unimpeded, while in oppo-
site case, |λe′,τ ′| " ∆m2/(2E0), they are suppressed.

It is very important to consider the intermediate
regime, when the spectrum has the hierarchy (a) |λτ ′ | <
∆m2/(2E0) % |λe′ | or (b) |λe′ | < ∆m2/(2E0) % |λτ ′ |.
In both cases, the oscillations between νµ and the corre-
sponding light eigenstate are allowed to proceed while
those between νµ and the heavy eigenstates are sup-
pressed. Remarkably, the resulting oscillation pattern is
indistinguishable from the standard case at high energy,
where only muon neutrinos are detected.

From now on we specialize to hierarchy (a), which is
smoothly connected to the origin εee=εeτ=εττ= 0 ((b)
is realized only if εee + εττ is a large negative number).
When it is satisfied, muon neutrinos oscillate into the
state

ντ ′ = −sβe2iψ νe +cβ ντ , (4)

where cβ = cosβ, sβ = sinβ, 2ψ = Arg(εeτ ), tan 2β =
2| εeτ |/(1+ εee − εττ).

The condition |λτ ′ | ! ∆m2/(2E0) implies

|1+ εee + εττ −
√

(1+ εee − εττ)2 + 4| εeτ |2| ! 0.4. (5)

This equation gives our analytical prediction for the
bound on εee, εeτ , εττ . When εee=εeτ= 0, it reduces to
the bound εττ! 0.2 given above.

The region Eq. (5) describes extends to large values of
εeτ , εττ . To see this, note that in the limit λτ ′ = 0, or

εττ= | εeτ |2/(1+ εee) , (6)

set to 0
 in the following!

J
H
E
P
0
8
(
2
0
0
9
)
0
9
0

ε
µe
αβ Kin. GF (L, R) CKM unit. (V ) Lept. univ. (A) Oscillation (L, R)

εµe
ee < 0.030 < 0.030 < 0.080 < 0.025

εµe
eµ (−1.4±1.4) · 10−3(R,L) < 4 · 10−4(R) (−0.4±3.5) · 10−3(R) -

< 0.030 < 0.030 < 0.080

εµe
eτ < 0.030 < 0.030 < 0.080 < 0.087

εµe
µe < 0.030 < 0.030 < 0.080 < 0.025

εµe
µµ < 0.030 < 0.030 < 0.080 -

εµe
µτ < 0.030 < 0.030 < 0.080 < 0.087

εµe
τe < 0.030 < 0.030 < 0.080 < 0.025

εµe
τµ < 0.030 < 0.030 < 0.080 -

εµe
ττ < 0.030 < 0.030 < 0.080 < 0.087

Table 2. Bounds (90 % CL) on the purely leptonic charged-current-like NSI εµe
αβ , relevant to the

neutrino production through muon decay, e.g., at a Neutrino Factory. The letters L,R, V,A refer
to the chirality of the ε which is actually bounded, while R stands for the real part of the element
only. See the text for details.

in the matter interaction part of the neutrino flavour evolution. Thus, assuming uncorre-

lated errors, the bounds on εαβ could be approximated by

δε⊕αβ !

{

∑

P

[

(

δεeP
αβ

)2
+

(

3δεuP
αβ

)2
+

(

3δεdP
αβ

)2
]

}1/2

(4.3)

for neutral Earth-like matter with an equal number of neutrons and protons and by

δε#αβ !

{

∑

P

[

(

δεeP
αβ

)2
+

(

2δεuP
αβ

)2
+

(

δεdP
αβ

)2
]

}1/2

(4.4)

for neutral solar-like matter, consisting mostly of electrons and protons. Using the bounds

from refs. [57–60], but discarding the loop constraints on εfP
eµ [34], the resulting bounds on

the effective NSI parameters would be

∣

∣

∣
ε⊕αβ

∣

∣

∣
<







4.2 0.33 3.0

0.33 0.068 0.33

3.0 0.33 21






and

∣

∣

∣
ε#αβ

∣

∣

∣
<







2.5 0.21 1.7

0.21 0.046 0.21

1.7 0.21 9.0






, (4.5)

respectively. Notice that atmospheric neutrino oscillations also constrain the values of

matter NSI through the relation ε⊕ττ "
[

|ε⊕eτ |
2 ±O(0.1)

]

/ (1 + ε⊕ee) [12, 61]. As long as

1 + ε⊕ee is not significantly smaller than one, this would set a stronger bound ε⊕ττ ! O(10).

We want to stress the fact that the constraints on εe, εu and εd have been derived

under the assumption of taking one non-zero ε at a time. Thus, the approach of combining

them together as in eq. (4.5) is not fully consistent. For this reason, in the compilation of

all the results in the following section, the bounds will be quoted separately.
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1+ εee ε∗eµ ε∗eτ
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εeτ εµτ εττ


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Here GF is the Fermi constant, ne is the number density
of electrons in the medium.

The physical origin of the epsilon contributions in Hmat

can be the exchange of a new heavy vector or scalar [22]
particle. We parameterize the resulting NSI with the
effective low-energy four-fermion Lagrangian

LNSI = −2
√

2GF (ν̄αγρνβ)(εff̃L
αβ f̄Lγρf̃L + εff̃R

αβ f̄Rγρf̃R)

+ h.c. (3)

Here εff̃L
αβ (εff̃R

αβ ) denotes the strength of the NSI be-
tween the neutrinos ν of flavors α and β and the left-
handed (right-handed) components of the fermions f and
f̃ . The epsilons in Eq. (2) are the sum of the contri-
butions from electrons (εe), up quarks (εu), and down
quarks (εd) in matter: εαβ ≡

∑

f=u,d,e εf
αβnf/ne. In

turn, εf
αβ ≡ εfL

αβ + εfR
αβ and εfP

αβ ≡ εffP
αβ . Notice that

the matter effects are sensitive only to the interactions
that preserve the flavor of the background fermion f (re-
quired by coherence [10]) and, furthermore, only to the
vector part of that interaction.

Neutrino scattering tests, like those of NuTeV [11] and
CHARM [12], mainly constrain the NSI couplings of the
muon neutrino, e.g., | εeµ | ! 10−3, | εµµ | ! 10−3−10−2.
The limits they place on εee, εeτ , and εττ are rather loose,
e. g., |εuuR

ττ | < 3, −0.4 < εuuR
ee < 0.7, |εuu

τe | < 0.5,
|εdd

τe| < 0.5 [13]. Stronger constraints exist on the cor-
responding interactions involving the charged leptons.
Those, however, cannot, in general, be extended to the
neutrinos, for example when the underlying operators
contain the Higgs fields [14], and hence will not be con-
sidered here.

Given the above bounds we will set εeµ and εµµ to zero
in our analysis. Furthermore, for simplicity we will also
set εµτ to zero. The earlier analyses of the atmospheric
neutrino data [1] have indicated that this parameter is
quite constrained (εµτ< 10−2 − 10−1). Corrections due
to non-vanishing εµτ will be described in [7]. Here, we
have a three-dimensional NSI parameter space, spanned
by εee, εeτ , and εττ .

III. CONVERSION EFFECTS AND
SENSITIVITY TO THE NSI

The physics of the sensitivity of the atmospheric neu-
trino data to εee, εeτ , and εττ can be understood as fol-
lows. The data are known to be very well fit by large-
amplitude oscillations between the νµ and ντ states. This
holds both at high energy (Eν " 10 GeV), where only
the muon neutrino flux is measured, and at lower ener-
gies, where both the muon and electron neutrino data

are available. These oscillations are driven by the off-
diagonal νµ − ντ mixing in Eq. (1) and the introduction
of sufficiently large NSI for the tau neutrino will, in gen-
eral, suppress that mixing. Since the vacuum Hamilto-
nian scales as E−1

ν , this suppression should be especially
strong at high energy, in the through-going muon sample.

As a simple illustration, consider the case when only
εττ is nonzero. Clearly, εττ introduces a diagonal split-
ting between the νµ and ντ states, thereby decreasing
the effective mixing angle in matter. The correspond-
ing bound can be estimated by comparing the mat-
ter term

√
2 εττ GF ne to the vacuum oscillation term

∆m2/(2Eν). For neutrinos going through the center
of the Earth, the highest energy at which an oscilla-
tion minimum occurs in the standard case is around
E0 ∼ 20 − 30 GeV. If the matter term is sufficiently
large,

√
2 εττ GF ne " ∆m2/(2E0), the mixing in mat-

ter and hence the oscillation amplitude are expected to
be suppressed. Substituting numerical values, we find a
bound εττ! 0.2.

Next, we generalize this argument to the case of non-
vanishing εee, εeτ . The matter part of the Hamiltonian
Hmat can be diagonalized by rotating in the νe − ντ sub-
space. In the new basis (νe′ , νµ, ντ ′), Hmat has the form
diag(λe′ , 0, λτ ′), with λe′,τ ′ =

√
2GF ne(1+ εee + εττ

±
√

(1+ εee − εττ )2 + 4| εeτ |2)/2. It straightforwardly
follows that if |λe′,τ ′| % ∆m2/(2E0), the oscillations of
the muon neutrinos proceed unimpeded, while in oppo-
site case, |λe′,τ ′| " ∆m2/(2E0), they are suppressed.

It is very important to consider the intermediate
regime, when the spectrum has the hierarchy (a) |λτ ′ | <
∆m2/(2E0) % |λe′ | or (b) |λe′ | < ∆m2/(2E0) % |λτ ′ |.
In both cases, the oscillations between νµ and the corre-
sponding light eigenstate are allowed to proceed while
those between νµ and the heavy eigenstates are sup-
pressed. Remarkably, the resulting oscillation pattern is
indistinguishable from the standard case at high energy,
where only muon neutrinos are detected.

From now on we specialize to hierarchy (a), which is
smoothly connected to the origin εee=εeτ=εττ= 0 ((b)
is realized only if εee + εττ is a large negative number).
When it is satisfied, muon neutrinos oscillate into the
state

ντ ′ = −sβe2iψ νe +cβ ντ , (4)

where cβ = cosβ, sβ = sinβ, 2ψ = Arg(εeτ ), tan 2β =
2| εeτ |/(1+ εee − εττ).

The condition |λτ ′ | ! ∆m2/(2E0) implies

|1+ εee + εττ −
√

(1+ εee − εττ)2 + 4| εeτ |2| ! 0.4. (5)

This equation gives our analytical prediction for the
bound on εee, εeτ , εττ . When εee=εeτ= 0, it reduces to
the bound εττ! 0.2 given above.

The region Eq. (5) describes extends to large values of
εeτ , εττ . To see this, note that in the limit λτ ′ = 0, or

εττ= | εeτ |2/(1+ εee) , (6)

set to 0
 in the following!

set to 0
 in the following!
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of electrons in the medium.

The physical origin of the epsilon contributions in Hmat

can be the exchange of a new heavy vector or scalar [22]
particle. We parameterize the resulting NSI with the
effective low-energy four-fermion Lagrangian

LNSI = −2
√

2GF (ν̄αγρνβ)(εff̃L
αβ f̄Lγρf̃L + εff̃R

αβ f̄Rγρf̃R)

+ h.c. (3)

Here εff̃L
αβ (εff̃R

αβ ) denotes the strength of the NSI be-
tween the neutrinos ν of flavors α and β and the left-
handed (right-handed) components of the fermions f and
f̃ . The epsilons in Eq. (2) are the sum of the contri-
butions from electrons (εe), up quarks (εu), and down
quarks (εd) in matter: εαβ ≡

∑

f=u,d,e εf
αβnf/ne. In

turn, εf
αβ ≡ εfL

αβ + εfR
αβ and εfP

αβ ≡ εffP
αβ . Notice that

the matter effects are sensitive only to the interactions
that preserve the flavor of the background fermion f (re-
quired by coherence [10]) and, furthermore, only to the
vector part of that interaction.

Neutrino scattering tests, like those of NuTeV [11] and
CHARM [12], mainly constrain the NSI couplings of the
muon neutrino, e.g., | εeµ | ! 10−3, | εµµ | ! 10−3−10−2.
The limits they place on εee, εeτ , and εττ are rather loose,
e. g., |εuuR

ττ | < 3, −0.4 < εuuR
ee < 0.7, |εuu

τe | < 0.5,
|εdd

τe| < 0.5 [13]. Stronger constraints exist on the cor-
responding interactions involving the charged leptons.
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neutrino data [1] have indicated that this parameter is
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amplitude oscillations between the νµ and ντ states. This
holds both at high energy (Eν " 10 GeV), where only
the muon neutrino flux is measured, and at lower ener-
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are available. These oscillations are driven by the off-
diagonal νµ − ντ mixing in Eq. (1) and the introduction
of sufficiently large NSI for the tau neutrino will, in gen-
eral, suppress that mixing. Since the vacuum Hamilto-
nian scales as E−1

ν , this suppression should be especially
strong at high energy, in the through-going muon sample.

As a simple illustration, consider the case when only
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ter term

√
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ter and hence the oscillation amplitude are expected to
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Next, we generalize this argument to the case of non-
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√
2GF ne(1+ εee + εττ

±
√
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follows that if |λe′,τ ′| % ∆m2/(2E0), the oscillations of
the muon neutrinos proceed unimpeded, while in oppo-
site case, |λe′,τ ′| " ∆m2/(2E0), they are suppressed.

It is very important to consider the intermediate
regime, when the spectrum has the hierarchy (a) |λτ ′ | <
∆m2/(2E0) % |λe′ | or (b) |λe′ | < ∆m2/(2E0) % |λτ ′ |.
In both cases, the oscillations between νµ and the corre-
sponding light eigenstate are allowed to proceed while
those between νµ and the heavy eigenstates are sup-
pressed. Remarkably, the resulting oscillation pattern is
indistinguishable from the standard case at high energy,
where only muon neutrinos are detected.

From now on we specialize to hierarchy (a), which is
smoothly connected to the origin εee=εeτ=εττ= 0 ((b)
is realized only if εee + εττ is a large negative number).
When it is satisfied, muon neutrinos oscillate into the
state

ντ ′ = −sβe2iψ νe +cβ ντ , (4)

where cβ = cosβ, sβ = sinβ, 2ψ = Arg(εeτ ), tan 2β =
2| εeτ |/(1+ εee − εττ).

The condition |λτ ′ | ! ∆m2/(2E0) implies

|1+ εee + εττ −
√

(1+ εee − εττ)2 + 4| εeτ |2| ! 0.4. (5)

This equation gives our analytical prediction for the
bound on εee, εeτ , εττ . When εee=εeτ= 0, it reduces to
the bound εττ! 0.2 given above.

The region Eq. (5) describes extends to large values of
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set to 0
 in the following!

Â / E, and the third term, which is proportional to Â2 /
E2, become relatively enhanced for high energies. This
means that high neutrino energies are very important to
constrain NSI. From Eq. (11), we can already estimate that
the j!me"j2 sensitivity should quantitatively be comparable
to the sin22#13 sensitivity, i.e., if the sin

22#13 sensitivity is
about 10!5, we obtain a j!me"j sensitivity of about 0.003 if
correlations and degeneracies can be sufficiently resolved.

C.Measuring !m"" and !m#" in the disappearance channel

As we shall quantitatively discuss later, the disappear-
ance channel P$$ at the neutrino factory is the dominant
source for the !m$" and !

m
"" sensitivities (see, e.g., Ref. [48]).

Here we follow Ref. [45] to describe these effects in the
two flavor limit. The approximation corresponds to the
%$-%" system with #13 ! 0. For !m"", we have

H ¼ 1

2E

!
U

0
!m2

31

" #
Uy þ !aCC!

m
""

0

" #$

þ aCC!
m
""

2E
1; (12)

where the PMNS matrix U is a 2$ 2 mixing matrix with
the mixing angle corresponding to #23. From this expres-
sion, we can read off the fact that !m"" plays the same role as
!m$$ does [48]. In this case, we can describe the shift in the
mass squared difference and mixing angle by a parameter
mapping:

! ~m2
31 ¼ !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin22#23 þ ðÂ!m"" þ cos2#23Þ2

q
; (13)

sin 22~#23 ¼
sin22#23

sin22#23 þ ðÂ!m"" þ cos2#23Þ2
: (14)

In the maximal mixing limit #23 ! &=4, these effective
parameters are reduced to

! ~m2
31 ! !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðÂ!m""Þ2

q
; (15)

sin 22~#23 ¼
1

1þ ðÂ!m""Þ2
: (16)

The lowest order of this shift comes fromOfð!m""Þ2g, which
means that it does not appear in the analytic expressions in
Refs. [53,54]. The NSI effect is proportional to Â2 / E2. In
low energy experiments such as T2K, this effect is not
important. On the other hand, in high energy experiments,
such as neutrino factories, this will affect the oscillation
probability significantly. In addition, note that there can, in
principle, be resonant effects for strong deviations from
maximal mixings. For j!m""j ¼ Oð1Þ (which might be, how-
ever, unrealistically large [30]) and #23 on the edge of the
current 3' allowed range, one finds from Eq. (14) that one
can have resonance energies as high as about 2.5 GeV,
which is slightly above the currently considered detection
threshold.
For !m$", which is also strongly present in the disappear-

ance channel, the parameter mapping is slightly more
complicated because !m$" can have a complex phase (m

$":

! ~m2
31 ¼ !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Âj!m$"j cos(m

$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m
$"Þ2 þ cos22#23

q
; (17)

sin 22~#23 ¼
ð2Âj!m$"j cos(m

$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m
$"Þ2

ð2Âj!m$"j cos(m
$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m

$"Þ2 þ cos22#23
: (18)

For maximal mixing #23 ! &=4, we obtain sin22~#23 ! 1
and

! ~m2
31 ! !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Âj!m$"j cos(m

$" þ ð2Âj!m$"jÞ2
q

: (19)

We can see that the mass squared difference receives
modifications already at first order in !m$", while the mixing
angle remains maximal to all orders. Since we will margin-
alize over the phase of the NSI parameter, the visible effect
comes from the second order term.

Numerically, the sensitivity to j!m$"j and j!m""j will be
limited by the precision of !m2

31 (provided that all other
correlations can be resolved). In Ref. [9], the 1' precision
of !m2

31 has been found to be 0.2% at the very long base-

line. Equation (15) thus implies 0:5ðÂj!m""jÞ2 ’ 0:2% at the
1' sensitivity limit for j!m""j. At the upper end of the
neutrino spectrum (E% ’ E$ ¼ 25 GeV, Â ’ 3), this leads

to j!m""j ’ 0:02. From Eq. (19), we obtain a much better
sensitivity for real !m$", i.e., cos(

m
$" ¼ '1: In this case, the

sensitivity is linear in j!m$"j, and given by 2Âj!m$"j ’ 0:2%
at the sensitivity limit, or j!m$"j ’ 3 ( 10!4. If, however,
(m

$" can take any value, it can also assume (m
$" ¼

'&=2, and we are back in the quadratic regime such as
for j!m""j. In fact, one can even have cancellation of the two
terms in Eq. (19), which means that we expect a sensitivity
worse than for j!m""j.

III. PERFORMANCE INDICATORS AND
SIMULATION DETAILS

In the previous section, we have motivated why we only
consider small nonstandard effects. As performance indi-
cator, we use the ‘‘j!m)*j sensitivity,’’ which corresponds to
the exclusion limit which is obtained if the true value
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Â / E, and the third term, which is proportional to Â2 /
E2, become relatively enhanced for high energies. This
means that high neutrino energies are very important to
constrain NSI. From Eq. (11), we can already estimate that
the j!me"j2 sensitivity should quantitatively be comparable
to the sin22#13 sensitivity, i.e., if the sin

22#13 sensitivity is
about 10!5, we obtain a j!me"j sensitivity of about 0.003 if
correlations and degeneracies can be sufficiently resolved.

C.Measuring !m"" and !m#" in the disappearance channel

As we shall quantitatively discuss later, the disappear-
ance channel P$$ at the neutrino factory is the dominant
source for the !m$" and !

m
"" sensitivities (see, e.g., Ref. [48]).

Here we follow Ref. [45] to describe these effects in the
two flavor limit. The approximation corresponds to the
%$-%" system with #13 ! 0. For !m"", we have

H ¼ 1

2E

!
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0
!m2

31

" #
Uy þ !aCC!

m
""
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" #$

þ aCC!
m
""

2E
1; (12)

where the PMNS matrix U is a 2$ 2 mixing matrix with
the mixing angle corresponding to #23. From this expres-
sion, we can read off the fact that !m"" plays the same role as
!m$$ does [48]. In this case, we can describe the shift in the
mass squared difference and mixing angle by a parameter
mapping:

! ~m2
31 ¼ !m2

31
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: (16)

The lowest order of this shift comes fromOfð!m""Þ2g, which
means that it does not appear in the analytic expressions in
Refs. [53,54]. The NSI effect is proportional to Â2 / E2. In
low energy experiments such as T2K, this effect is not
important. On the other hand, in high energy experiments,
such as neutrino factories, this will affect the oscillation
probability significantly. In addition, note that there can, in
principle, be resonant effects for strong deviations from
maximal mixings. For j!m""j ¼ Oð1Þ (which might be, how-
ever, unrealistically large [30]) and #23 on the edge of the
current 3' allowed range, one finds from Eq. (14) that one
can have resonance energies as high as about 2.5 GeV,
which is slightly above the currently considered detection
threshold.
For !m$", which is also strongly present in the disappear-

ance channel, the parameter mapping is slightly more
complicated because !m$" can have a complex phase (m

$":

! ~m2
31 ¼ !m2

31
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$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m
$"Þ2 þ cos22#23

q
; (17)

sin 22~#23 ¼
ð2Âj!m$"j cos(m

$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m
$"Þ2

ð2Âj!m$"j cos(m
$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m

$"Þ2 þ cos22#23
: (18)

For maximal mixing #23 ! &=4, we obtain sin22~#23 ! 1
and

! ~m2
31 ! !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Âj!m$"j cos(m

$" þ ð2Âj!m$"jÞ2
q

: (19)

We can see that the mass squared difference receives
modifications already at first order in !m$", while the mixing
angle remains maximal to all orders. Since we will margin-
alize over the phase of the NSI parameter, the visible effect
comes from the second order term.

Numerically, the sensitivity to j!m$"j and j!m""j will be
limited by the precision of !m2

31 (provided that all other
correlations can be resolved). In Ref. [9], the 1' precision
of !m2

31 has been found to be 0.2% at the very long base-

line. Equation (15) thus implies 0:5ðÂj!m""jÞ2 ’ 0:2% at the
1' sensitivity limit for j!m""j. At the upper end of the
neutrino spectrum (E% ’ E$ ¼ 25 GeV, Â ’ 3), this leads

to j!m""j ’ 0:02. From Eq. (19), we obtain a much better
sensitivity for real !m$", i.e., cos(

m
$" ¼ '1: In this case, the

sensitivity is linear in j!m$"j, and given by 2Âj!m$"j ’ 0:2%
at the sensitivity limit, or j!m$"j ’ 3 ( 10!4. If, however,
(m

$" can take any value, it can also assume (m
$" ¼

'&=2, and we are back in the quadratic regime such as
for j!m""j. In fact, one can even have cancellation of the two
terms in Eq. (19), which means that we expect a sensitivity
worse than for j!m""j.

III. PERFORMANCE INDICATORS AND
SIMULATION DETAILS

In the previous section, we have motivated why we only
consider small nonstandard effects. As performance indi-
cator, we use the ‘‘j!m)*j sensitivity,’’ which corresponds to
the exclusion limit which is obtained if the true value
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aCC ! 2
ffiffiffi
2

p
EGFNe (with Ne the electron number density

in Earth matter), and the first line corresponds to the usual
Hamiltonian in Earth matter. This equation already implies
that the energy and baseline dependence of the nonstan-
dard effects will be similar to the standard matter effects,
i.e., long baselines and high neutrino energies are impor-
tant. For antineutrinos, the matter potential in Eq. (3) and
all complex phases change sign, i.e., aCC ! "aCC, U !
U#, and !m"# ! ð!m"#Þ#. Note that from the hermiticity of

the Hamiltonian, !m## are real numbers, while the !m#"’s can

be complex for # ! ". As far as purely phenomenological
bounds are concerned, j!me$j and j!m$$j are already very
well constrained (see, e.g., Table 8 in Ref. [2]). In fact, we
will show at the end of this study, that the bounds obtain-
able from the neutrino factory are comparable to the cur-
rent bounds, which means that the neutrino factory is
probably not the best experiment for their measurement.
The interaction described by !mee is not per se interesting for
us, since it will be intimately correlated with the matter
density. We will discuss it in Sec. V.

Because of the strong bounds on j!me$j and j!m$$j, and the
straightforward relationship between !mee and the matter

density precision measurement, we will focus on !me%,
!m$%, and !m%% in the main line of this study. Note that the
above mentioned bounds are purely phenomenological,
and there are no convincing theoretical arguments yet
why these nonstandard effects should be large. Hence we
focus on further constraints beyond the current limits in
this study, but we do not discuss a possible discovery of
nonstandard effects, and only marginally touch possible
effects on the determination of the standard oscillation
parameters. Note that similar nonstandard effects can be
present in the neutrino production or detection. We do not
consider these effects, which has the advantage that we do
not have to simulate the near detector explicitly.3

B. Measuring !me" in the golden and silver appearance
channels

Let us now first of all focus on !me%, which can be best
measured in the golden &e ! &$ and silver &e ! &% ap-
pearance channels (see, e.g., Ref. [47]). The interference
term induced by !me% in the silver channel Pe% ! P&e!&%

can
be illustrated as

Pe% ¼ jAð&e!
SO
&%Þj2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

SO signal; background for NSI search

þ 2Re½A#ð&e!
SO
&%ÞAð&e !NSI; No-osc

!me%
&%Þ) þOðj!me%j2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NSI signal

; (4)

where ‘‘SO’’ stands for ‘‘standard oscillations.’’ As we will
see below, this structure is recovered in the full expression
of the oscillation probability. In our discussion, we will use
the following abbreviations for the spectral terms, i.e., the
terms containing energy and/or baseline information:

! ! !m2
31L

4E
; (5)

Â ! * aCC
!m2

31

¼ * 2
ffiffiffi
2

p
EGFNe

!m2
31

; (6)

F Res ! sin½ð1" ÂÞ!)
1" Â

; (7)

F MB ! sinðÂ!Þ ¼ sin
#
*

ffiffiffi
2

p

2
GFNeL

$
: (8)

Here ! corresponds to the vacuum oscillation phase, Â to
the effective matter potential with Â ! 1 at the matter
resonance,F Res to a termmaximal at the matter resonance,
andFMB to a term which is vanishing at the magic baseline
L ’ 7500 km [8,65]. In the definitions of Â and FMB, the
upper signs are for neutrinos, and the lower ones for
antineutrinos. Contributions proportional to different prod-
ucts of these terms can, in principle, be disentangled by the
use of a wide beam spectrum and different baselines. The
standard oscillation probability for Pe$ and Pe% is, to
second order in # ! !m2

21=!m
2
31 ’ 0:03 and sin2'13,

given by (see, e.g., Ref. [66])

PSO
e$

PSO
e%

# $
’ sin22'13

s223
c223

# $
ðF ResÞ2 * # sin2'13 sin2'12 sin2'23 sin(CP

1

Â
FMBF Res sin!

* # sin2'13 sin2'12 sin2'23 cos(CP
1

Â
FMBF Res cos!þ #2 c223

s223

# $
sin22'12

1

Â2
ðFMBÞ2 (9)

with sij ¼ sin'ij and cij ¼ cos'ij. Note that the upper row/signs are for Pe$, and the lower row/signs for Pe%. The different
terms, can in principle, be disentangled by their spectral dependencies. For example, for FMB ! 0 (magic baseline) only

3There is not yet any near detector specification in the IDS-NF baseline setup. As soon as such a specification is available, it may
make sense to discuss production and detection effects as well.
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aCC ! 2
ffiffiffi
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p
EGFNe (with Ne the electron number density

in Earth matter), and the first line corresponds to the usual
Hamiltonian in Earth matter. This equation already implies
that the energy and baseline dependence of the nonstan-
dard effects will be similar to the standard matter effects,
i.e., long baselines and high neutrino energies are impor-
tant. For antineutrinos, the matter potential in Eq. (3) and
all complex phases change sign, i.e., aCC ! "aCC, U !
U#, and !m"# ! ð!m"#Þ#. Note that from the hermiticity of

the Hamiltonian, !m## are real numbers, while the !m#"’s can

be complex for # ! ". As far as purely phenomenological
bounds are concerned, j!me$j and j!m$$j are already very
well constrained (see, e.g., Table 8 in Ref. [2]). In fact, we
will show at the end of this study, that the bounds obtain-
able from the neutrino factory are comparable to the cur-
rent bounds, which means that the neutrino factory is
probably not the best experiment for their measurement.
The interaction described by !mee is not per se interesting for
us, since it will be intimately correlated with the matter
density. We will discuss it in Sec. V.

Because of the strong bounds on j!me$j and j!m$$j, and the
straightforward relationship between !mee and the matter

density precision measurement, we will focus on !me%,
!m$%, and !m%% in the main line of this study. Note that the
above mentioned bounds are purely phenomenological,
and there are no convincing theoretical arguments yet
why these nonstandard effects should be large. Hence we
focus on further constraints beyond the current limits in
this study, but we do not discuss a possible discovery of
nonstandard effects, and only marginally touch possible
effects on the determination of the standard oscillation
parameters. Note that similar nonstandard effects can be
present in the neutrino production or detection. We do not
consider these effects, which has the advantage that we do
not have to simulate the near detector explicitly.3

B. Measuring !me" in the golden and silver appearance
channels

Let us now first of all focus on !me%, which can be best
measured in the golden &e ! &$ and silver &e ! &% ap-
pearance channels (see, e.g., Ref. [47]). The interference
term induced by !me% in the silver channel Pe% ! P&e!&%

can
be illustrated as

Pe% ¼ jAð&e!
SO
&%Þj2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

SO signal; background for NSI search

þ 2Re½A#ð&e!
SO
&%ÞAð&e !NSI; No-osc

!me%
&%Þ) þOðj!me%j2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NSI signal

; (4)

where ‘‘SO’’ stands for ‘‘standard oscillations.’’ As we will
see below, this structure is recovered in the full expression
of the oscillation probability. In our discussion, we will use
the following abbreviations for the spectral terms, i.e., the
terms containing energy and/or baseline information:

! ! !m2
31L

4E
; (5)

Â ! * aCC
!m2

31

¼ * 2
ffiffiffi
2

p
EGFNe

!m2
31

; (6)

F Res ! sin½ð1" ÂÞ!)
1" Â

; (7)

F MB ! sinðÂ!Þ ¼ sin
#
*

ffiffiffi
2

p

2
GFNeL

$
: (8)

Here ! corresponds to the vacuum oscillation phase, Â to
the effective matter potential with Â ! 1 at the matter
resonance,F Res to a termmaximal at the matter resonance,
andFMB to a term which is vanishing at the magic baseline
L ’ 7500 km [8,65]. In the definitions of Â and FMB, the
upper signs are for neutrinos, and the lower ones for
antineutrinos. Contributions proportional to different prod-
ucts of these terms can, in principle, be disentangled by the
use of a wide beam spectrum and different baselines. The
standard oscillation probability for Pe$ and Pe% is, to
second order in # ! !m2

21=!m
2
31 ’ 0:03 and sin2'13,

given by (see, e.g., Ref. [66])

PSO
e$

PSO
e%

# $
’ sin22'13

s223
c223

# $
ðF ResÞ2 * # sin2'13 sin2'12 sin2'23 sin(CP

1

Â
FMBF Res sin!

* # sin2'13 sin2'12 sin2'23 cos(CP
1

Â
FMBF Res cos!þ #2 c223

s223

# $
sin22'12

1

Â2
ðFMBÞ2 (9)

with sij ¼ sin'ij and cij ¼ cos'ij. Note that the upper row/signs are for Pe$, and the lower row/signs for Pe%. The different
terms, can in principle, be disentangled by their spectral dependencies. For example, for FMB ! 0 (magic baseline) only

3There is not yet any near detector specification in the IDS-NF baseline setup. As soon as such a specification is available, it may
make sense to discuss production and detection effects as well.
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Â / E, and the third term, which is proportional to Â2 /
E2, become relatively enhanced for high energies. This
means that high neutrino energies are very important to
constrain NSI. From Eq. (11), we can already estimate that
the j!me"j2 sensitivity should quantitatively be comparable
to the sin22#13 sensitivity, i.e., if the sin

22#13 sensitivity is
about 10!5, we obtain a j!me"j sensitivity of about 0.003 if
correlations and degeneracies can be sufficiently resolved.

C.Measuring !m"" and !m#" in the disappearance channel

As we shall quantitatively discuss later, the disappear-
ance channel P$$ at the neutrino factory is the dominant
source for the !m$" and !

m
"" sensitivities (see, e.g., Ref. [48]).

Here we follow Ref. [45] to describe these effects in the
two flavor limit. The approximation corresponds to the
%$-%" system with #13 ! 0. For !m"", we have

H ¼ 1

2E

!
U

0
!m2

31

" #
Uy þ !aCC!

m
""

0

" #$

þ aCC!
m
""

2E
1; (12)

where the PMNS matrix U is a 2$ 2 mixing matrix with
the mixing angle corresponding to #23. From this expres-
sion, we can read off the fact that !m"" plays the same role as
!m$$ does [48]. In this case, we can describe the shift in the
mass squared difference and mixing angle by a parameter
mapping:

! ~m2
31 ¼ !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin22#23 þ ðÂ!m"" þ cos2#23Þ2

q
; (13)

sin 22~#23 ¼
sin22#23

sin22#23 þ ðÂ!m"" þ cos2#23Þ2
: (14)

In the maximal mixing limit #23 ! &=4, these effective
parameters are reduced to

! ~m2
31 ! !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðÂ!m""Þ2

q
; (15)

sin 22~#23 ¼
1

1þ ðÂ!m""Þ2
: (16)

The lowest order of this shift comes fromOfð!m""Þ2g, which
means that it does not appear in the analytic expressions in
Refs. [53,54]. The NSI effect is proportional to Â2 / E2. In
low energy experiments such as T2K, this effect is not
important. On the other hand, in high energy experiments,
such as neutrino factories, this will affect the oscillation
probability significantly. In addition, note that there can, in
principle, be resonant effects for strong deviations from
maximal mixings. For j!m""j ¼ Oð1Þ (which might be, how-
ever, unrealistically large [30]) and #23 on the edge of the
current 3' allowed range, one finds from Eq. (14) that one
can have resonance energies as high as about 2.5 GeV,
which is slightly above the currently considered detection
threshold.
For !m$", which is also strongly present in the disappear-

ance channel, the parameter mapping is slightly more
complicated because !m$" can have a complex phase (m

$":

! ~m2
31 ¼ !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Âj!m$"j cos(m

$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m
$"Þ2 þ cos22#23

q
; (17)

sin 22~#23 ¼
ð2Âj!m$"j cos(m

$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m
$"Þ2

ð2Âj!m$"j cos(m
$" þ sin2#23Þ2 þ ð2Âj!m$"j sin(m

$"Þ2 þ cos22#23
: (18)

For maximal mixing #23 ! &=4, we obtain sin22~#23 ! 1
and

! ~m2
31 ! !m2

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Âj!m$"j cos(m

$" þ ð2Âj!m$"jÞ2
q

: (19)

We can see that the mass squared difference receives
modifications already at first order in !m$", while the mixing
angle remains maximal to all orders. Since we will margin-
alize over the phase of the NSI parameter, the visible effect
comes from the second order term.

Numerically, the sensitivity to j!m$"j and j!m""j will be
limited by the precision of !m2

31 (provided that all other
correlations can be resolved). In Ref. [9], the 1' precision
of !m2

31 has been found to be 0.2% at the very long base-

line. Equation (15) thus implies 0:5ðÂj!m""jÞ2 ’ 0:2% at the
1' sensitivity limit for j!m""j. At the upper end of the
neutrino spectrum (E% ’ E$ ¼ 25 GeV, Â ’ 3), this leads

to j!m""j ’ 0:02. From Eq. (19), we obtain a much better
sensitivity for real !m$", i.e., cos(

m
$" ¼ '1: In this case, the

sensitivity is linear in j!m$"j, and given by 2Âj!m$"j ’ 0:2%
at the sensitivity limit, or j!m$"j ’ 3 ( 10!4. If, however,
(m

$" can take any value, it can also assume (m
$" ¼

'&=2, and we are back in the quadratic regime such as
for j!m""j. In fact, one can even have cancellation of the two
terms in Eq. (19), which means that we expect a sensitivity
worse than for j!m""j.

III. PERFORMANCE INDICATORS AND
SIMULATION DETAILS

In the previous section, we have motivated why we only
consider small nonstandard effects. As performance indi-
cator, we use the ‘‘j!m)*j sensitivity,’’ which corresponds to
the exclusion limit which is obtained if the true value
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We assume all NSI to be real. We marginalize over the remaining NSI parameters.
90% CL (2 dof) for 10 years muon track statistics contours:

channels operated at the same baseline, and uncorrelated
between different baselines (unless we vary the baseline of
one channel independently; in that case, it is always
uncorrelated).

IV. IMPACT OF DIFFERENT CHANNELS

In this section, we discuss the impact of different oscil-
lation channels, and we study the optimization of the silver
channel. We know from Ref. [52] that the combination of
two baselines, one with about 3000 km and the other with
about 7000 km, turns out to be very useful to resolve
correlations between the standard and nonstandard pa-
rameters, and among different nonstandard parameters.
However, disappearance information was not taken into
account in the analysis of Ref. [52], and the off-diagonal
!’s were assumed to be real. On the other hand, it has been
demonstrated in Ref. [47] that the silver channel probabil-
ity at 3000 km significantly depends on the nonstandard

effects, especially !me". Therefore, we focus on three major
questions in this section:
(1) Which oscillation channels dominate the measure-

ments for which nonstandard quantities?
(2) If one has already a two-baseline setup, such as the

IDS-NF setup, does one still need the silver
channel?

(3) Is the silver channel location at the shorter of the
two golden baselines really the optimal choice?

These questions can only be quantitatively and reliably
answered using a full simulation.
To compare our results to Ref. [52], let us first of all

assume all !m#$ to be real. In addition, we study simulta-

neous constraints for two nonstandard parameters to illus-
trate the impact of different channels. In order to compare
to Ref. [52], we choose an example in the !m""-!

m
e" plane,

where correlations are particularly severe, i.e., sin22%true13 ¼
0:001 and &true

CP ¼ 3'=2. In Fig. 1 we show the allowed

τ τ τ
τττ

ττττττ

ττ ττ ττ

ττ

τ

τ

FIG. 1 (color online). Contribution of different channels to the !m""-!
m
e" sensitivity. The first row corresponds to the golden channel

only. The different columns correspond to the two different baselines 4000 km and 7500 km, as well as their combination. In the
second row, we in addition add the disappearance channel (left), introduce complex !me" (middle), and finally add the Silver* channel
(right). In the upper row, we only marginalize over sin22%13 and &CP, whereas in the lower row, we marginalize over all oscillation
parameters. Note that !me" is assumed to be real in the first four panels, and complex in the last two. In this figure, a true &CP ¼ 3'=2
and sin22%13 ¼ 0:001 have been assumed. In addition, E( ¼ 50 GeV has been chosen for comparison to Ref. [52]. The contours

correspond to the 1), 2), and 3) confidence level for 2 d.o.f.
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1, 2, 3 sigma (2dof)

Current NSI limits could be improved by one order of magnitude, but not much 
better than those found @ Friedland, Lunardini & Maltoni PRD’04, DUSEL?

@ 90%CL
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αβ Kin. GF (L, R) CKM unit. (V ) Lept. univ. (A) Oscillation (L, R)

εµe
ee < 0.030 < 0.030 < 0.080 < 0.025

εµe
eµ (−1.4±1.4) · 10−3(R,L) < 4 · 10−4(R) (−0.4±3.5) · 10−3(R) -

< 0.030 < 0.030 < 0.080

εµe
eτ < 0.030 < 0.030 < 0.080 < 0.087

εµe
µe < 0.030 < 0.030 < 0.080 < 0.025

εµe
µµ < 0.030 < 0.030 < 0.080 -

εµe
µτ < 0.030 < 0.030 < 0.080 < 0.087

εµe
τe < 0.030 < 0.030 < 0.080 < 0.025

εµe
τµ < 0.030 < 0.030 < 0.080 -

εµe
ττ < 0.030 < 0.030 < 0.080 < 0.087

Table 2. Bounds (90 % CL) on the purely leptonic charged-current-like NSI εµe
αβ , relevant to the

neutrino production through muon decay, e.g., at a Neutrino Factory. The letters L,R, V,A refer
to the chirality of the ε which is actually bounded, while R stands for the real part of the element
only. See the text for details.

in the matter interaction part of the neutrino flavour evolution. Thus, assuming uncorre-

lated errors, the bounds on εαβ could be approximated by
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for neutral Earth-like matter with an equal number of neutrons and protons and by
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for neutral solar-like matter, consisting mostly of electrons and protons. Using the bounds

from refs. [57–60], but discarding the loop constraints on εfP
eµ [34], the resulting bounds on

the effective NSI parameters would be
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respectively. Notice that atmospheric neutrino oscillations also constrain the values of

matter NSI through the relation ε⊕ττ "
[

|ε⊕eτ |
2 ±O(0.1)

]

/ (1 + ε⊕ee) [12, 61]. As long as

1 + ε⊕ee is not significantly smaller than one, this would set a stronger bound ε⊕ττ ! O(10).

We want to stress the fact that the constraints on εe, εu and εd have been derived

under the assumption of taking one non-zero ε at a time. Thus, the approach of combining

them together as in eq. (4.5) is not fully consistent. For this reason, in the compilation of

all the results in the following section, the bounds will be quoted separately.
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We assume all NSI to be real. We marginalize over the remaining NSI parameters.
90% CL (2 dof) for 10 years muon track statistics contours:

channels operated at the same baseline, and uncorrelated
between different baselines (unless we vary the baseline of
one channel independently; in that case, it is always
uncorrelated).

IV. IMPACT OF DIFFERENT CHANNELS

In this section, we discuss the impact of different oscil-
lation channels, and we study the optimization of the silver
channel. We know from Ref. [52] that the combination of
two baselines, one with about 3000 km and the other with
about 7000 km, turns out to be very useful to resolve
correlations between the standard and nonstandard pa-
rameters, and among different nonstandard parameters.
However, disappearance information was not taken into
account in the analysis of Ref. [52], and the off-diagonal
!’s were assumed to be real. On the other hand, it has been
demonstrated in Ref. [47] that the silver channel probabil-
ity at 3000 km significantly depends on the nonstandard

effects, especially !me". Therefore, we focus on three major
questions in this section:
(1) Which oscillation channels dominate the measure-

ments for which nonstandard quantities?
(2) If one has already a two-baseline setup, such as the

IDS-NF setup, does one still need the silver
channel?

(3) Is the silver channel location at the shorter of the
two golden baselines really the optimal choice?

These questions can only be quantitatively and reliably
answered using a full simulation.
To compare our results to Ref. [52], let us first of all

assume all !m#$ to be real. In addition, we study simulta-

neous constraints for two nonstandard parameters to illus-
trate the impact of different channels. In order to compare
to Ref. [52], we choose an example in the !m""-!

m
e" plane,

where correlations are particularly severe, i.e., sin22%true13 ¼
0:001 and &true

CP ¼ 3'=2. In Fig. 1 we show the allowed
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FIG. 1 (color online). Contribution of different channels to the !m""-!
m
e" sensitivity. The first row corresponds to the golden channel

only. The different columns correspond to the two different baselines 4000 km and 7500 km, as well as their combination. In the
second row, we in addition add the disappearance channel (left), introduce complex !me" (middle), and finally add the Silver* channel
(right). In the upper row, we only marginalize over sin22%13 and &CP, whereas in the lower row, we marginalize over all oscillation
parameters. Note that !me" is assumed to be real in the first four panels, and complex in the last two. In this figure, a true &CP ¼ 3'=2
and sin22%13 ¼ 0:001 have been assumed. In addition, E( ¼ 50 GeV has been chosen for comparison to Ref. [52]. The contours

correspond to the 1), 2), and 3) confidence level for 2 d.o.f.
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1, 2, 3 sigma (2dof)

Current NSI limits could be improved by one order of magnitude, but not much 
better than those found @ Friedland, Lunardini & Maltoni PRD’04, DUSEL?
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Table 2. Bounds (90 % CL) on the purely leptonic charged-current-like NSI εµe
αβ , relevant to the

neutrino production through muon decay, e.g., at a Neutrino Factory. The letters L,R, V,A refer
to the chirality of the ε which is actually bounded, while R stands for the real part of the element
only. See the text for details.

in the matter interaction part of the neutrino flavour evolution. Thus, assuming uncorre-

lated errors, the bounds on εαβ could be approximated by
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for neutral Earth-like matter with an equal number of neutrons and protons and by
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for neutral solar-like matter, consisting mostly of electrons and protons. Using the bounds

from refs. [57–60], but discarding the loop constraints on εfP
eµ [34], the resulting bounds on

the effective NSI parameters would be
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respectively. Notice that atmospheric neutrino oscillations also constrain the values of

matter NSI through the relation ε⊕ττ "
[

|ε⊕eτ |
2 ±O(0.1)

]

/ (1 + ε⊕ee) [12, 61]. As long as

1 + ε⊕ee is not significantly smaller than one, this would set a stronger bound ε⊕ττ ! O(10).

We want to stress the fact that the constraints on εe, εu and εd have been derived

under the assumption of taking one non-zero ε at a time. Thus, the approach of combining

them together as in eq. (4.5) is not fully consistent. For this reason, in the compilation of

all the results in the following section, the bounds will be quoted separately.
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We assume all NSI to be real. We marginalize over the remaining NSI parameters.
90% CL (2 dof) for 10 years muon track statistics contours:

channels operated at the same baseline, and uncorrelated
between different baselines (unless we vary the baseline of
one channel independently; in that case, it is always
uncorrelated).

IV. IMPACT OF DIFFERENT CHANNELS

In this section, we discuss the impact of different oscil-
lation channels, and we study the optimization of the silver
channel. We know from Ref. [52] that the combination of
two baselines, one with about 3000 km and the other with
about 7000 km, turns out to be very useful to resolve
correlations between the standard and nonstandard pa-
rameters, and among different nonstandard parameters.
However, disappearance information was not taken into
account in the analysis of Ref. [52], and the off-diagonal
!’s were assumed to be real. On the other hand, it has been
demonstrated in Ref. [47] that the silver channel probabil-
ity at 3000 km significantly depends on the nonstandard

effects, especially !me". Therefore, we focus on three major
questions in this section:
(1) Which oscillation channels dominate the measure-

ments for which nonstandard quantities?
(2) If one has already a two-baseline setup, such as the

IDS-NF setup, does one still need the silver
channel?

(3) Is the silver channel location at the shorter of the
two golden baselines really the optimal choice?

These questions can only be quantitatively and reliably
answered using a full simulation.
To compare our results to Ref. [52], let us first of all

assume all !m#$ to be real. In addition, we study simulta-

neous constraints for two nonstandard parameters to illus-
trate the impact of different channels. In order to compare
to Ref. [52], we choose an example in the !m""-!

m
e" plane,

where correlations are particularly severe, i.e., sin22%true13 ¼
0:001 and &true

CP ¼ 3'=2. In Fig. 1 we show the allowed
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FIG. 1 (color online). Contribution of different channels to the !m""-!
m
e" sensitivity. The first row corresponds to the golden channel

only. The different columns correspond to the two different baselines 4000 km and 7500 km, as well as their combination. In the
second row, we in addition add the disappearance channel (left), introduce complex !me" (middle), and finally add the Silver* channel
(right). In the upper row, we only marginalize over sin22%13 and &CP, whereas in the lower row, we marginalize over all oscillation
parameters. Note that !me" is assumed to be real in the first four panels, and complex in the last two. In this figure, a true &CP ¼ 3'=2
and sin22%13 ¼ 0:001 have been assumed. In addition, E( ¼ 50 GeV has been chosen for comparison to Ref. [52]. The contours

correspond to the 1), 2), and 3) confidence level for 2 d.o.f.
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Current NSI limits could be improved by one order of magnitude, but not much 
better than those found @ Friedland, Lunardini & Maltoni PRD’04, DUSEL?
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Table 2. Bounds (90 % CL) on the purely leptonic charged-current-like NSI εµe
αβ , relevant to the

neutrino production through muon decay, e.g., at a Neutrino Factory. The letters L,R, V,A refer
to the chirality of the ε which is actually bounded, while R stands for the real part of the element
only. See the text for details.
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for neutral Earth-like matter with an equal number of neutrons and protons and by
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for neutral solar-like matter, consisting mostly of electrons and protons. Using the bounds

from refs. [57–60], but discarding the loop constraints on εfP
eµ [34], the resulting bounds on

the effective NSI parameters would be
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respectively. Notice that atmospheric neutrino oscillations also constrain the values of

matter NSI through the relation ε⊕ττ "
[

|ε⊕eτ |
2 ±O(0.1)

]

/ (1 + ε⊕ee) [12, 61]. As long as

1 + ε⊕ee is not significantly smaller than one, this would set a stronger bound ε⊕ττ ! O(10).

We want to stress the fact that the constraints on εe, εu and εd have been derived

under the assumption of taking one non-zero ε at a time. Thus, the approach of combining

them together as in eq. (4.5) is not fully consistent. For this reason, in the compilation of

all the results in the following section, the bounds will be quoted separately.
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Thank you!
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What can we do with these atmospheric neutrinos?
Cascades

 EM                                                               Hadronic

How about cascades?

• Electromagnetic cascades:

Tau decay: τ → e + ν̄e + ντ

νe CC interactions: νe + N → e + X

• Hadronic cascades

Tau decay: τ → ντ + X

ντ NC interactions: ντ + N → ντ + X

ντ CC interactions: ντ + N → τ + X

νe,µ NC and CC interactions

How about cascades?

• Electromagnetic cascades:

Tau decay: τ → e + ν̄e + ντ

νe CC interactions: νe + N → e + X

• Hadronic cascades

Tau decay: τ → ντ + X

ντ NC interactions: ντ + N → ντ + X

ντ CC interactions: ντ + N → τ + X

νe,µ NC and CC interactions

We assume all NSI to be real. We marginalize over the remaining NSI parameters.
90% CL (2 dof) for 10 years muon track statistics contours:
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